Trinamic steppers Homing Phase (#17299)

This commit is contained in:
Fabio Santos 2020-04-20 06:08:00 -07:00 committed by GitHub
parent cba58b1027
commit ccfd5c1010
Signed by: GitHub
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 104 additions and 8 deletions

View file

@ -2272,9 +2272,9 @@
#define CHOPPER_TIMING CHOPPER_DEFAULT_12V #define CHOPPER_TIMING CHOPPER_DEFAULT_12V
/** /**
* Monitor Trinamic drivers for error conditions, * Monitor Trinamic drivers
* like overtemperature and short to ground. * for error conditions like overtemperature and short to ground.
* In the case of overtemperature Marlin can decrease the driver current until error condition clears. * To manage over-temp Marlin can decrease the driver current until the error condition clears.
* Other detected conditions can be used to stop the current print. * Other detected conditions can be used to stop the current print.
* Relevant g-codes: * Relevant g-codes:
* M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given.
@ -2351,6 +2351,18 @@
//#define IMPROVE_HOMING_RELIABILITY //#define IMPROVE_HOMING_RELIABILITY
#endif #endif
/**
* TMC Homing stepper phase.
*
* Improve homing repeatability by homing to stepper coil's nearest absolute
* phase position. Trinamic drivers use a stepper phase table with 1024 values
* spanning 4 full steps with 256 positions each (ergo, 1024 positions).
* Full step positions (128, 384, 640, 896) have the highest holding torque.
*
* Values from 0..1023, -1 to disable homing phase for that axis.
*/
//#define TMC_HOME_PHASE { 896, 896, 896 }
/** /**
* Beta feature! * Beta feature!
* Create a 50/50 square wave step pulse optimal for stepper drivers. * Create a 50/50 square wave step pulse optimal for stepper drivers.

View file

@ -105,7 +105,8 @@ class TMCMarlin : public TMC, public TMCStorage<AXIS_LETTER, DRIVER_ID> {
this->val_mA = mA; this->val_mA = mA;
TMC::rms_current(mA, mult); TMC::rms_current(mA, mult);
} }
inline uint16_t get_microstep_counter() { return TMC::MSCNT(); }
#if HAS_STEALTHCHOP #if HAS_STEALTHCHOP
inline void refresh_stepping_mode() { this->en_pwm_mode(this->stored.stealthChop_enabled); } inline void refresh_stepping_mode() { this->en_pwm_mode(this->stored.stealthChop_enabled); }
inline bool get_stealthChop_status() { return this->en_pwm_mode(); } inline bool get_stealthChop_status() { return this->en_pwm_mode(); }
@ -170,6 +171,7 @@ class TMCMarlin<TMC2208Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> : public TMC220
this->val_mA = mA; this->val_mA = mA;
TMC2208Stepper::rms_current(mA, mult); TMC2208Stepper::rms_current(mA, mult);
} }
inline uint16_t get_microstep_counter() { return TMC2208Stepper::MSCNT(); }
#if HAS_STEALTHCHOP #if HAS_STEALTHCHOP
inline void refresh_stepping_mode() { en_spreadCycle(!this->stored.stealthChop_enabled); } inline void refresh_stepping_mode() { en_spreadCycle(!this->stored.stealthChop_enabled); }
@ -216,6 +218,7 @@ class TMCMarlin<TMC2209Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> : public TMC220
this->val_mA = mA; this->val_mA = mA;
TMC2209Stepper::rms_current(mA, mult); TMC2209Stepper::rms_current(mA, mult);
} }
inline uint16_t get_microstep_counter() { return TMC2209Stepper::MSCNT(); }
#if HAS_STEALTHCHOP #if HAS_STEALTHCHOP
inline void refresh_stepping_mode() { en_spreadCycle(!this->stored.stealthChop_enabled); } inline void refresh_stepping_mode() { en_spreadCycle(!this->stored.stealthChop_enabled); }
@ -273,6 +276,7 @@ class TMCMarlin<TMC2660Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> : public TMC266
this->val_mA = mA; this->val_mA = mA;
TMC2660Stepper::rms_current(mA); TMC2660Stepper::rms_current(mA);
} }
inline uint16_t get_microstep_counter() { return TMC2660Stepper::mstep(); }
#if USE_SENSORLESS #if USE_SENSORLESS
inline int16_t homing_threshold() { return TMC2660Stepper::sgt(); } inline int16_t homing_threshold() { return TMC2660Stepper::sgt(); }

