Move gcode handlers into inline functions
This commit is contained in:
parent
94fd8c7555
commit
cdc38aa783
1 changed files with 3204 additions and 2659 deletions
|
@ -30,7 +30,10 @@
|
||||||
#include "Marlin.h"
|
#include "Marlin.h"
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#include "vector_3.h"
|
#if Z_MIN_PIN == -1
|
||||||
|
#error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
|
||||||
|
#endif
|
||||||
|
#include "vector_3.h"
|
||||||
#ifdef AUTO_BED_LEVELING_GRID
|
#ifdef AUTO_BED_LEVELING_GRID
|
||||||
#include "qr_solve.h"
|
#include "qr_solve.h"
|
||||||
#endif
|
#endif
|
||||||
|
@ -124,6 +127,8 @@
|
||||||
// M115 - Capabilities string
|
// M115 - Capabilities string
|
||||||
// M117 - display message
|
// M117 - display message
|
||||||
// M119 - Output Endstop status to serial port
|
// M119 - Output Endstop status to serial port
|
||||||
|
// M120 - Enable endstop detection
|
||||||
|
// M121 - Disable endstop detection
|
||||||
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
||||||
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
||||||
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
||||||
|
@ -203,9 +208,9 @@ int extruder_multiply[EXTRUDERS] = { 100
|
||||||
, 100
|
, 100
|
||||||
#if EXTRUDERS > 2
|
#if EXTRUDERS > 2
|
||||||
, 100
|
, 100
|
||||||
#if EXTRUDERS > 3
|
#if EXTRUDERS > 3
|
||||||
, 100
|
, 100
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
};
|
};
|
||||||
|
@ -287,8 +292,8 @@ int fanSpeed = 0;
|
||||||
#if EXTRUDERS > 2
|
#if EXTRUDERS > 2
|
||||||
, false
|
, false
|
||||||
#if EXTRUDERS > 3
|
#if EXTRUDERS > 3
|
||||||
, false
|
, false
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
};
|
};
|
||||||
|
@ -298,8 +303,8 @@ int fanSpeed = 0;
|
||||||
#if EXTRUDERS > 2
|
#if EXTRUDERS > 2
|
||||||
, false
|
, false
|
||||||
#if EXTRUDERS > 3
|
#if EXTRUDERS > 3
|
||||||
, false
|
, false
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
};
|
};
|
||||||
|
@ -319,7 +324,7 @@ int fanSpeed = 0;
|
||||||
#ifdef PS_DEFAULT_OFF
|
#ifdef PS_DEFAULT_OFF
|
||||||
false
|
false
|
||||||
#else
|
#else
|
||||||
true
|
true
|
||||||
#endif
|
#endif
|
||||||
;
|
;
|
||||||
#endif
|
#endif
|
||||||
|
@ -331,9 +336,9 @@ int fanSpeed = 0;
|
||||||
// these are the default values, can be overriden with M665
|
// these are the default values, can be overriden with M665
|
||||||
float delta_radius = DELTA_RADIUS;
|
float delta_radius = DELTA_RADIUS;
|
||||||
float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
|
float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
|
||||||
float delta_tower1_y = -COS_60 * delta_radius;
|
float delta_tower1_y = -COS_60 * delta_radius;
|
||||||
float delta_tower2_x = SIN_60 * delta_radius; // front right tower
|
float delta_tower2_x = SIN_60 * delta_radius; // front right tower
|
||||||
float delta_tower2_y = -COS_60 * delta_radius;
|
float delta_tower2_y = -COS_60 * delta_radius;
|
||||||
float delta_tower3_x = 0; // back middle tower
|
float delta_tower3_x = 0; // back middle tower
|
||||||
float delta_tower3_y = delta_radius;
|
float delta_tower3_y = delta_radius;
|
||||||
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
||||||
|
@ -343,7 +348,7 @@ int fanSpeed = 0;
|
||||||
|
|
||||||
#ifdef SCARA
|
#ifdef SCARA
|
||||||
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
|
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
bool cancel_heatup = false;
|
bool cancel_heatup = false;
|
||||||
|
|
||||||
|
@ -543,7 +548,7 @@ void setup_powerhold()
|
||||||
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||||
#if defined(PS_DEFAULT_OFF)
|
#if defined(PS_DEFAULT_OFF)
|
||||||
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
||||||
#else
|
#else
|
||||||
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
@ -643,7 +648,7 @@ void setup()
|
||||||
|
|
||||||
|
|
||||||
lcd_init();
|
lcd_init();
|
||||||
_delay_ms(1000); // wait 1sec to display the splash screen
|
_delay_ms(1000); // wait 1sec to display the splash screen
|
||||||
|
|
||||||
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
||||||
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
||||||
|
@ -739,7 +744,7 @@ void get_command()
|
||||||
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
|
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
|
||||||
{
|
{
|
||||||
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
||||||
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
|
gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
|
||||||
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
|
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
|
||||||
SERIAL_ERROR_START;
|
SERIAL_ERROR_START;
|
||||||
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
|
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
|
||||||
|
@ -757,7 +762,7 @@ void get_command()
|
||||||
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
||||||
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
||||||
|
|
||||||
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
|
if( (int)(strtod(strchr_pointer + 1, NULL)) != checksum) {
|
||||||
SERIAL_ERROR_START;
|
SERIAL_ERROR_START;
|
||||||
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
|
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
|
||||||
SERIAL_ERRORLN(gcode_LastN);
|
SERIAL_ERRORLN(gcode_LastN);
|
||||||
|
@ -793,7 +798,7 @@ void get_command()
|
||||||
}
|
}
|
||||||
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
|
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
|
||||||
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
||||||
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
|
switch((int)((strtod(strchr_pointer + 1, NULL)))){
|
||||||
case 0:
|
case 0:
|
||||||
case 1:
|
case 1:
|
||||||
case 2:
|
case 2:
|
||||||
|
@ -892,12 +897,12 @@ void get_command()
|
||||||
|
|
||||||
float code_value()
|
float code_value()
|
||||||
{
|
{
|
||||||
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
|
return (strtod(strchr_pointer + 1, NULL));
|
||||||
}
|
}
|
||||||
|
|
||||||
long code_value_long()
|
long code_value_long()
|
||||||
{
|
{
|
||||||
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
|
return (strtol(strchr_pointer + 1, NULL, 10));
|
||||||
}
|
}
|
||||||
|
|
||||||
bool code_seen(char code)
|
bool code_seen(char code)
|
||||||
|
@ -995,7 +1000,7 @@ static void axis_is_at_home(int axis) {
|
||||||
{
|
{
|
||||||
homeposition[i] = base_home_pos(i);
|
homeposition[i] = base_home_pos(i);
|
||||||
}
|
}
|
||||||
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
||||||
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
||||||
// Works out real Homeposition angles using inverse kinematics,
|
// Works out real Homeposition angles using inverse kinematics,
|
||||||
// and calculates homing offset using forward kinematics
|
// and calculates homing offset using forward kinematics
|
||||||
|
@ -1010,7 +1015,7 @@ static void axis_is_at_home(int axis) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
|
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
|
||||||
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
|
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
|
||||||
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
||||||
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
||||||
|
|
||||||
|
@ -1255,7 +1260,7 @@ static void homeaxis(int axis) {
|
||||||
if (axis==Z_AXIS) {
|
if (axis==Z_AXIS) {
|
||||||
engage_z_probe();
|
engage_z_probe();
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
#endif
|
#endif
|
||||||
if (servo_endstops[axis] > -1) {
|
if (servo_endstops[axis] > -1) {
|
||||||
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
|
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
|
||||||
|
@ -1416,157 +1421,159 @@ static void dock_sled(bool dock, int offset=0) {
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
void process_commands()
|
/**
|
||||||
{
|
*
|
||||||
unsigned long codenum; //throw away variable
|
* G-Code Handler functions
|
||||||
char *starpos = NULL;
|
*
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
*/
|
||||||
float x_tmp, y_tmp, z_tmp, real_z;
|
|
||||||
#endif
|
/**
|
||||||
if(code_seen('G'))
|
* G0, G1: Coordinated movement of X Y Z E axes
|
||||||
{
|
*/
|
||||||
switch((int)code_value())
|
inline void gcode_G0_G1() {
|
||||||
{
|
if (!Stopped) {
|
||||||
case 0: // G0 -> G1
|
get_coordinates(); // For X Y Z E F
|
||||||
case 1: // G1
|
#ifdef FWRETRACT
|
||||||
if(Stopped == false) {
|
if (autoretract_enabled)
|
||||||
get_coordinates(); // For X Y Z E F
|
if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
||||||
#ifdef FWRETRACT
|
float echange = destination[E_AXIS] - current_position[E_AXIS];
|
||||||
if(autoretract_enabled)
|
// Is this move an attempt to retract or recover?
|
||||||
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
|
||||||
float echange=destination[E_AXIS]-current_position[E_AXIS];
|
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
|
||||||
if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
|
plan_set_e_position(current_position[E_AXIS]); // AND from the planner
|
||||||
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
|
retract(!retracted[active_extruder]);
|
||||||
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
|
return;
|
||||||
retract(!retracted[active_extruder]);
|
}
|
||||||
return;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif //FWRETRACT
|
|
||||||
prepare_move();
|
|
||||||
//ClearToSend();
|
|
||||||
}
|
}
|
||||||
break;
|
#endif //FWRETRACT
|
||||||
#ifndef SCARA //disable arc support
|
prepare_move();
|
||||||
case 2: // G2 - CW ARC
|
//ClearToSend();
|
||||||
if(Stopped == false) {
|
}
|
||||||
get_arc_coordinates();
|
}
|
||||||
prepare_arc_move(true);
|
|
||||||
|
/**
|
||||||
|
* G2: Clockwise Arc
|
||||||
|
* G3: Counterclockwise Arc
|
||||||
|
*/
|
||||||
|
inline void gcode_G2_G3(bool clockwise) {
|
||||||
|
if (!Stopped) {
|
||||||
|
get_arc_coordinates();
|
||||||
|
prepare_arc_move(clockwise);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* G4: Dwell S<seconds> or P<milliseconds>
|
||||||
|
*/
|
||||||
|
inline void gcode_G4() {
|
||||||
|
unsigned long codenum;
|
||||||
|
|
||||||
|
LCD_MESSAGEPGM(MSG_DWELL);
|
||||||
|
|
||||||
|
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
|
||||||
|
if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
|
||||||
|
|
||||||
|
st_synchronize();
|
||||||
|
previous_millis_cmd = millis();
|
||||||
|
codenum += previous_millis_cmd; // keep track of when we started waiting
|
||||||
|
while(millis() < codenum) {
|
||||||
|
manage_heater();
|
||||||
|
manage_inactivity();
|
||||||
|
lcd_update();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef FWRETRACT
|
||||||
|
|
||||||
|
/**
|
||||||
|
* G10 - Retract filament according to settings of M207
|
||||||
|
* G11 - Recover filament according to settings of M208
|
||||||
|
*/
|
||||||
|
inline void gcode_G10_G11(bool doRetract=false) {
|
||||||
|
#if EXTRUDERS > 1
|
||||||
|
if (doRetract) {
|
||||||
|
retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
||||||
}
|
}
|
||||||
break;
|
#endif
|
||||||
case 3: // G3 - CCW ARC
|
retract(doRetract
|
||||||
if(Stopped == false) {
|
#if EXTRUDERS > 1
|
||||||
get_arc_coordinates();
|
, retracted_swap[active_extruder]
|
||||||
prepare_arc_move(false);
|
#endif
|
||||||
}
|
);
|
||||||
break;
|
}
|
||||||
#endif
|
|
||||||
case 4: // G4 dwell
|
|
||||||
LCD_MESSAGEPGM(MSG_DWELL);
|
|
||||||
codenum = 0;
|
|
||||||
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
|
||||||
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
|
||||||
|
|
||||||
st_synchronize();
|
#endif //FWRETRACT
|
||||||
codenum += millis(); // keep track of when we started waiting
|
|
||||||
previous_millis_cmd = millis();
|
|
||||||
while(millis() < codenum) {
|
|
||||||
manage_heater();
|
|
||||||
manage_inactivity();
|
|
||||||
lcd_update();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#ifdef FWRETRACT
|
|
||||||
case 10: // G10 retract
|
|
||||||
#if EXTRUDERS > 1
|
|
||||||
retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
|
||||||
retract(true,retracted_swap[active_extruder]);
|
|
||||||
#else
|
|
||||||
retract(true);
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
case 11: // G11 retract_recover
|
|
||||||
#if EXTRUDERS > 1
|
|
||||||
retract(false,retracted_swap[active_extruder]);
|
|
||||||
#else
|
|
||||||
retract(false);
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
#endif //FWRETRACT
|
|
||||||
case 28: //G28 Home all Axis one at a time
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
||||||
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
||||||
#endif //ENABLE_AUTO_BED_LEVELING
|
|
||||||
|
|
||||||
saved_feedrate = feedrate;
|
/**
|
||||||
saved_feedmultiply = feedmultiply;
|
* G28: Home all axes, one at a time
|
||||||
feedmultiply = 100;
|
*/
|
||||||
previous_millis_cmd = millis();
|
inline void gcode_G28() {
|
||||||
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
||||||
|
#endif
|
||||||
|
|
||||||
enable_endstops(true);
|
saved_feedrate = feedrate;
|
||||||
|
saved_feedmultiply = feedmultiply;
|
||||||
|
feedmultiply = 100;
|
||||||
|
previous_millis_cmd = millis();
|
||||||
|
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
enable_endstops(true);
|
||||||
destination[i] = current_position[i];
|
|
||||||
}
|
|
||||||
feedrate = 0.0;
|
|
||||||
|
|
||||||
#ifdef DELTA
|
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
|
||||||
// A delta can only safely home all axis at the same time
|
|
||||||
// all axis have to home at the same time
|
|
||||||
|
|
||||||
// Move all carriages up together until the first endstop is hit.
