Merge pull request #8863 from thinkyhead/bf2_restore_position_float
[2.0.x] Restore position_float to LIN_ADVANCE
This commit is contained in:
commit
ca145643bd
3 changed files with 128 additions and 22 deletions
|
@ -491,6 +491,10 @@ static_assert(X_MAX_LENGTH >= X_BED_SIZE && Y_MAX_LENGTH >= Y_BED_SIZE,
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(LIN_ADVANCE) && !IS_CARTESIAN
|
||||
#error "Sorry! LIN_ADVANCE is only compatible with Cartesian."
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Parking Extruder requirements
|
||||
*/
|
||||
|
|
|
@ -182,7 +182,10 @@ float Planner::previous_speed[NUM_AXIS],
|
|||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
float Planner::extruder_advance_k, // Initialized by settings.load()
|
||||
Planner::advance_ed_ratio; // Initialized by settings.load()
|
||||
Planner::advance_ed_ratio, // Initialized by settings.load()
|
||||
Planner::position_float[XYZE], // Needed for accurate maths. Steps cannot be used!
|
||||
Planner::lin_dist_xy,
|
||||
Planner::lin_dist_e;
|
||||
#endif
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
|
@ -198,6 +201,9 @@ Planner::Planner() { init(); }
|
|||
void Planner::init() {
|
||||
block_buffer_head = block_buffer_tail = 0;
|
||||
ZERO(position);
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
ZERO(position_float);
|
||||
#endif
|
||||
ZERO(previous_speed);
|
||||
previous_nominal_speed = 0.0;
|
||||
#if ABL_PLANAR
|
||||
|
@ -742,7 +748,9 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|||
SERIAL_ECHOLNPGM(" steps)");
|
||||
//*/
|
||||
|
||||
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
||||
// If LIN_ADVANCE is disabled then do E move prevention with integers
|
||||
// Otherwise it's done in _buffer_segment.
|
||||
#if DISABLED(LIN_ADVANCE) && (ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE))
|
||||
if (de) {
|
||||
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
||||
if (thermalManager.tooColdToExtrude(extruder)) {
|
||||
|
@ -761,7 +769,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|||
}
|
||||
#endif // PREVENT_LENGTHY_EXTRUDE
|
||||
}
|
||||
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
|
||||
#endif // !LIN_ADVANCE && (PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE)
|
||||
|
||||
// Compute direction bit-mask for this block
|
||||
uint8_t dm = 0;
|
||||
|
@ -1102,14 +1110,10 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|||
}
|
||||
#endif
|
||||
|
||||
// Calculate and limit speed in mm/sec for each axis, calculate minimum acceleration ratio
|
||||
// Calculate and limit speed in mm/sec for each axis
|
||||
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
|
||||
float max_stepper_speed = 0, min_axis_accel_ratio = 1; // ratio < 1 means acceleration ramp needed
|
||||
LOOP_XYZE(i) {
|
||||
const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs));
|
||||
if (cs > max_jerk[i])
|
||||
NOMORE(min_axis_accel_ratio, max_jerk[i] / cs);
|
||||
NOLESS(max_stepper_speed, cs);
|
||||
#if ENABLED(DISTINCT_E_FACTORS)
|
||||
if (i == E_AXIS) i += extruder;
|
||||
#endif
|
||||
|
@ -1154,9 +1158,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|||
}
|
||||
#endif // XY_FREQUENCY_LIMIT
|
||||
|
||||
block->nominal_speed = max_stepper_speed; // (mm/sec) Always > 0
|
||||
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
||||
|
||||
// Correct the speed
|
||||
if (speed_factor < 1.0) {
|
||||
LOOP_XYZE(i) current_speed[i] *= speed_factor;
|
||||
|
@ -1164,9 +1165,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|||
block->nominal_rate *= speed_factor;
|
||||
}
|
||||
|
||||
float safe_speed = block->nominal_speed * min_axis_accel_ratio;
|
||||
static float previous_safe_speed;
|
||||
|
||||
// Compute and limit the acceleration rate for the trapezoid generator.
|
||||
const float steps_per_mm = block->step_event_count * inverse_millimeters;
|
||||
uint32_t accel;
|
||||
|
@ -1268,6 +1266,32 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Adapted from Průša MKS firmware
|
||||
* https://github.com/prusa3d/Prusa-Firmware
|
||||
*
|
||||
* Start with a safe speed (from which the machine may halt to stop immediately).
|
||||
*/
|
||||
|
||||
// Exit speed limited by a jerk to full halt of a previous last segment
|
||||
static float previous_safe_speed;
|
||||
|
||||
float safe_speed = block->nominal_speed;
|
||||
uint8_t limited = 0;
|
||||
LOOP_XYZE(i) {
|
||||
const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
|
||||
if (jerk > maxj) {
|
||||
if (limited) {
|
||||
const float mjerk = maxj * block->nominal_speed;
|
||||
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk;
|
||||
}
|
||||
else {
|
||||
++limited;
|
||||
safe_speed = maxj;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
|
||||
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
||||
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
||||
|
@ -1279,7 +1303,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|||
|
||||
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
||||
float v_factor = 1;
|
||||
uint8_t limited = 0;
|
||||
limited = 0;
|
||||
|
||||
// Now limit the jerk in all axes.
|
||||
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
|
||||
|
@ -1355,16 +1379,16 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|||
* In that case, the retract and move will be executed together.
|
||||
* This leads to too many advance steps due to a huge e_acceleration.
|
||||
* The math is good, but we must avoid retract moves with advance!