View file

@ -1483,6 +1483,80 @@ void set_axis_not_trusted(const AxisEnum axis) {
#endif #endif
} }
/**
* Move the axis back to its home_phase if set and driver is capable (TMC)
*
* Improves homing repeatability by homing to stepper coil's nearest absolute
* phase position. Trinamic drivers use a stepper phase table with 1024 values
* spanning 4 full steps with 256 positions each (ergo, 1024 positions).
*/
void backout_to_tmc_homing_phase(const AxisEnum axis) {
#ifdef TMC_HOME_PHASE
const abc_long_t home_phase = TMC_HOME_PHASE;
// check if home phase is disabled for this axis.
if (home_phase[axis] < 0) return;
int16_t axisMicrostepSize;
int16_t phaseCurrent;
bool invertDir;
switch (axis) {
#ifdef X_MICROSTEPS
case X_AXIS:
axisMicrostepSize = 256 / (X_MICROSTEPS);
phaseCurrent = stepperX.get_microstep_counter();
invertDir = INVERT_X_DIR;
break;
#endif
#ifdef Y_MICROSTEPS
case Y_AXIS:
axisMicrostepSize = 256 / (Y_MICROSTEPS);
phaseCurrent = stepperY.get_microstep_counter();
invertDir = INVERT_Y_DIR;
break;
#endif
#ifdef Z_MICROSTEPS
case Z_AXIS:
axisMicrostepSize = 256 / (Z_MICROSTEPS);
phaseCurrent = stepperZ.get_microstep_counter();
invertDir = INVERT_Z_DIR;
break;
#endif
default: return;
}
// Depending on invert dir measure the distance to nearest home phase.
int16_t phaseDelta = (invertDir ? -1 : 1) * (home_phase[axis] - phaseCurrent);
// Check if home distance within endstop assumed repeatability noise of .05mm and warn.
if (ABS(phaseDelta) * planner.steps_to_mm[axis] / axisMicrostepSize < 0.05f)
DEBUG_ECHOLNPAIR("Selected home phase ", home_phase[axis],
" too close to endstop trigger phase ", phaseCurrent,
". Pick a different phase for ", axis_codes[axis]);
// Skip to next if target position is behind current. So it only moves away from endstop.
if (phaseDelta < 0) phaseDelta += 1024;
// Get the integer µsteps to target. Unreachable phase? Consistently stop at the µstep before / after based on invertDir.
const float mmDelta = -(int16_t(phaseDelta / axisMicrostepSize) * planner.steps_to_mm[axis] * (Z_HOME_DIR));
// optional debug messages.
if (DEBUGGING(LEVELING)) {
DEBUG_ECHOLNPAIR(
"Endstop ", axis_codes[axis], " hit at Phase:", phaseCurrent,
" Delta:", phaseDelta, " Distance:", mmDelta
);
}
if (mmDelta != 0) {
// retrace by the amount computed in mmDelta.
do_homing_move(axis, mmDelta, get_homing_bump_feedrate(axis));
}
#endif
}
/** /**
* Home an individual "raw axis" to its endstop. * Home an individual "raw axis" to its endstop.
* This applies to XYZ on Cartesian and Core robots, and * This applies to XYZ on Cartesian and Core robots, and
@ -1742,6 +1816,9 @@ void homeaxis(const AxisEnum axis) {
} }
#endif #endif
// move back to homing phase if configured and capable
backout_to_tmc_homing_phase(axis);
#if IS_SCARA #if IS_SCARA
set_axis_is_at_home(axis); set_axis_is_at_home(axis);
@ -1753,10 +1830,13 @@ void homeaxis(const AxisEnum axis) {
// so here it re-homes each tower in turn. // so here it re-homes each tower in turn.
// Delta homing treats the axes as normal linear axes. // Delta homing treats the axes as normal linear axes.
// retrace by the amount specified in delta_endstop_adj + additional dist in order to have minimum steps const float adjDistance = delta_endstop_adj[axis],
if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) { minDistance = (MIN_STEPS_PER_SEGMENT) * planner.steps_to_mm[axis];
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("delta_endstop_adj:");
do_homing_move(axis, delta_endstop_adj[axis] - (MIN_STEPS_PER_SEGMENT + 1) * planner.steps_to_mm[axis] * Z_HOME_DIR); // Retrace by the amount specified in delta_endstop_adj if more than min steps.
if (adjDistance * (Z_HOME_DIR) < 0 && ABS(adjDistance) > minDistance) { // away from endstop, more than min distance
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("adjDistance:", adjDistance);
do_homing_move(axis, adjDistance, get_homing_bump_feedrate(axis));
} }
#else // CARTESIAN / CORE #else // CARTESIAN / CORE