|
feedrate = 0.0;
|
||||||
current_position[X_AXIS] = 0;
|
|
||||||
current_position[Y_AXIS] = 0;
|
|
||||||
current_position[Z_AXIS] = 0;
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
||||||
|
|
||||||
destination[X_AXIS] = 3 * Z_MAX_LENGTH;
|
#ifdef DELTA
|
||||||
destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
|
// A delta can only safely home all axis at the same time
|
||||||
destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
|
// all axis have to home at the same time
|
||||||
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
||||||
st_synchronize();
|
|
||||||
endstops_hit_on_purpose();
|
|
||||||
|
|
||||||
current_position[X_AXIS] = destination[X_AXIS];
|
// Move all carriages up together until the first endstop is hit.
|
||||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
|
||||||
current_position[Z_AXIS] = destination[Z_AXIS];
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
|
||||||
// take care of back off and rehome now we are all at the top
|
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
|
||||||
HOMEAXIS(X);
|
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
||||||
HOMEAXIS(Y);
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||||
HOMEAXIS(Z);
|
st_synchronize();
|
||||||
|
endstops_hit_on_purpose();
|
||||||
|
|
||||||
calculate_delta(current_position);
|
// Destination reached
|
||||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
|
||||||
|
|
||||||
#else // NOT DELTA
|
// take care of back off and rehome now we are all at the top
|
||||||
|
HOMEAXIS(X);
|
||||||
|
HOMEAXIS(Y);
|
||||||
|
HOMEAXIS(Z);
|
||||||
|
|
||||||
home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
|
calculate_delta(current_position);
|
||||||
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
|
||||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
#else // NOT DELTA
|
||||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
|
||||||
|
home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
|
||||||
|
|
||||||
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||||
|
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
|
||||||
HOMEAXIS(Z);
|
HOMEAXIS(Z);
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef QUICK_HOME
|
#ifdef QUICK_HOME
|
||||||
if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
|
if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
|
||||||
{
|
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
|
||||||
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
|
||||||
|
|
||||||
#ifndef DUAL_X_CARRIAGE
|
#ifndef DUAL_X_CARRIAGE
|
||||||
int x_axis_home_dir = home_dir(X_AXIS);
|
int x_axis_home_dir = home_dir(X_AXIS);
|
||||||
#else
|
#else
|
||||||
int x_axis_home_dir = x_home_dir(active_extruder);
|
int x_axis_home_dir = x_home_dir(active_extruder);
|
||||||
extruder_duplication_enabled = false;
|
extruder_duplication_enabled = false;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
|
||||||
|
destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
||||||
feedrate = homing_feedrate[X_AXIS];
|
feedrate = homing_feedrate[X_AXIS];
|
||||||
if(homing_feedrate[Y_AXIS]<feedrate)
|
if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
|
||||||
feedrate = homing_feedrate[Y_AXIS];
|
|
||||||
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
||||||
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
||||||
} else {
|
} else {
|
||||||
|
@ -1587,14 +1594,13 @@ void process_commands()
|
||||||
|
|
||||||
current_position[X_AXIS] = destination[X_AXIS];
|
current_position[X_AXIS] = destination[X_AXIS];
|
||||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||||
#ifndef SCARA
|
#ifndef SCARA
|
||||||
current_position[Z_AXIS] = destination[Z_AXIS];
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
#endif
|
#endif //QUICK_HOME
|
||||||
|
|
||||||
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
|
if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
|
||||||
{
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
#ifdef DUAL_X_CARRIAGE
|
||||||
int tmp_extruder = active_extruder;
|
int tmp_extruder = active_extruder;
|
||||||
extruder_duplication_enabled = false;
|
extruder_duplication_enabled = false;
|
||||||
|
@ -1610,2561 +1616,3140 @@ void process_commands()
|
||||||
#else
|
#else
|
||||||
HOMEAXIS(X);
|
HOMEAXIS(X);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
|
if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
|
||||||
HOMEAXIS(Y);
|
|
||||||
}
|
|
||||||
|
|
||||||
if(code_seen(axis_codes[X_AXIS]))
|
if (code_seen(axis_codes[X_AXIS])) {
|
||||||
{
|
if (code_value_long() != 0) {
|
||||||
if(code_value_long() != 0) {
|
current_position[X_AXIS] = code_value()
|
||||||
#ifdef SCARA
|
#ifndef SCARA
|
||||||
current_position[X_AXIS]=code_value();
|
+ add_homing[X_AXIS]
|
||||||
#else
|
|
||||||
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if(code_seen(axis_codes[Y_AXIS])) {
|
|
||||||
if(code_value_long() != 0) {
|
|
||||||
#ifdef SCARA
|
|
||||||
current_position[Y_AXIS]=code_value();
|
|
||||||
#else
|
|
||||||
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
|
||||||
#ifndef Z_SAFE_HOMING
|
|
||||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
|
||||||
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
|
||||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
||||||
feedrate = max_feedrate[Z_AXIS];
|
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
||||||
st_synchronize();
|
|
||||||
#endif
|
#endif
|
||||||
HOMEAXIS(Z);
|
;
|
||||||
}
|
}
|
||||||
#else // Z Safe mode activated.
|
}
|
||||||
if(home_all_axis) {
|
|
||||||
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
||||||
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
||||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
|
||||||
feedrate = XY_TRAVEL_SPEED/60;
|
|
||||||
current_position[Z_AXIS] = 0;
|
|
||||||
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
|
||||||
|
current_position[Y_AXIS] = code_value()
|
||||||
|
#ifndef SCARA
|
||||||
|
+ add_homing[Y_AXIS]
|
||||||
|
#endif
|
||||||
|
;
|
||||||
|
}
|
||||||
|
|
||||||
|
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
||||||
|
|
||||||
|
#ifndef Z_SAFE_HOMING
|
||||||
|
|
||||||
|
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
|
||||||
|
#if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
|
||||||
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
||||||
|
feedrate = max_feedrate[Z_AXIS];
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
current_position[X_AXIS] = destination[X_AXIS];
|
#endif
|
||||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
HOMEAXIS(Z);
|
||||||
|
}
|
||||||
|
|
||||||
HOMEAXIS(Z);
|
#else // Z_SAFE_HOMING
|
||||||
}
|
|
||||||
// Let's see if X and Y are homed and probe is inside bed area.
|
|
||||||
if(code_seen(axis_codes[Z_AXIS])) {
|
|
||||||
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
|
||||||
&& (current_position[X_AXIS] >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
|
|
||||||
&& (current_position[X_AXIS] <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
|
|
||||||
&& (current_position[Y_AXIS] >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) \
|
|
||||||
&& (current_position[Y_AXIS] <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER)) {
|
|
||||||
|
|
||||||
|
if (home_all_axis) {
|
||||||
|
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
||||||
|
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||||
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
||||||
|
feedrate = XY_TRAVEL_SPEED / 60;
|
||||||
|
current_position[Z_AXIS] = 0;
|
||||||
|
|
||||||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||||
|
st_synchronize();
|
||||||
|
current_position[X_AXIS] = destination[X_AXIS];
|
||||||
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||||
|
|
||||||
|
HOMEAXIS(Z);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Let's see if X and Y are homed and probe is inside bed area.
|
||||||
|
if (code_seen(axis_codes[Z_AXIS])) {
|
||||||
|
|
||||||
|
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
|
||||||
|
|
||||||
|
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
|
||||||
|
if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
|
||||||
|
&& cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
|
||||||
|
&& cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
|
||||||
|
&& cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
|
||||||
current_position[Z_AXIS] = 0;
|
current_position[Z_AXIS] = 0;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
||||||
feedrate = max_feedrate[Z_AXIS];
|
feedrate = max_feedrate[Z_AXIS];
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
|
|
||||||
HOMEAXIS(Z);
|
HOMEAXIS(Z);
|
||||||
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
}
|
||||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
else {
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
|
||||||
} else {
|
|
||||||
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
||||||
SERIAL_ECHO_START;
|
SERIAL_ECHO_START;
|
||||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
else {
|
||||||
#endif
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||||
|
}
|
||||||
if(code_seen(axis_codes[Z_AXIS])) {
|
|
||||||
if(code_value_long() != 0) {
|
|
||||||
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
||||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
|
||||||
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
||||||
#endif // else DELTA
|
|
||||||
|
|
||||||
#ifdef SCARA
|
#endif // Z_SAFE_HOMING
|
||||||
calculate_delta(current_position);
|
|
||||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
||||||
#endif // SCARA
|
|
||||||
|
|
||||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
#endif // Z_HOME_DIR < 0
|
||||||
enable_endstops(false);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
feedrate = saved_feedrate;
|
|
||||||
feedmultiply = saved_feedmultiply;
|
if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
||||||
previous_millis_cmd = millis();
|
current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
|
||||||
endstops_hit_on_purpose();
|
|
||||||
break;
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
|
if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
|
||||||
|
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
||||||
|
#endif
|
||||||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
|
||||||
|
#endif // else DELTA
|
||||||
|
|
||||||
|
#ifdef SCARA
|
||||||
|
calculate_delta(current_position);
|
||||||
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||||
|
enable_endstops(false);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
feedrate = saved_feedrate;
|
||||||
|
feedmultiply = saved_feedmultiply;
|
||||||
|
previous_millis_cmd = millis();
|
||||||
|
endstops_hit_on_purpose();
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
|
|
||||||
#if Z_MIN_PIN == -1
|
/**
|
||||||
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling!!! Z_MIN_PIN must point to a valid hardware pin."
|
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
|
||||||
#endif
|
* Will fail if the printer has not been homed with G28.
|
||||||
|
*
|
||||||
|
* Enhanced G29 Auto Bed Leveling Probe Routine
|
||||||
|
*
|
||||||
|
* Parameters With AUTO_BED_LEVELING_GRID:
|
||||||
|
*
|
||||||
|
* P Set the size of the grid that will be probed (P x P points).
|
||||||
|
* Example: "G29 P4"
|
||||||
|
*
|
||||||
|
* V Set the verbose level (0-4). Example: "G29 V3"
|
||||||
|
*
|
||||||
|
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
||||||
|
* This is useful for manual bed leveling and finding flaws in the bed (to
|
||||||
|
* assist with part placement).
|
||||||
|
*
|
||||||
|
* F Set the Front limit of the probing grid
|
||||||
|
* B Set the Back limit of the probing grid
|
||||||
|
* L Set the Left limit of the probing grid
|
||||||
|
* R Set the Right limit of the probing grid
|
||||||
|
*
|
||||||
|
* Global Parameters:
|
||||||
|
*
|
||||||
|
* E/e By default G29 engages / disengages the probe for each point.
|
||||||
|
* Include "E" to engage and disengage the probe just once.
|
||||||
|
* There's no extra effect if you have a fixed probe.
|
||||||
|
* Usage: "G29 E" or "G29 e"
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
/**
|
// Use one of these defines to specify the origin
|
||||||
* Enhanced G29 Auto Bed Leveling Probe Routine
|
// for a topographical map to be printed for your bed.
|
||||||
*
|
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
|
||||||
* Parameters With AUTO_BED_LEVELING_GRID:
|
#define TOPO_ORIGIN OriginFrontLeft
|
||||||
*
|
|
||||||
* P Set the size of the grid that will be probed (P x P points).