|
||||
* de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
||||
* lin_dist_e > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
|
||||
*/
|
||||
block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
|
||||
&& extruder_advance_k
|
||||
&& (uint32_t)esteps != block->step_event_count
|
||||
&& de > 0;
|
||||
&& lin_dist_e > 0;
|
||||
if (block->use_advance_lead)
|
||||
block->abs_adv_steps_multiplier8 = LROUND(
|
||||
extruder_advance_k
|
||||
* (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
|
||||
* (UNEAR_ZERO(advance_ed_ratio) ? lin_dist_e / lin_dist_xy : advance_ed_ratio) // Use the fixed ratio, if set
|
||||
* (block->nominal_speed / (float)block->nominal_rate)
|
||||
* axis_steps_per_mm[E_AXIS_N] * 256.0
|
||||
);
|
||||
|
@ -1442,16 +1466,69 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
|
|||
SERIAL_ECHOLNPGM(")");
|
||||
//*/
|
||||
|
||||
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
||||
if (DEBUGGING(DRYRUN))
|
||||
// DRYRUN prevents E moves from taking place
|
||||
if (DEBUGGING(DRYRUN)) {
|
||||
position[E_AXIS] = target[E_AXIS];
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
}
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
lin_dist_e = e - position_float[E_AXIS];
|
||||
#endif
|
||||
|
||||
// If LIN_ADVANCE is enabled then do E move prevention with floats
|
||||
// Otherwise it's done in _buffer_steps.
|
||||
#if ENABLED(LIN_ADVANCE) && (ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE))
|
||||
if (lin_dist_e) {
|
||||
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
||||
if (thermalManager.tooColdToExtrude(extruder)) {
|
||||
position_float[E_AXIS] = e; // Behave as if the move really took place, but ignore E part
|
||||
position[E_AXIS] = target[E_AXIS];
|
||||
lin_dist_e = 0;
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
||||
}
|
||||
#endif // PREVENT_COLD_EXTRUSION
|
||||
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
||||
if (lin_dist_e * e_factor[extruder] > (EXTRUDE_MAXLENGTH)) {
|
||||
position_float[E_AXIS] = e; // Behave as if the move really took place, but ignore E part
|
||||
position[E_AXIS] = target[E_AXIS];
|
||||
lin_dist_e = 0;
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
||||
}
|
||||
#endif // PREVENT_LENGTHY_EXTRUDE
|
||||
}
|
||||
#endif // LIN_ADVANCE && (PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE)
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
if (lin_dist_e > 0)
|
||||
lin_dist_xy = HYPOT(a - position_float[X_AXIS], b - position_float[Y_AXIS]);
|
||||
#endif
|
||||
|
||||
// Always split the first move into two (if not homing or probing)
|
||||
if (!blocks_queued()) {
|
||||
|
||||
#define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
|
||||
const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) };
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
lin_dist_xy *= 0.5;
|
||||
lin_dist_e *= 0.5;
|
||||
#endif
|
||||
|
||||
_buffer_steps(between, fr_mm_s, extruder);
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[X_AXIS] = (position_float[X_AXIS] + a) * 0.5;
|
||||
position_float[Y_AXIS] = (position_float[Y_AXIS] + b) * 0.5;
|
||||
//position_float[Z_AXIS] = (position_float[Z_AXIS] + c) * 0.5;
|
||||
position_float[E_AXIS] = (position_float[E_AXIS] + e) * 0.5;
|
||||
#endif
|
||||
|
||||
const uint8_t next = block_buffer_head;
|
||||
_buffer_steps(target, fr_mm_s, extruder);
|
||||
SBI(block_buffer[next].flag, BLOCK_BIT_CONTINUED);
|
||||
|
@ -1462,6 +1539,12 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
|
|||
|
||||
stepper.wake_up();
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[X_AXIS] = a;
|
||||
position_float[Y_AXIS] = b;
|
||||
//position_float[Z_AXIS] = c;
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
} // buffer_segment()
|
||||
|
||||
/**
|
||||
|
@ -1482,6 +1565,12 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
|
|||
nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
|
||||
nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
|
||||
ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[X_AXIS] = a;
|
||||
position_float[Y_AXIS] = b;
|
||||
//position_float[Z_AXIS] = c;
|
||||
position_float[E_AXIS] = e;
|
||||
#endif
|
||||
stepper.set_position(na, nb, nc, ne);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
ZERO(previous_speed);
|
||||
|
@ -1506,8 +1595,16 @@ void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) {
|
|||
* Sync from the stepper positions. (e.g., after an interrupted move)
|
||||
*/
|
||||
void Planner::sync_from_steppers() {
|
||||
LOOP_XYZE(i)
|
||||
LOOP_XYZE(i) {
|
||||
position[i] = stepper.position((AxisEnum)i);
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[i] = position[i] * steps_to_mm[i
|
||||
#if ENABLED(DISTINCT_E_FACTORS)
|
||||
+ (i == E_AXIS ? active_extruder : 0)
|
||||
#endif
|
||||
];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1521,6 +1618,9 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
|
|||
const uint8_t axis_index = axis;
|
||||
#endif
|
||||
position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
position_float[axis] = v;
|
||||
#endif
|
||||
stepper.set_position(axis, v);
|
||||
previous_speed[axis] = 0.0;
|
||||
}
|
||||
|
|
|
@ -195,7 +195,9 @@ class Planner {
|
|||
#endif
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
static float extruder_advance_k, advance_ed_ratio;
|
||||
static float extruder_advance_k, advance_ed_ratio,
|
||||
position_float[XYZE],
|
||||
lin_dist_xy, lin_dist_e;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SKEW_CORRECTION)
|
||||
|
|
Reference in a new issue