|
|
||||||
* Example: "G29 P4"
|
|
||||||
*
|
|
||||||
* V Set the verbose level (0-4). Example: "G29 V3"
|
|
||||||
*
|
|
||||||
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
|
||||||
* This is useful for manual bed leveling and finding flaws in the bed (to
|
|
||||||
* assist with part placement).
|
|
||||||
*
|
|
||||||
* F Set the Front limit of the probing grid
|
|
||||||
* B Set the Back limit of the probing grid
|
|
||||||
* L Set the Left limit of the probing grid
|
|
||||||
* R Set the Right limit of the probing grid
|
|
||||||
*
|
|
||||||
* Global Parameters:
|
|
||||||
*
|
|
||||||
* E/e By default G29 engages / disengages the probe for each point.
|
|
||||||
* Include "E" to engage and disengage the probe just once.
|
|
||||||
* There's no extra effect if you have a fixed probe.
|
|
||||||
* Usage: "G29 E" or "G29 e"
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
|
|
||||||
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
inline void gcode_G29() {
|
||||||
{
|
|
||||||
// Use one of these defines to specify the origin
|
|
||||||
// for a topographical map to be printed for your bed.
|
|
||||||
#define ORIGIN_BACK_LEFT 1
|
|
||||||
#define ORIGIN_FRONT_RIGHT 2
|
|
||||||
#define ORIGIN_BACK_RIGHT 3
|
|
||||||
#define ORIGIN_FRONT_LEFT 4
|
|
||||||
#define TOPO_ORIGIN ORIGIN_FRONT_LEFT
|
|
||||||
|
|
||||||
// Prevent user from running a G29 without first homing in X and Y
|
float x_tmp, y_tmp, z_tmp, real_z;
|
||||||
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS])) {
|
|
||||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
// Prevent user from running a G29 without first homing in X and Y
|
||||||
SERIAL_ECHO_START;
|
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
||||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||||
break; // abort G29, since we don't know where we are
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool enhanced_g29 = code_seen('E') || code_seen('e');
|
||||||
|
|
||||||
|
#ifdef AUTO_BED_LEVELING_GRID
|
||||||
|
|
||||||
|
// Example Syntax: G29 N4 V2 E T
|
||||||
|
int verbose_level = 1;
|
||||||
|
|
||||||
|
bool topo_flag = code_seen('T') || code_seen('t');
|
||||||
|
|
||||||
|
if (code_seen('V') || code_seen('v')) {
|
||||||
|
verbose_level = code_value();
|
||||||
|
if (verbose_level < 0 || verbose_level > 4) {
|
||||||
|
SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (verbose_level > 0) {
|
||||||
|
SERIAL_PROTOCOLPGM("G29 Enhanced Auto Bed Leveling Code V1.25:\n");
|
||||||
|
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
|
||||||
|
if (verbose_level > 2) topo_flag = true;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool enhanced_g29 = code_seen('E') || code_seen('e');
|
int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
|
||||||
|
if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
|
||||||
|
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef AUTO_BED_LEVELING_GRID
|
// Define the possible boundaries for probing based on the set limits.
|
||||||
|
// Code above (in G28) might have these limits wrong, or I am wrong here.
|
||||||
|
#define MIN_PROBE_EDGE 10 // Edges of the probe square can be no less
|
||||||
|
const int min_probe_x = max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
|
||||||
|
max_probe_x = min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
|
||||||
|
min_probe_y = max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER),
|
||||||
|
max_probe_y = min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||||
|
|
||||||
// Example Syntax: G29 N4 V2 E T
|
int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
|
||||||
int verbose_level = 1;
|
right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
|
||||||
|
front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
|
||||||
|
back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
|
||||||
|
|
||||||
bool topo_flag = code_seen('T') || code_seen('t');
|
bool left_out_l = left_probe_bed_position < min_probe_x,
|
||||||
|
left_out_r = left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
|
||||||
|
left_out = left_out_l || left_out_r,
|
||||||
|
right_out_r = right_probe_bed_position > max_probe_x,
|
||||||
|
right_out_l =right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
||||||
|
right_out = right_out_l || right_out_r,
|
||||||
|
front_out_f = front_probe_bed_position < min_probe_y,
|
||||||
|
front_out_b = front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
|
||||||
|
front_out = front_out_f || front_out_b,
|
||||||
|
back_out_b = back_probe_bed_position > max_probe_y,
|
||||||
|
back_out_f = back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE,
|
||||||
|
back_out = back_out_f || back_out_b;
|
||||||
|
|
||||||
if (code_seen('V') || code_seen('v')) {
|
if (left_out || right_out || front_out || back_out) {
|
||||||
verbose_level = code_value();
|
if (left_out) {
|
||||||
if (verbose_level < 0 || verbose_level > 4) {
|
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
|
||||||
SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
|
left_probe_bed_position = left_out_l ? min_probe_x : right_probe_bed_position - MIN_PROBE_EDGE;
|
||||||
break;
|
|
||||||
}
|
|
||||||
if (verbose_level > 0) {
|
|
||||||
SERIAL_PROTOCOLPGM("G29 Enhanced Auto Bed Leveling Code V1.25:\n");
|
|
||||||
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
|
|
||||||
if (verbose_level > 2) topo_flag = true;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
if (right_out) {
|
||||||
int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
|
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
|
||||||
if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
|
right_probe_bed_position = right_out_r ? max_probe_x : left_probe_bed_position + MIN_PROBE_EDGE;
|
||||||
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
|
|
||||||
break;
|
|
||||||
}
|
}
|
||||||
|
if (front_out) {
|
||||||
// Define the possible boundaries for probing based on the set limits.
|
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
|
||||||
// Code above (in G28) might have these limits wrong, or I am wrong here.
|
front_probe_bed_position = front_out_f ? min_probe_y : back_probe_bed_position - MIN_PROBE_EDGE;
|
||||||
#define MIN_PROBE_EDGE 10 // Edges of the probe square can be no less
|
|
||||||
const int min_probe_x = max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
||||||
max_probe_x = min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
||||||
min_probe_y = max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER),
|
|
||||||
max_probe_y = min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
||||||
|
|
||||||
int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
|
|
||||||
right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
|
|
||||||
front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
|
|
||||||
back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
|
|
||||||
|
|
||||||
bool left_out_l = left_probe_bed_position < min_probe_x,
|
|
||||||
left_out_r = left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
|
|
||||||
left_out = left_out_l || left_out_r,
|
|
||||||
right_out_r = right_probe_bed_position > max_probe_x,
|
|
||||||
right_out_l =right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
|
||||||
right_out = right_out_l || right_out_r,
|
|
||||||
front_out_f = front_probe_bed_position < min_probe_y,
|
|
||||||
front_out_b = front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
|
|
||||||
front_out = front_out_f || front_out_b,
|
|
||||||
back_out_b = back_probe_bed_position > max_probe_y,
|
|
||||||
back_out_f = back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE,
|
|
||||||
back_out = back_out_f || back_out_b;
|
|
||||||
|
|
||||||
if (left_out || right_out || front_out || back_out) {
|
|
||||||
if (left_out) {
|
|
||||||
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
|
|
||||||
left_probe_bed_position = left_out_l ? min_probe_x : right_probe_bed_position - MIN_PROBE_EDGE;
|
|
||||||
}
|
|
||||||
if (right_out) {
|
|
||||||
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
|
|
||||||
right_probe_bed_position = right_out_r ? max_probe_x : left_probe_bed_position + MIN_PROBE_EDGE;
|
|
||||||
}
|
|
||||||
if (front_out) {
|
|
||||||
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
|
|
||||||
front_probe_bed_position = front_out_f ? min_probe_y : back_probe_bed_position - MIN_PROBE_EDGE;
|
|
||||||
}
|
|
||||||
if (back_out) {
|
|
||||||
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
|
|
||||||
back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
}
|
}
|
||||||
|
if (back_out) {
|
||||||
|
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
|
||||||
|
back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
#endif
|
#endif // AUTO_BED_LEVELING_GRID
|
||||||
|
|
||||||
#ifdef Z_PROBE_SLED
|
#ifdef Z_PROBE_SLED
|
||||||
dock_sled(false); // engage (un-dock) the probe
|
dock_sled(false); // engage (un-dock) the probe
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
st_synchronize();
|
||||||
|
|
||||||
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
||||||
|
//vector_3 corrected_position = plan_get_position_mm();
|
||||||
|
//corrected_position.debug("position before G29");
|
||||||
|
plan_bed_level_matrix.set_to_identity();
|
||||||
|
vector_3 uncorrected_position = plan_get_position();
|
||||||
|
//uncorrected_position.debug("position durring G29");
|
||||||
|
current_position[X_AXIS] = uncorrected_position.x;
|
||||||
|
current_position[Y_AXIS] = uncorrected_position.y;
|
||||||
|
current_position[Z_AXIS] = uncorrected_position.z;
|
||||||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
setup_for_endstop_move();
|
||||||
|
|
||||||
|
feedrate = homing_feedrate[Z_AXIS];
|
||||||
|
|
||||||
|
#ifdef AUTO_BED_LEVELING_GRID
|
||||||
|
|
||||||
|
// probe at the points of a lattice grid
|
||||||
|
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
||||||
|
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
||||||
|
|
||||||
|
// solve the plane equation ax + by + d = z
|
||||||
|
// A is the matrix with rows [x y 1] for all the probed points
|
||||||
|
// B is the vector of the Z positions
|
||||||
|
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
||||||
|
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
||||||
|
|
||||||
|
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
||||||
|
|
||||||
|
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
||||||
|
eqnBVector[abl2], // "B" vector of Z points
|
||||||
|
mean = 0.0;
|
||||||
|
|
||||||
|
int probePointCounter = 0;
|
||||||
|
bool zig = true;
|
||||||
|
|
||||||
|
for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
|
||||||
|
int xProbe, xInc;
|
||||||
|
|
||||||
|
if (zig)
|
||||||
|
xProbe = left_probe_bed_position, xInc = xGridSpacing;
|
||||||
|
else
|
||||||
|
xProbe = right_probe_bed_position, xInc = -xGridSpacing;
|
||||||
|
|
||||||
|
// If topo_flag is set then don't zig-zag. Just scan in one direction.
|
||||||
|
// This gets the probe points in more readable order.
|
||||||
|
if (!topo_flag) zig = !zig;
|
||||||
|
|
||||||
|
for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
|
||||||
|
// raise extruder
|
||||||
|
float measured_z,
|
||||||
|
z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
||||||
|
|
||||||
|
// Enhanced G29 - Do not retract servo between probes
|
||||||
|
ProbeAction act;
|
||||||
|
if (enhanced_g29) {
|
||||||
|
if (yProbe == front_probe_bed_position && xCount == 0)
|
||||||
|
act = ProbeEngage;
|
||||||
|
else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
|
||||||
|
act = ProbeRetract;
|
||||||
|
else
|
||||||
|
act = ProbeStay;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
act = ProbeEngageRetract;
|
||||||
|
|
||||||
|
measured_z = probe_pt(xProbe, yProbe, z_before, act);
|
||||||
|
|
||||||
|
mean += measured_z;
|
||||||
|
|
||||||
|
eqnBVector[probePointCounter] = measured_z;
|
||||||
|
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
||||||
|
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
||||||
|
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
||||||
|
|
||||||
|
probePointCounter++;
|
||||||
|
xProbe += xInc;
|
||||||
|
|
||||||
|
} //xProbe
|
||||||
|
|
||||||
|
} //yProbe
|
||||||
|
|
||||||
|
clean_up_after_endstop_move();
|
||||||
|
|
||||||
|
// solve lsq problem
|
||||||
|
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
|
||||||
|
|
||||||
|
mean /= abl2;
|
||||||
|
|
||||||
|
if (verbose_level) {
|
||||||
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
||||||
|
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
|
||||||
|
SERIAL_PROTOCOLPGM(" b: ");
|
||||||
|
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
|
||||||
|
SERIAL_PROTOCOLPGM(" d: ");
|
||||||
|
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
|
||||||
|
if (verbose_level > 2) {
|
||||||
|
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
||||||
|
SERIAL_PROTOCOL_F(mean, 6);
|
||||||
|
SERIAL_PROTOCOLPGM(" \n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (topo_flag) {
|
||||||
|
|
||||||
|
int xx, yy;
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
||||||
|
#if TOPO_ORIGIN == OriginFrontLeft
|
||||||
|
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
|
||||||
|
#else
|
||||||
|
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
#if TOPO_ORIGIN == OriginBackRight
|
||||||
|
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
|
||||||
|
#else
|
||||||
|
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
int ind =
|
||||||
|
#if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
|
||||||
|
yy * auto_bed_leveling_grid_points + xx
|
||||||
|
#elif TOPO_ORIGIN == OriginBackLeft
|
||||||
|
xx * auto_bed_leveling_grid_points + yy
|
||||||
|
#elif TOPO_ORIGIN == OriginFrontRight
|
||||||
|
abl2 - xx * auto_bed_leveling_grid_points - yy - 1
|
||||||
|
#endif
|
||||||
|
;
|
||||||
|
float diff = eqnBVector[ind] - mean;
|
||||||
|
if (diff >= 0.0)
|
||||||
|
SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
|
||||||
|
else
|
||||||
|
SERIAL_PROTOCOLPGM(" -");
|
||||||
|
SERIAL_PROTOCOL_F(diff, 5);
|
||||||
|
} // xx
|
||||||
|
SERIAL_PROTOCOLPGM("\n");
|
||||||
|
} // yy
|
||||||
|
SERIAL_PROTOCOLPGM("\n");
|
||||||
|
|
||||||
|
} //topo_flag
|
||||||
|
|
||||||
|
|
||||||
|
set_bed_level_equation_lsq(plane_equation_coefficients);
|
||||||
|
free(plane_equation_coefficients);
|
||||||
|
|
||||||
|
#else // !AUTO_BED_LEVELING_GRID
|
||||||
|
|
||||||
|
// Probe at 3 arbitrary points
|
||||||
|
float z_at_pt_1, z_at_pt_2, z_at_pt_3;
|
||||||
|
|
||||||
|
if (enhanced_g29) {
|
||||||
|
// Basic Enhanced G29
|
||||||
|
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
|
||||||
|
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
|
||||||
|
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
|
||||||
|
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||||
|
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||||
|
}
|
||||||
|
clean_up_after_endstop_move();
|
||||||
|
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
||||||
|
|
||||||
|
#endif // !AUTO_BED_LEVELING_GRID
|
||||||
|
|
||||||
|
st_synchronize();
|
||||||
|
|
||||||
|
if (verbose_level > 0)
|
||||||
|
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
||||||
|
|
||||||
|
// The following code correct the Z height difference from z-probe position and hotend tip position.
|
||||||
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
||||||
|
// When the bed is uneven, this height must be corrected.
|
||||||
|
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
||||||
|
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
z_tmp = current_position[Z_AXIS];
|
||||||
|
|
||||||
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
||||||
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
||||||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
|
||||||
|
#ifdef Z_PROBE_SLED
|
||||||
|
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifndef Z_PROBE_SLED
|
||||||
|
|
||||||
|
inline void gcode_G30() {
|
||||||
|
engage_z_probe(); // Engage Z Servo endstop if available
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
||||||
//vector_3 corrected_position = plan_get_position_mm();
|
|
||||||
//corrected_position.debug("position before G29");
|
|
||||||
plan_bed_level_matrix.set_to_identity();
|
|
||||||
vector_3 uncorrected_position = plan_get_position();
|
|
||||||
//uncorrected_position.debug("position durring G29");
|
|
||||||
current_position[X_AXIS] = uncorrected_position.x;
|
|
||||||
current_position[Y_AXIS] = uncorrected_position.y;
|
|
||||||
current_position[Z_AXIS] = uncorrected_position.z;
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
||||||
setup_for_endstop_move();
|
setup_for_endstop_move();
|
||||||
|
|
||||||
feedrate = homing_feedrate[Z_AXIS];
|
feedrate = homing_feedrate[Z_AXIS];
|
||||||
|
|
||||||
#ifdef AUTO_BED_LEVELING_GRID
|
run_z_probe();
|
||||||
// probe at the points of a lattice grid
|
SERIAL_PROTOCOLPGM(MSG_BED);
|
||||||
|
SERIAL_PROTOCOLPGM(" X: ");
|
||||||
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" Y: ");
|
||||||
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" Z: ");
|
||||||
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM("\n");
|
||||||
|
|
||||||
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
clean_up_after_endstop_move();
|
||||||
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
retract_z_probe(); // Retract Z Servo endstop if available
|
||||||
|
}
|
||||||
|
|
||||||
// solve the plane equation ax + by + d = z
|
#endif //!Z_PROBE_SLED
|
||||||
// A is the matrix with rows [x y 1] for all the probed points
|
|
||||||
// B is the vector of the Z positions
|
|
||||||
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
||||||
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
||||||
|
|
||||||
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
#endif //ENABLE_AUTO_BED_LEVELING
|
||||||
|
|
||||||
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
/**
|
||||||
eqnBVector[abl2], // "B" vector of Z points
|
* G92: Set current position to given X Y Z E
|
||||||
mean = 0.0;
|
*/
|
||||||
|
inline void gcode_G92() {
|
||||||
|
if (!code_seen(axis_codes[E_AXIS]))
|
||||||
|
st_synchronize();
|
||||||
|
|
||||||
int probePointCounter = 0;
|
for (int i=0;i<NUM_AXIS;i++) {
|
||||||
bool zig = true;
|
if (code_seen(axis_codes[i])) {
|
||||||
|
if (i == E_AXIS) {
|
||||||
for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
|
current_position[i] = code_value();
|
||||||
int xProbe, xInc;
|
plan_set_e_position(current_position[E_AXIS]);
|
||||||
|
}
|
||||||
if (zig)
|
else {
|
||||||
xProbe = left_probe_bed_position, xInc = xGridSpacing;
|
current_position[i] = code_value() +
|
||||||
else
|
#ifdef SCARA
|
||||||
xProbe = right_probe_bed_position, xInc = -xGridSpacing;
|
((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
|
||||||
|
|
||||||
// If topo_flag is set then don't zig-zag. Just scan in one direction.
|
|
||||||
// This gets the probe points in more readable order.
|
|
||||||
if (!topo_flag) zig = !zig;
|
|
||||||
|
|
||||||
for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
|
|
||||||
// raise extruder
|
|
||||||
float z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
|
|
||||||
measured_z;
|
|
||||||
|
|
||||||
// Enhanced G29 - Do not retract servo between probes
|
|
||||||
ProbeAction act;
|
|
||||||
if (enhanced_g29) {
|
|
||||||
if (yProbe == front_probe_bed_position && xCount == 0)
|
|
||||||
act = ProbeEngage;
|
|
||||||
else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
|
|
||||||
act = ProbeRetract;
|
|
||||||
else
|
|
||||||
act = ProbeStay;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
act = ProbeEngageRetract;
|
|
||||||
|
|
||||||
measured_z = probe_pt(xProbe, yProbe, z_before, act);
|
|
||||||
|
|
||||||
mean += measured_z;
|
|
||||||
|
|
||||||
eqnBVector[probePointCounter] = measured_z;
|
|
||||||
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
|
||||||
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
|
||||||
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
|
||||||
|
|
||||||
probePointCounter++;
|
|
||||||
xProbe += xInc;
|
|
||||||
|
|
||||||
} //xProbe
|
|
||||||
|
|
||||||
} //yProbe
|
|
||||||
|
|
||||||
clean_up_after_endstop_move();
|
|
||||||
|
|
||||||
// solve lsq problem
|
|
||||||
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
|
|
||||||
|
|
||||||
mean /= abl2;
|
|
||||||
|
|
||||||
if (verbose_level) {
|
|
||||||
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
||||||
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
|
|
||||||
SERIAL_PROTOCOLPGM(" b: ");
|
|
||||||
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
|
|
||||||
SERIAL_PROTOCOLPGM(" d: ");
|
|
||||||
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
|
|
||||||
if (verbose_level > 2) {
|
|
||||||
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
|
||||||
SERIAL_PROTOCOL_F(mean, 6);
|
|
||||||
SERIAL_PROTOCOLPGM(" \n");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (topo_flag) {
|
|
||||||
|
|
||||||
int xx, yy;
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
|
||||||
#if TOPO_ORIGIN == ORIGIN_FRONT_LEFT
|
|
||||||
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
|
|
||||||
#else
|
#else
|
||||||
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
|
add_homing[i]
|
||||||
#endif
|
#endif
|
||||||
{
|
;
|
||||||
#if TOPO_ORIGIN == ORIGIN_BACK_RIGHT
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
|
}
|
||||||
#else
|
}
|
||||||
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
|
}
|
||||||
#endif
|
}
|
||||||
{
|
|
||||||
int ind =
|
|
||||||
#if TOPO_ORIGIN == ORIGIN_BACK_RIGHT || TOPO_ORIGIN == ORIGIN_FRONT_LEFT
|
|
||||||
yy * auto_bed_leveling_grid_points + xx
|
|
||||||
#elif TOPO_ORIGIN == ORIGIN_BACK_LEFT
|
|
||||||
xx * auto_bed_leveling_grid_points + yy
|
|
||||||
#elif TOPO_ORIGIN == ORIGIN_FRONT_RIGHT
|
|
||||||
abl2 - xx * auto_bed_leveling_grid_points - yy - 1
|
|
||||||
#endif
|
|
||||||
;
|
|
||||||
float diff = eqnBVector[ind] - mean;
|
|
||||||
if (diff >= 0.0)
|
|
||||||
SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
|
|
||||||
else
|
|
||||||
SERIAL_PROTOCOLPGM(" -");
|
|
||||||
SERIAL_PROTOCOL_F(diff, 5);
|
|
||||||
} // xx
|
|
||||||
SERIAL_PROTOCOLPGM("\n");
|
|
||||||
} // yy
|
|
||||||
SERIAL_PROTOCOLPGM("\n");
|
|
||||||
|
|
||||||
} //topo_flag
|
#ifdef ULTIPANEL
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M0: // M0 - Unconditional stop - Wait for user button press on LCD
|
||||||
|
* M1: // M1 - Conditional stop - Wait for user button press on LCD
|
||||||
|
*/
|
||||||
|
inline void gcode_M0_M1() {
|
||||||
|
char *src = strchr_pointer + 2;
|
||||||
|
|
||||||
set_bed_level_equation_lsq(plane_equation_coefficients);
|
unsigned long codenum = 0;
|
||||||
free(plane_equation_coefficients);
|
bool hasP = false, hasS = false;
|
||||||
|
if (code_seen('P')) {
|
||||||
|
codenum = code_value(); // milliseconds to wait
|
||||||
|
hasP = codenum > 0;
|
||||||
|
}
|
||||||
|
if (code_seen('S')) {
|
||||||
|
codenum = code_value() * 1000; // seconds to wait
|
||||||
|
hasS = codenum > 0;
|
||||||
|
}
|
||||||
|
char* starpos = strchr(src, '*');
|
||||||
|
if (starpos != NULL) *(starpos) = '\0';
|
||||||
|
while (*src == ' ') ++src;
|
||||||
|
if (!hasP && !hasS && *src != '\0')
|
||||||
|
lcd_setstatus(src);
|
||||||
|
else
|
||||||
|
LCD_MESSAGEPGM(MSG_USERWAIT);
|
||||||
|
|
||||||
#else // !AUTO_BED_LEVELING_GRID
|
lcd_ignore_click();
|
||||||
|
st_synchronize();
|
||||||
|
previous_millis_cmd = millis();
|
||||||
|
if (codenum > 0) {
|
||||||
|
codenum += previous_millis_cmd; // keep track of when we started waiting
|
||||||
|
while(millis() < codenum && !lcd_clicked()) {
|
||||||
|
manage_heater();
|
||||||
|
manage_inactivity();
|
||||||
|
lcd_update();
|
||||||
|
}
|
||||||
|
lcd_ignore_click(false);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (!lcd_detected()) return;
|
||||||
|
while (!lcd_clicked()) {
|
||||||
|
manage_heater();
|
||||||
|
manage_inactivity();
|
||||||
|
lcd_update();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (IS_SD_PRINTING)
|
||||||
|
LCD_MESSAGEPGM(MSG_RESUMING);
|
||||||
|
else
|
||||||
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
||||||
|
}
|
||||||
|
|
||||||
// Probe at 3 arbitrary points
|
#endif // ULTIPANEL
|
||||||
float z_at_pt_1, z_at_pt_2, z_at_pt_3;
|
|
||||||
|
|
||||||
if (enhanced_g29) {
|
/**
|
||||||
// Basic Enhanced G29
|
* M17: Enable power on all stepper motors
|
||||||
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
|
*/
|
||||||
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
|
inline void gcode_M17() {
|
||||||
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
|
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
||||||
}
|
enable_x();
|
||||||
else {
|
enable_y();
|
||||||
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
|
enable_z();
|
||||||
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
enable_e0();
|
||||||
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
enable_e1();
|
||||||
}
|
enable_e2();
|
||||||
clean_up_after_endstop_move();
|
enable_e3();
|
||||||
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
}
|
||||||
|
|
||||||
#endif // !AUTO_BED_LEVELING_GRID
|
#ifdef SDSUPPORT
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M20: List SD card to serial output
|
||||||
|
*/
|
||||||
|
inline void gcode_M20() {
|
||||||
|
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
||||||
|
card.ls();
|
||||||
|
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M21: Init SD Card
|
||||||
|
*/
|
||||||
|
inline void gcode_M21() {
|
||||||
|
card.initsd();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M22: Release SD Card
|
||||||
|
*/
|
||||||
|
inline void gcode_M22() {
|
||||||
|
card.release();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M23: Select a file
|
||||||
|
*/
|
||||||
|
inline void gcode_M23() {
|
||||||
|
char* codepos = strchr_pointer + 4;
|
||||||
|
char* starpos = strchr(codepos, '*');
|
||||||
|
if (starpos) *starpos = '\0';
|
||||||
|
card.openFile(codepos, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M24: Start SD Print
|
||||||
|
*/
|
||||||
|
inline void gcode_M24() {
|
||||||
|
card.startFileprint();
|
||||||
|
starttime = millis();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M25: Pause SD Print
|
||||||
|
*/
|
||||||
|
inline void gcode_M25() {
|
||||||
|
card.pauseSDPrint();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M26: Set SD Card file index
|
||||||
|
*/
|
||||||
|
inline void gcode_M26() {
|
||||||
|
if (card.cardOK && code_seen('S'))
|
||||||
|
card.setIndex(code_value_long());
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M27: Get SD Card status
|
||||||
|
*/
|
||||||
|
inline void gcode_M27() {
|
||||||
|
card.getStatus();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M28: Start SD Write
|
||||||
|
*/
|
||||||
|
inline void gcode_M28() {
|
||||||
|
char* codepos = strchr_pointer + 4;
|
||||||
|
char* starpos = strchr(strchr_pointer + 4, '*');
|
||||||
|
if (starpos) {
|
||||||
|
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
||||||
|
strchr_pointer = strchr(npos, ' ') + 1;
|
||||||
|
*(starpos) = '\0';
|
||||||
|
}
|
||||||
|
card.openFile(strchr_pointer + 4, false);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M29: Stop SD Write
|
||||||
|
* Processed in write to file routine above
|
||||||
|
*/
|
||||||
|
inline void gcode_M29() {
|
||||||
|
// card.saving = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M30 <filename>: Delete SD Card file
|
||||||
|
*/
|
||||||
|
inline void gcode_M30() {
|
||||||
|
if (card.cardOK) {
|
||||||
|
card.closefile();
|
||||||
|
char* starpos = strchr(strchr_pointer + 4, '*');
|
||||||
|
if (starpos) {
|
||||||
|
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
||||||
|
strchr_pointer = strchr(npos, ' ') + 1;
|
||||||
|
*(starpos) = '\0';
|
||||||
|
}
|
||||||
|
card.removeFile(strchr_pointer + 4);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M31: Get the time since the start of SD Print (or last M109)
|
||||||
|
*/
|
||||||
|
inline void gcode_M31() {
|
||||||
|
stoptime = millis();
|
||||||
|
unsigned long t = (stoptime - starttime) / 1000;
|
||||||
|
int min = t / 60, sec = t % 60;
|
||||||
|
char time[30];
|
||||||
|
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOLN(time);
|
||||||
|
lcd_setstatus(time);
|
||||||
|
autotempShutdown();
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef SDSUPPORT
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M32: Select file and start SD Print
|
||||||
|
*/
|
||||||
|
inline void gcode_M32() {
|
||||||
|
if (card.sdprinting)
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
|
|
||||||
if (verbose_level > 0)
|
char* codepos = strchr_pointer + 4;
|
||||||
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
|
||||||
|
|
||||||
// The following code correct the Z height difference from z-probe position and hotend tip position.
|
char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
|
||||||
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
if (! namestartpos)
|
||||||
// When the bed is uneven, this height must be corrected.
|
namestartpos = codepos; //default name position, 4 letters after the M
|
||||||
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
else
|
||||||
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
namestartpos++; //to skip the '!'
|
||||||
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
||||||
z_tmp = current_position[Z_AXIS];
|
|
||||||
|
|
||||||
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
char* starpos = strchr(codepos, '*');
|
||||||
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
if (starpos) *(starpos) = '\0';
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
||||||
|
|
||||||
#ifdef Z_PROBE_SLED
|
bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
|
||||||
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
|
||||||
|
if (card.cardOK) {
|
||||||
|
card.openFile(namestartpos, true, !call_procedure);
|
||||||
|
|
||||||
|
if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
|
||||||
|
card.setIndex(code_value_long());
|
||||||
|
|
||||||
|
card.startFileprint();
|
||||||
|
if (!call_procedure)
|
||||||
|
starttime = millis(); //procedure calls count as normal print time.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M928: Start SD Write
|
||||||
|
*/
|
||||||
|
inline void gcode_M928() {
|
||||||
|
char* starpos = strchr(strchr_pointer + 5, '*');
|
||||||
|
if (starpos) {
|
||||||
|
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
||||||
|
strchr_pointer = strchr(npos, ' ') + 1;
|
||||||
|
*(starpos) = '\0';
|
||||||
|
}
|
||||||
|
card.openLogFile(strchr_pointer + 5);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // SDSUPPORT
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M42: Change pin status via GCode
|
||||||
|
*/
|
||||||
|
inline void gcode_M42() {
|
||||||
|
if (code_seen('S')) {
|
||||||
|
int pin_status = code_value(),
|
||||||
|
pin_number = LED_PIN;
|
||||||
|
|
||||||
|
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
||||||
|
pin_number = code_value();
|
||||||
|
|
||||||
|
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
|
||||||
|
if (sensitive_pins[i] == pin_number) {
|
||||||
|
pin_number = -1;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||||
|
if (pin_number == FAN_PIN) fanSpeed = pin_status;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (pin_number > -1) {
|
||||||
|
pinMode(pin_number, OUTPUT);
|
||||||
|
digitalWrite(pin_number, pin_status);
|
||||||
|
analogWrite(pin_number, pin_status);
|
||||||
|
}
|
||||||
|
} // code_seen('S')
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
|
||||||
|
|
||||||
|
#if Z_MIN_PIN == -1
|
||||||
|
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M48: Z-Probe repeatability measurement function.
|
||||||
|
*
|
||||||
|
* Usage:
|
||||||
|
* M48 <n#> <X#> <Y#> <V#> <E> <L#>
|
||||||
|
* n = Number of samples (4-50, default 10)
|
||||||
|
* X = Sample X position
|
||||||
|
* Y = Sample Y position
|
||||||
|
* V = Verbose level (0-4, default=1)
|
||||||
|
* E = Engage probe for each reading
|
||||||
|
* L = Number of legs of movement before probe
|
||||||
|
*
|
||||||
|
* This function assumes the bed has been homed. Specificaly, that a G28 command
|
||||||
|
* as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
||||||
|
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
||||||
|
* regenerated.
|
||||||
|
*
|
||||||
|
* The number of samples will default to 10 if not specified. You can use upper or lower case
|
||||||
|
* letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
||||||
|
* N for its communication protocol and will get horribly confused if you send it a capital N.
|
||||||
|
*/
|
||||||
|
inline void gcode_M48() {
|
||||||
|
|
||||||
|
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
|
||||||
|
int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
|
||||||
|
double X_current, Y_current, Z_current;
|
||||||
|
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
||||||
|
|
||||||
|
if (code_seen('V') || code_seen('v')) {
|
||||||
|
verbose_level = code_value();
|
||||||
|
if (verbose_level < 0 || verbose_level > 4 ) {
|
||||||
|
SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (verbose_level > 0) {
|
||||||
|
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
|
||||||
|
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('n')) {
|
||||||
|
n_samples = code_value();
|
||||||
|
if (n_samples < 4 || n_samples > 50) {
|
||||||
|
SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
||||||
|
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
||||||
|
Z_current = st_get_position_mm(Z_AXIS);
|
||||||
|
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
||||||
|
ext_position = st_get_position_mm(E_AXIS);
|
||||||
|
|
||||||
|
if (code_seen('E') || code_seen('e'))
|
||||||
|
engage_probe_for_each_reading++;
|
||||||
|
|
||||||
|
if (code_seen('X') || code_seen('x')) {
|
||||||
|
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
|
||||||
|
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('Y') || code_seen('y')) {
|
||||||
|
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
|
||||||
|
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('L') || code_seen('l')) {
|
||||||
|
n_legs = code_value();
|
||||||
|
if (n_legs == 1) n_legs = 2;
|
||||||
|
if (n_legs < 0 || n_legs > 15) {
|
||||||
|
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// Do all the preliminary setup work. First raise the probe.
|
||||||
|
//
|
||||||
|
|
||||||
|
st_synchronize();
|
||||||
|
plan_bed_level_matrix.set_to_identity();
|
||||||
|
plan_buffer_line(X_current, Y_current, Z_start_location,
|
||||||
|
ext_position,
|
||||||
|
homing_feedrate[Z_AXIS] / 60,
|
||||||
|
active_extruder);
|
||||||
|
st_synchronize();
|
||||||
|
|
||||||
|
//
|
||||||
|
// Now get everything to the specified probe point So we can safely do a probe to
|
||||||
|
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
||||||
|
// use that as a starting point for each probe.
|
||||||
|
//
|
||||||
|
if (verbose_level > 2)
|
||||||
|
SERIAL_PROTOCOL("Positioning probe for the test.\n");
|
||||||
|
|
||||||
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
||||||
|
ext_position,
|
||||||
|
homing_feedrate[X_AXIS]/60,
|
||||||
|
active_extruder);
|
||||||
|
st_synchronize();
|
||||||
|
|
||||||
|
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
||||||
|
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
||||||
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||||
|
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
||||||
|
|
||||||
|
//
|
||||||
|
// OK, do the inital probe to get us close to the bed.
|
||||||
|
// Then retrace the right amount and use that in subsequent probes
|
||||||
|
//
|
||||||
|
|
||||||
|
engage_z_probe();
|
||||||
|
|
||||||
|
setup_for_endstop_move();
|
||||||
|
run_z_probe();
|
||||||
|
|
||||||
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||||
|
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
||||||
|
|
||||||
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
||||||
|
ext_position,
|
||||||
|
homing_feedrate[X_AXIS]/60,
|
||||||
|
active_extruder);
|
||||||
|
st_synchronize();
|
||||||
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||||
|
|
||||||
|
if (engage_probe_for_each_reading) retract_z_probe();
|
||||||
|
|
||||||
|
for (n=0; n < n_samples; n++) {
|
||||||
|
|
||||||
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
||||||
|
|
||||||
|
if (n_legs) {
|
||||||
|
double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
||||||
|
int l;
|
||||||
|
int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
||||||
|
radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
|
||||||
|
theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
|
||||||
|
|
||||||
|
//SERIAL_ECHOPAIR("starting radius: ",radius);
|
||||||
|
//SERIAL_ECHOPAIR(" theta: ",theta);
|
||||||
|
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
||||||
|
//SERIAL_PROTOCOLLNPGM("");
|
||||||
|
|
||||||
|
float dir = rotational_direction ? 1 : -1;
|
||||||
|
for (l = 0; l < n_legs - 1; l++) {
|
||||||
|
theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
|
||||||
|
|
||||||
|
radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
|
||||||
|
if (radius < 0.0) radius = -radius;
|
||||||
|
|
||||||
|
X_current = X_probe_location + cos(theta) * radius;
|
||||||
|
Y_current = Y_probe_location + sin(theta) * radius;
|
||||||
|
|
||||||
|
// Make sure our X & Y are sane
|
||||||
|
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
||||||
|
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
||||||
|
|
||||||
|
if (verbose_level > 3) {
|
||||||
|
SERIAL_ECHOPAIR("x: ", X_current);
|
||||||
|
SERIAL_ECHOPAIR("y: ", Y_current);
|
||||||
|
SERIAL_PROTOCOLLNPGM("");
|
||||||
|
}
|
||||||
|
|
||||||
|
do_blocking_move_to( X_current, Y_current, Z_current );
|
||||||
|
}
|
||||||
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
||||||
|
}
|
||||||
|
|
||||||
|
if (engage_probe_for_each_reading) {
|
||||||
|
engage_z_probe();
|
||||||
|
delay(1000);
|
||||||
|
}
|
||||||
|
|
||||||
|
setup_for_endstop_move();
|
||||||
|
run_z_probe();
|
||||||
|
|
||||||
|
sample_set[n] = current_position[Z_AXIS];
|
||||||
|
|
||||||
|
//
|
||||||
|
// Get the current mean for the data points we have so far
|
||||||
|
//
|
||||||
|
sum = 0.0;
|
||||||
|
for (j=0; j<=n; j++) sum += sample_set[j];
|
||||||
|
mean = sum / (double (n+1));
|
||||||
|
|
||||||
|
//
|
||||||
|
// Now, use that mean to calculate the standard deviation for the
|
||||||
|
// data points we have so far
|
||||||
|
//
|
||||||
|
sum = 0.0;
|
||||||
|
for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
|
||||||
|
sigma = sqrt( sum / (double (n+1)) );
|
||||||
|
|
||||||
|
if (verbose_level > 1) {
|
||||||
|
SERIAL_PROTOCOL(n+1);
|
||||||
|
SERIAL_PROTOCOL(" of ");
|
||||||
|
SERIAL_PROTOCOL(n_samples);
|
||||||
|
SERIAL_PROTOCOLPGM(" z: ");
|
||||||
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (verbose_level > 2) {
|
||||||
|
SERIAL_PROTOCOL(" mean: ");
|
||||||
|
SERIAL_PROTOCOL_F(mean,6);
|
||||||
|
SERIAL_PROTOCOL(" sigma: ");
|
||||||
|
SERIAL_PROTOCOL_F(sigma,6);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (verbose_level > 0)
|
||||||
|
SERIAL_PROTOCOLPGM("\n");
|
||||||
|
|
||||||
|
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
|
||||||
|
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
||||||
|
st_synchronize();
|
||||||
|
|
||||||
|
if (engage_probe_for_each_reading) {
|
||||||
|
retract_z_probe();
|
||||||
|
delay(1000);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
retract_z_probe();
|
||||||
|
delay(1000);
|
||||||
|
|
||||||
|
clean_up_after_endstop_move();
|
||||||
|
|
||||||
|
// enable_endstops(true);
|
||||||
|
|
||||||
|
if (verbose_level > 0) {
|
||||||
|
SERIAL_PROTOCOLPGM("Mean: ");
|
||||||
|
SERIAL_PROTOCOL_F(mean, 6);
|
||||||
|
SERIAL_PROTOCOLPGM("\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
||||||
|
SERIAL_PROTOCOL_F(sigma, 6);
|
||||||
|
SERIAL_PROTOCOLPGM("\n\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M104: Set hot end temperature
|
||||||
|
*/
|
||||||
|
inline void gcode_M104() {
|
||||||
|
if (setTargetedHotend(104)) return;
|
||||||
|
|
||||||
|
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
||||||
|
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
||||||
|
#endif
|
||||||
|
setWatch();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M105: Read hot end and bed temperature
|
||||||
|
*/
|
||||||
|
inline void gcode_M105() {
|
||||||
|
if (setTargetedHotend(105)) return;
|
||||||
|
|
||||||
|
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
||||||
|
SERIAL_PROTOCOLPGM("ok T:");
|
||||||
|
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
||||||
|
SERIAL_PROTOCOLPGM(" /");
|
||||||
|
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
||||||
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||||
|
SERIAL_PROTOCOLPGM(" B:");
|
||||||
|
SERIAL_PROTOCOL_F(degBed(),1);
|
||||||
|
SERIAL_PROTOCOLPGM(" /");
|
||||||
|
SERIAL_PROTOCOL_F(degTargetBed(),1);
|
||||||
|
#endif //TEMP_BED_PIN
|
||||||
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
||||||
|
SERIAL_PROTOCOLPGM(" T");
|
||||||
|
SERIAL_PROTOCOL(cur_extruder);
|
||||||
|
SERIAL_PROTOCOLPGM(":");
|
||||||
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
||||||
|
SERIAL_PROTOCOLPGM(" /");
|
||||||
|
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
SERIAL_ERROR_START;
|
||||||
|
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM(" @:");
|
||||||
|
#ifdef EXTRUDER_WATTS
|
||||||
|
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
||||||
|
SERIAL_PROTOCOLPGM("W");
|
||||||
|
#else
|
||||||
|
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM(" B@:");
|
||||||
|
#ifdef BED_WATTS
|
||||||
|
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
||||||
|
SERIAL_PROTOCOLPGM("W");
|
||||||
|
#else
|
||||||
|
SERIAL_PROTOCOL(getHeaterPower(-1));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef SHOW_TEMP_ADC_VALUES
|
||||||
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||||
|
SERIAL_PROTOCOLPGM(" ADC B:");
|
||||||
|
SERIAL_PROTOCOL_F(degBed(),1);
|
||||||
|
SERIAL_PROTOCOLPGM("C->");
|
||||||
|
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
|
||||||
|
#endif
|
||||||
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
||||||
|
SERIAL_PROTOCOLPGM(" T");
|
||||||
|
SERIAL_PROTOCOL(cur_extruder);
|
||||||
|
SERIAL_PROTOCOLPGM(":");
|
||||||
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
||||||
|
SERIAL_PROTOCOLPGM("C->");
|
||||||
|
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M106: Set Fan Speed
|
||||||
|
*/
|
||||||
|
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M107: Fan Off
|
||||||
|
*/
|
||||||
|
inline void gcode_M107() { fanSpeed = 0; }
|
||||||
|
|
||||||
|
#endif //FAN_PIN
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M109: Wait for extruder(s) to reach temperature
|
||||||
|
*/
|
||||||
|
inline void gcode_M109() {
|
||||||
|
if (setTargetedHotend(109)) return;
|
||||||
|
|
||||||
|
LCD_MESSAGEPGM(MSG_HEATING);
|
||||||
|
|
||||||
|
CooldownNoWait = code_seen('S');
|
||||||
|
if (CooldownNoWait || code_seen('R')) {
|
||||||
|
setTargetHotend(code_value(), tmp_extruder);
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
||||||
|
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef AUTOTEMP
|
||||||
|
autotemp_enabled = code_seen('F');
|
||||||
|
if (autotemp_enabled) autotemp_factor = code_value();
|
||||||
|
if (code_seen('S')) autotemp_min = code_value();
|
||||||
|
if (code_seen('B')) autotemp_max = code_value();
|
||||||
|
#endif
|
||||||
|
|
||||||
|
setWatch();
|
||||||
|
|
||||||
|
unsigned long timetemp = millis();
|
||||||
|
|
||||||
|
/* See if we are heating up or cooling down */
|
||||||
|
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
||||||
|
|
||||||
|
cancel_heatup = false;
|
||||||
|
|
||||||
|
#ifdef TEMP_RESIDENCY_TIME
|
||||||
|
long residencyStart = -1;
|
||||||
|
/* continue to loop until we have reached the target temp
|
||||||
|
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
||||||
|
while((!cancel_heatup)&&((residencyStart == -1) ||
|
||||||
|
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
|
||||||
|
#else
|
||||||
|
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
|
||||||
|
#endif //TEMP_RESIDENCY_TIME
|
||||||
|
|
||||||
|
{ // while loop
|
||||||
|
if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
|
||||||
|
SERIAL_PROTOCOLPGM("T:");
|
||||||
|
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
||||||
|
SERIAL_PROTOCOLPGM(" E:");
|
||||||
|
SERIAL_PROTOCOL((int)tmp_extruder);
|
||||||
|
#ifdef TEMP_RESIDENCY_TIME
|
||||||
|
SERIAL_PROTOCOLPGM(" W:");
|
||||||
|
if (residencyStart > -1) {
|
||||||
|
timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
||||||
|
SERIAL_PROTOCOLLN( timetemp );
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
SERIAL_PROTOCOLLN( "?" );
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
#endif
|
||||||
|
timetemp = millis();
|
||||||
|
}
|
||||||
|
manage_heater();
|
||||||
|
manage_inactivity();
|
||||||
|
lcd_update();
|
||||||
|
#ifdef TEMP_RESIDENCY_TIME
|
||||||
|
// start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
||||||
|
// or when current temp falls outside the hysteresis after target temp was reached
|
||||||
|
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
|
||||||
|
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
|
||||||
|
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
|
||||||
|
{
|
||||||
|
residencyStart = millis();
|
||||||
|
}
|
||||||
|
#endif //TEMP_RESIDENCY_TIME
|
||||||
|
}
|
||||||
|
|
||||||
|
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
||||||
|
starttime = previous_millis_cmd = millis();
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
||||||
|
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
||||||
|
*/
|
||||||
|
inline void gcode_M190() {
|
||||||
|
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
||||||
|
CooldownNoWait = code_seen('S');
|
||||||
|
if (CooldownNoWait || code_seen('R'))
|
||||||
|
setTargetBed(code_value());
|
||||||
|
|
||||||
|
unsigned long timetemp = millis();
|
||||||
|
|
||||||
|
cancel_heatup = false;
|
||||||
|
target_direction = isHeatingBed(); // true if heating, false if cooling
|
||||||
|
|
||||||
|
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
|
||||||
|
unsigned long ms = millis();
|
||||||
|
if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
|
||||||
|
timetemp = ms;
|
||||||
|
float tt = degHotend(active_extruder);
|
||||||
|
SERIAL_PROTOCOLPGM("T:");
|
||||||
|
SERIAL_PROTOCOL(tt);
|
||||||
|
SERIAL_PROTOCOLPGM(" E:");
|
||||||
|
SERIAL_PROTOCOL((int)active_extruder);
|
||||||
|
SERIAL_PROTOCOLPGM(" B:");
|
||||||
|
SERIAL_PROTOCOL_F(degBed(), 1);
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
}
|
||||||
|
manage_heater();
|
||||||
|
manage_inactivity();
|
||||||
|
lcd_update();
|
||||||
|
}
|
||||||
|
LCD_MESSAGEPGM(MSG_BED_DONE);
|
||||||
|
previous_millis_cmd = millis();
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // TEMP_BED_PIN > -1
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M112: Emergency Stop
|
||||||
|
*/
|
||||||
|
inline void gcode_M112() {
|
||||||
|
kill();
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef BARICUDA
|
||||||
|
|
||||||
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
||||||
|
/**
|
||||||
|
* M126: Heater 1 valve open
|
||||||
|
*/
|
||||||
|
inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
||||||
|
/**
|
||||||
|
* M127: Heater 1 valve close
|
||||||
|
*/
|
||||||
|
inline void gcode_M127() { ValvePressure = 0; }
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
||||||
|
/**
|
||||||
|
* M128: Heater 2 valve open
|
||||||
|
*/
|
||||||
|
inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
||||||
|
/**
|
||||||
|
* M129: Heater 2 valve close
|
||||||
|
*/
|
||||||
|
inline void gcode_M129() { EtoPPressure = 0; }
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif //BARICUDA
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M140: Set bed temperature
|
||||||
|
*/
|
||||||
|
inline void gcode_M140() {
|
||||||
|
if (code_seen('S')) setTargetBed(code_value());
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M80: Turn on Power Supply
|
||||||
|
*/
|
||||||
|
inline void gcode_M80() {
|
||||||
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
|
||||||
|
|
||||||
|
// If you have a switch on suicide pin, this is useful
|
||||||
|
// if you want to start another print with suicide feature after
|
||||||
|
// a print without suicide...
|
||||||
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||||
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef ULTIPANEL
|
||||||
|
powersupply = true;
|
||||||
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
||||||
|
lcd_update();
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // PS_ON_PIN
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M81: Turn off Power Supply
|
||||||
|
*/
|
||||||
|
inline void gcode_M81() {
|
||||||
|
disable_heater();
|
||||||
|
st_synchronize();
|
||||||
|
disable_e0();
|
||||||
|
disable_e1();
|
||||||
|
disable_e2();
|
||||||
|
disable_e3();
|
||||||
|
finishAndDisableSteppers();
|
||||||
|
fanSpeed = 0;
|
||||||
|
delay(1000); // Wait 1 second before switching off
|
||||||
|
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||||
|
st_synchronize();
|
||||||
|
suicide();
|
||||||
|
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||||
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
||||||
|
#endif
|
||||||
|
#ifdef ULTIPANEL
|
||||||
|
powersupply = false;
|
||||||
|
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
|
||||||
|
lcd_update();
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M82: Set E codes absolute (default)
|
||||||
|
*/
|
||||||
|
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M82: Set E codes relative while in Absolute Coordinates (G90) mode
|
||||||
|
*/
|
||||||
|
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M18, M84: Disable all stepper motors
|
||||||
|
*/
|
||||||
|
inline void gcode_M18_M84() {
|
||||||
|
if (code_seen('S')) {
|
||||||
|
stepper_inactive_time = code_value() * 1000;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
||||||
|
if (all_axis) {
|
||||||
|
st_synchronize();
|
||||||
|
disable_e0();
|
||||||
|
disable_e1();
|
||||||
|
disable_e2();
|
||||||
|
disable_e3();
|
||||||
|
finishAndDisableSteppers();
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
st_synchronize();
|
||||||
|
if (code_seen('X')) disable_x();
|
||||||
|
if (code_seen('Y')) disable_y();
|
||||||
|
if (code_seen('Z')) disable_z();
|
||||||
|
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
||||||
|
if (code_seen('E')) {
|
||||||
|
disable_e0();
|
||||||
|
disable_e1();
|
||||||
|
disable_e2();
|
||||||
|
disable_e3();
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
break;
|
}
|
||||||
|
}
|
||||||
|
|
||||||
#ifndef Z_PROBE_SLED
|
/**
|
||||||
case 30: // G30 Single Z Probe
|
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
||||||
{
|
*/
|
||||||
engage_z_probe(); // Engage Z Servo endstop if available
|
inline void gcode_M85() {
|
||||||
st_synchronize();
|
if (code_seen('S')) max_inactive_time = code_value() * 1000;
|
||||||
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
}
|
||||||
setup_for_endstop_move();
|
|
||||||
|
|
||||||
feedrate = homing_feedrate[Z_AXIS];
|
/**
|
||||||
|
* M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
||||||
run_z_probe();
|
*/
|
||||||
SERIAL_PROTOCOLPGM(MSG_BED);
|
inline void gcode_M92() {
|
||||||
SERIAL_PROTOCOLPGM(" X: ");
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
if (code_seen(axis_codes[i])) {
|
||||||
SERIAL_PROTOCOLPGM(" Y: ");
|
if (i == E_AXIS) {
|
||||||
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
float value = code_value();
|
||||||
SERIAL_PROTOCOLPGM(" Z: ");
|
if (value < 20.0) {
|
||||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
||||||
SERIAL_PROTOCOLPGM("\n");
|
max_e_jerk *= factor;
|
||||||
|
max_feedrate[i] *= factor;
|
||||||
clean_up_after_endstop_move();
|
axis_steps_per_sqr_second[i] *= factor;
|
||||||
retract_z_probe(); // Retract Z Servo endstop if available
|
|
||||||
}
|
}
|
||||||
|
axis_steps_per_unit[i] = value;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
axis_steps_per_unit[i] = code_value();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M114: Output current position to serial port
|
||||||
|
*/
|
||||||
|
inline void gcode_M114() {
|
||||||
|
SERIAL_PROTOCOLPGM("X:");
|
||||||
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" Y:");
|
||||||
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" Z:");
|
||||||
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" E:");
|
||||||
|
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
||||||
|
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" Y:");
|
||||||
|
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" Z:");
|
||||||
|
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
|
||||||
|
#ifdef SCARA
|
||||||
|
SERIAL_PROTOCOLPGM("SCARA Theta:");
|
||||||
|
SERIAL_PROTOCOL(delta[X_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
||||||
|
SERIAL_PROTOCOL(delta[Y_AXIS]);
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
|
||||||
|
SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
|
||||||
|
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
||||||
|
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
|
||||||
|
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
||||||
|
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M115: Capabilities string
|
||||||
|
*/
|
||||||
|
inline void gcode_M115() {
|
||||||
|
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M117: Set LCD Status Message
|
||||||
|
*/
|
||||||
|
inline void gcode_M117() {
|
||||||
|
char* codepos = strchr_pointer + 5;
|
||||||
|
char* starpos = strchr(codepos, '*');
|
||||||
|
if (starpos) *starpos = '\0';
|
||||||
|
lcd_setstatus(codepos);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M119: Output endstop states to serial output
|
||||||
|
*/
|
||||||
|
inline void gcode_M119() {
|
||||||
|
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
|
||||||
|
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||||
|
SERIAL_PROTOCOLPGM(MSG_X_MIN);
|
||||||
|
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||||
|
#endif
|
||||||
|
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||||
|
SERIAL_PROTOCOLPGM(MSG_X_MAX);
|
||||||
|
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||||
|
#endif
|
||||||
|
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
||||||
|
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
|
||||||
|
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||||
|
#endif
|
||||||
|
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
||||||
|
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
|
||||||
|
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||||
|
#endif
|
||||||
|
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
||||||
|
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
|
||||||
|
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||||
|
#endif
|
||||||
|
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
||||||
|
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
|
||||||
|
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M120: Enable endstops
|
||||||
|
*/
|
||||||
|
inline void gcode_M120() { enable_endstops(false); }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M121: Disable endstops
|
||||||
|
*/
|
||||||
|
inline void gcode_M121() { enable_endstops(true); }
|
||||||
|
|
||||||
|
#ifdef BLINKM
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M150: Set Status LED Color - Use R-U-B for R-G-B
|
||||||
|
*/
|
||||||
|
inline void gcode_M150() {
|
||||||
|
SendColors(
|
||||||
|
code_seen('R') ? (byte)code_value() : 0,
|
||||||
|
code_seen('U') ? (byte)code_value() : 0,
|
||||||
|
code_seen('B') ? (byte)code_value() : 0
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // BLINKM
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
||||||
|
* T<extruder>
|
||||||
|
* D<millimeters>
|
||||||
|
*/
|
||||||
|
inline void gcode_M200() {
|
||||||
|
tmp_extruder = active_extruder;
|
||||||
|
if (code_seen('T')) {
|
||||||
|
tmp_extruder = code_value();
|
||||||
|
if (tmp_extruder >= EXTRUDERS) {
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float area = .0;
|
||||||
|
if (code_seen('D')) {
|
||||||
|
float diameter = code_value();
|
||||||
|
// setting any extruder filament size disables volumetric on the assumption that
|
||||||
|
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
||||||
|
// for all extruders
|
||||||
|
volumetric_enabled = (diameter != 0.0);
|
||||||
|
if (volumetric_enabled) {
|
||||||
|
filament_size[tmp_extruder] = diameter;
|
||||||
|
// make sure all extruders have some sane value for the filament size
|
||||||
|
for (int i=0; i<EXTRUDERS; i++)
|
||||||
|
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
//reserved for setting filament diameter via UFID or filament measuring device
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
calculate_volumetric_multipliers();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
||||||
|
*/
|
||||||
|
inline void gcode_M201() {
|
||||||
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
|
if (code_seen(axis_codes[i])) {
|
||||||
|
max_acceleration_units_per_sq_second[i] = code_value();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
||||||
|
reset_acceleration_rates();
|
||||||
|
}
|
||||||
|
|
||||||
|
#if 0 // Not used for Sprinter/grbl gen6
|
||||||
|
inline void gcode_M202() {
|
||||||
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
|
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
||||||
|
*/
|
||||||
|
inline void gcode_M203() {
|
||||||
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
|
if (code_seen(axis_codes[i])) {
|
||||||
|
max_feedrate[i] = code_value();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
|
||||||
|
*
|
||||||
|
* S = normal moves
|
||||||
|
* T = filament only moves
|
||||||
|
*
|
||||||
|
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
||||||
|
*/
|
||||||
|
inline void gcode_M204() {
|
||||||
|
if (code_seen('S')) acceleration = code_value();
|
||||||
|
if (code_seen('T')) retract_acceleration = code_value();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M205: Set Advanced Settings
|
||||||
|
*
|
||||||
|
* S = Min Feed Rate (mm/s)
|
||||||
|
* T = Min Travel Feed Rate (mm/s)
|
||||||
|
* B = Min Segment Time (µs)
|
||||||
|
* X = Max XY Jerk (mm/s/s)
|
||||||
|
* Z = Max Z Jerk (mm/s/s)
|
||||||
|
* E = Max E Jerk (mm/s/s)
|
||||||
|
*/
|
||||||
|
inline void gcode_M205() {
|
||||||
|
if (code_seen('S')) minimumfeedrate = code_value();
|
||||||
|
if (code_seen('T')) mintravelfeedrate = code_value();
|
||||||
|
if (code_seen('B')) minsegmenttime = code_value();
|
||||||
|
if (code_seen('X')) max_xy_jerk = code_value();
|
||||||
|
if (code_seen('Z')) max_z_jerk = code_value();
|
||||||
|
if (code_seen('E')) max_e_jerk = code_value();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
||||||
|
*/
|
||||||
|
inline void gcode_M206() {
|
||||||
|
for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
|
||||||
|
if (code_seen(axis_codes[i])) {
|
||||||
|
add_homing[i] = code_value();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#ifdef SCARA
|
||||||
|
if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
|
||||||
|
if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef DELTA
|
||||||
|
/**
|
||||||
|
* M665: Set delta configurations
|
||||||
|
*
|
||||||
|
* L = diagonal rod
|
||||||
|
* R = delta radius
|
||||||
|
* S = segments per second
|
||||||
|
*/
|
||||||
|
inline void gcode_M665() {
|
||||||
|
if (code_seen('L')) delta_diagonal_rod = code_value();
|
||||||
|
if (code_seen('R')) delta_radius = code_value();
|
||||||
|
if (code_seen('S')) delta_segments_per_second = code_value();
|
||||||
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||||
|
}
|
||||||
|
/**
|
||||||
|
* M666: Set delta endstop adjustment
|
||||||
|
*/
|
||||||
|
inline void gcode_M666() {
|
||||||
|
for (int8_t i = 0; i < 3; i++) {
|
||||||
|
if (code_seen(axis_codes[i])) {
|
||||||
|
endstop_adj[i] = code_value();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif // DELTA
|
||||||
|
|
||||||
|
#ifdef FWRETRACT
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
||||||
|
*/
|
||||||
|
inline void gcode_M207() {
|
||||||
|
if (code_seen('S')) retract_length = code_value();
|
||||||
|
if (code_seen('F')) retract_feedrate = code_value() / 60;
|
||||||
|
if (code_seen('Z')) retract_zlift = code_value();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
||||||
|
*/
|
||||||
|
inline void gcode_M208() {
|
||||||
|
if (code_seen('S')) retract_recover_length = code_value();
|
||||||
|
if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M209: Enable automatic retract (M209 S1)
|
||||||
|
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
||||||
|
*/
|
||||||
|
inline void gcode_M209() {
|
||||||
|
if (code_seen('S')) {
|
||||||
|
int t = code_value();
|
||||||
|
switch(t) {
|
||||||
|
case 0:
|
||||||
|
autoretract_enabled = false;
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
autoretract_enabled = true;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
||||||
|
SERIAL_ECHO(cmdbuffer[bufindr]);
|
||||||
|
SERIAL_ECHOLNPGM("\"");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // FWRETRACT
|
||||||
|
|
||||||
|
#if EXTRUDERS > 1
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
||||||
|
*/
|
||||||
|
inline void gcode_M218() {
|
||||||
|
if (setTargetedHotend(218)) return;
|
||||||
|
|
||||||
|
if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
||||||
|
if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
||||||
|
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
|
||||||
|
#endif
|
||||||
|
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||||
|
for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
|
||||||
|
SERIAL_ECHO(" ");
|
||||||
|
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
||||||
|
SERIAL_ECHO(",");
|
||||||
|
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
SERIAL_ECHO(",");
|
||||||
|
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // EXTRUDERS > 1
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
|
||||||
|
*/
|
||||||
|
inline void gcode_M220() {
|
||||||
|
if (code_seen('S')) feedmultiply = code_value();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M221: Set extrusion percentage (M221 T0 S95)
|
||||||
|
*/
|
||||||
|
inline void gcode_M221() {
|
||||||
|
if (code_seen('S')) {
|
||||||
|
int sval = code_value();
|
||||||
|
if (code_seen('T')) {
|
||||||
|
if (setTargetedHotend(221)) return;
|
||||||
|
extruder_multiply[tmp_extruder] = sval;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
extrudemultiply = sval;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
|
||||||
|
*/
|
||||||
|
inline void gcode_M226() {
|
||||||
|
if (code_seen('P')) {
|
||||||
|
int pin_number = code_value();
|
||||||
|
|
||||||
|
int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
|
||||||
|
|
||||||
|
if (pin_state >= -1 && pin_state <= 1) {
|
||||||
|
|
||||||
|
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
|
||||||
|
if (sensitive_pins[i] == pin_number) {
|
||||||
|
pin_number = -1;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (pin_number > -1) {
|
||||||
|
int target = LOW;
|
||||||
|
|
||||||
|
st_synchronize();
|
||||||
|
|
||||||
|
pinMode(pin_number, INPUT);
|
||||||
|
|
||||||
|
switch(pin_state){
|
||||||
|
case 1:
|
||||||
|
target = HIGH;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 0:
|
||||||
|
target = LOW;
|
||||||
|
break;
|
||||||
|
|
||||||
|
case -1:
|
||||||
|
target = !digitalRead(pin_number);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
while(digitalRead(pin_number) != target) {
|
||||||
|
manage_heater();
|
||||||
|
manage_inactivity();
|
||||||
|
lcd_update();
|
||||||
|
}
|
||||||
|
|
||||||
|
} // pin_number > -1
|
||||||
|
} // pin_state -1 0 1
|
||||||
|
} // code_seen('P')
|
||||||
|
}
|
||||||
|
|
||||||
|
#if NUM_SERVOS > 0
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M280: Set servo position absolute. P: servo index, S: angle or microseconds
|
||||||
|
*/
|
||||||
|
inline void gcode_M280() {
|
||||||
|
int servo_index = code_seen('P') ? code_value() : -1;
|
||||||
|
int servo_position = 0;
|
||||||
|
if (code_seen('S')) {
|
||||||
|
servo_position = code_value();
|
||||||
|
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
||||||
|
#if defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
|
||||||
|
servos[servo_index].attach(0);
|
||||||
|
#endif
|
||||||
|
servos[servo_index].write(servo_position);
|
||||||
|
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||||
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
||||||
|
servos[servo_index].detach();
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHO("Servo ");
|
||||||
|
SERIAL_ECHO(servo_index);
|
||||||
|
SERIAL_ECHOLN(" out of range");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else if (servo_index >= 0) {
|
||||||
|
SERIAL_PROTOCOL(MSG_OK);
|
||||||
|
SERIAL_PROTOCOL(" Servo ");
|
||||||
|
SERIAL_PROTOCOL(servo_index);
|
||||||
|
SERIAL_PROTOCOL(": ");
|
||||||
|
SERIAL_PROTOCOL(servos[servo_index].read());
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // NUM_SERVOS > 0
|
||||||
|
|
||||||
|
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M300: Play beep sound S<frequency Hz> P<duration ms>
|
||||||
|
*/
|
||||||
|
inline void gcode_M300() {
|
||||||
|
int beepS = code_seen('S') ? code_value() : 110;
|
||||||
|
int beepP = code_seen('P') ? code_value() : 1000;
|
||||||
|
if (beepS > 0) {
|
||||||
|
#if BEEPER > 0
|
||||||
|
tone(BEEPER, beepS);
|
||||||
|
delay(beepP);
|
||||||
|
noTone(BEEPER);
|
||||||
|
#elif defined(ULTRALCD)
|
||||||
|
lcd_buzz(beepS, beepP);
|
||||||
|
#elif defined(LCD_USE_I2C_BUZZER)
|
||||||
|
lcd_buzz(beepP, beepS);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
delay(beepP);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
|
||||||
|
|
||||||
|
#ifdef PIDTEMP
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M301: Set PID parameters P I D (and optionally C)
|
||||||
|
*/
|
||||||
|
inline void gcode_M301() {
|
||||||
|
|
||||||
|
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
||||||
|
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
||||||
|
int e = code_seen('E') ? code_value() : 0; // extruder being updated
|
||||||
|
|
||||||
|
if (e < EXTRUDERS) { // catch bad input value
|
||||||
|
if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
|
||||||
|
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
|
||||||
|
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
|
||||||
|
#ifdef PID_ADD_EXTRUSION_RATE
|
||||||
|
if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
|
||||||
|
#endif
|
||||||
|
|
||||||
|
updatePID();
|
||||||
|
SERIAL_PROTOCOL(MSG_OK);
|
||||||
|
#ifdef PID_PARAMS_PER_EXTRUDER
|
||||||
|
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
|
||||||
|
SERIAL_PROTOCOL(e);
|
||||||
|
#endif // PID_PARAMS_PER_EXTRUDER
|
||||||
|
SERIAL_PROTOCOL(" p:");
|
||||||
|
SERIAL_PROTOCOL(PID_PARAM(Kp, e));
|
||||||
|
SERIAL_PROTOCOL(" i:");
|
||||||
|
SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
|
||||||
|
SERIAL_PROTOCOL(" d:");
|
||||||
|
SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
|
||||||
|
#ifdef PID_ADD_EXTRUSION_RATE
|
||||||
|
SERIAL_PROTOCOL(" c:");
|
||||||
|
//Kc does not have scaling applied above, or in resetting defaults
|
||||||
|
SERIAL_PROTOCOL(PID_PARAM(Kc, e));
|
||||||
|
#endif
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // PIDTEMP
|
||||||
|
|
||||||
|
#ifdef PIDTEMPBED
|
||||||
|
|
||||||
|
inline void gcode_M304() {
|
||||||
|
if (code_seen('P')) bedKp = code_value();
|
||||||
|
if (code_seen('I')) bedKi = scalePID_i(code_value());
|
||||||
|
if (code_seen('D')) bedKd = scalePID_d(code_value());
|
||||||
|
|
||||||
|
updatePID();
|
||||||
|
SERIAL_PROTOCOL(MSG_OK);
|
||||||
|
SERIAL_PROTOCOL(" p:");
|
||||||
|
SERIAL_PROTOCOL(bedKp);
|
||||||
|
SERIAL_PROTOCOL(" i:");
|
||||||
|
SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
||||||
|
SERIAL_PROTOCOL(" d:");
|
||||||
|
SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // PIDTEMPBED
|
||||||
|
|
||||||
|
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M240: Trigger a camera by emulating a Canon RC-1
|
||||||
|
* See http://www.doc-diy.net/photo/rc-1_hacked/
|
||||||
|
*/
|
||||||
|
inline void gcode_M240() {
|
||||||
|
#ifdef CHDK
|
||||||
|
|
||||||
|
OUT_WRITE(CHDK, HIGH);
|
||||||
|
chdkHigh = millis();
|
||||||
|
chdkActive = true;
|
||||||
|
|
||||||
|
#elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
||||||
|
|
||||||
|
const uint8_t NUM_PULSES = 16;
|
||||||
|
const float PULSE_LENGTH = 0.01524;
|
||||||
|
for (int i = 0; i < NUM_PULSES; i++) {
|
||||||
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
||||||
|
_delay_ms(PULSE_LENGTH);
|
||||||
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
||||||
|
_delay_ms(PULSE_LENGTH);
|
||||||
|
}
|
||||||
|
delay(7.33);
|
||||||
|
for (int i = 0; i < NUM_PULSES; i++) {
|
||||||
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
||||||
|
_delay_ms(PULSE_LENGTH);
|
||||||
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
||||||
|
_delay_ms(PULSE_LENGTH);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // !CHDK && PHOTOGRAPH_PIN > -1
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // CHDK || PHOTOGRAPH_PIN
|
||||||
|
|
||||||
|
#ifdef DOGLCD
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M250: Read and optionally set the LCD contrast
|
||||||
|
*/
|
||||||
|
inline void gcode_M250() {
|
||||||
|
if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
|
||||||
|
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
||||||
|
SERIAL_PROTOCOL(lcd_contrast);
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // DOGLCD
|
||||||
|
|
||||||
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
|
||||||
|
*/
|
||||||
|
inline void gcode_M302() {
|
||||||
|
set_extrude_min_temp(code_seen('S') ? code_value() : 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // PREVENT_DANGEROUS_EXTRUDE
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M303: PID relay autotune
|
||||||
|
* S<temperature> sets the target temperature. (default target temperature = 150C)
|
||||||
|
* E<extruder> (-1 for the bed)
|
||||||
|
* C<cycles>
|
||||||
|
*/
|
||||||
|
inline void gcode_M303() {
|
||||||
|
int e = code_seen('E') ? code_value_long() : 0;
|
||||||
|
int c = code_seen('C') ? code_value_long() : 5;
|
||||||
|
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
|
||||||
|
PID_autotune(temp, e, c);
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef SCARA
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
||||||
|
*/
|
||||||
|
inline bool gcode_M360() {
|
||||||
|
SERIAL_ECHOLN(" Cal: Theta 0 ");
|
||||||
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||||
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||||
|
if (! Stopped) {
|
||||||
|
//get_coordinates(); // For X Y Z E F
|
||||||
|
delta[X_AXIS] = 0;
|
||||||
|
delta[Y_AXIS] = 120;
|
||||||
|
calculate_SCARA_forward_Transform(delta);
|
||||||
|
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||||
|
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||||
|
prepare_move();
|
||||||
|
//ClearToSend();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
||||||
|
*/
|
||||||
|
inline bool gcode_M361() {
|
||||||
|
SERIAL_ECHOLN(" Cal: Theta 90 ");
|
||||||
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||||
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||||
|
if (! Stopped) {
|
||||||
|
//get_coordinates(); // For X Y Z E F
|
||||||
|
delta[X_AXIS] = 90;
|
||||||
|
delta[Y_AXIS] = 130;
|
||||||
|
calculate_SCARA_forward_Transform(delta);
|
||||||
|
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||||
|
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||||
|
prepare_move();
|
||||||
|
//ClearToSend();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
||||||
|
*/
|
||||||
|
inline bool gcode_M362() {
|
||||||
|
SERIAL_ECHOLN(" Cal: Psi 0 ");
|
||||||
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||||
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||||
|
if (! Stopped) {
|
||||||
|
//get_coordinates(); // For X Y Z E F
|
||||||
|
delta[X_AXIS] = 60;
|
||||||
|
delta[Y_AXIS] = 180;
|
||||||
|
calculate_SCARA_forward_Transform(delta);
|
||||||
|
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||||
|
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||||
|
prepare_move();
|
||||||
|
//ClearToSend();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
||||||
|
*/
|
||||||
|
inline bool gcode_M363() {
|
||||||
|
SERIAL_ECHOLN(" Cal: Psi 90 ");
|
||||||
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||||
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||||
|
if (! Stopped) {
|
||||||
|
//get_coordinates(); // For X Y Z E F
|
||||||
|
delta[X_AXIS] = 50;
|
||||||
|
delta[Y_AXIS] = 90;
|
||||||
|
calculate_SCARA_forward_Transform(delta);
|
||||||
|
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||||
|
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||||
|
prepare_move();
|
||||||
|
//ClearToSend();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
||||||
|
*/
|
||||||
|
inline bool gcode_M364() {
|
||||||
|
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
|
||||||
|
// SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||||
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||||
|
if (! Stopped) {
|
||||||
|
//get_coordinates(); // For X Y Z E F
|
||||||
|
delta[X_AXIS] = 45;
|
||||||
|
delta[Y_AXIS] = 135;
|
||||||
|
calculate_SCARA_forward_Transform(delta);
|
||||||
|
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
|
||||||
|
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
|
||||||
|
prepare_move();
|
||||||
|
//ClearToSend();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
|
||||||
|
*/
|
||||||
|
inline void gcode_M365() {
|
||||||
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
||||||
|
if (code_seen(axis_codes[i])) {
|
||||||
|
axis_scaling[i] = code_value();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // SCARA
|
||||||
|
|
||||||
|
#ifdef EXT_SOLENOID
|
||||||
|
|
||||||
|
void enable_solenoid(uint8_t num) {
|
||||||
|
switch(num) {
|
||||||
|
case 0:
|
||||||
|
OUT_WRITE(SOL0_PIN, HIGH);
|
||||||
break;
|
break;
|
||||||
#else
|
#if defined(SOL1_PIN) && SOL1_PIN > -1
|
||||||
case 31: // dock the sled
|
case 1:
|
||||||
dock_sled(true);
|
OUT_WRITE(SOL1_PIN, HIGH);
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#if defined(SOL2_PIN) && SOL2_PIN > -1
|
||||||
|
case 2:
|
||||||
|
OUT_WRITE(SOL2_PIN, HIGH);
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
#if defined(SOL3_PIN) && SOL3_PIN > -1
|
||||||
|
case 3:
|
||||||
|
OUT_WRITE(SOL3_PIN, HIGH);
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
default:
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
||||||
break;
|
break;
|
||||||
case 32: // undock the sled
|
}
|
||||||
dock_sled(false);
|
}
|
||||||
|
|
||||||
|
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
||||||
|
|
||||||
|
void disable_all_solenoids() {
|
||||||
|
OUT_WRITE(SOL0_PIN, LOW);
|
||||||
|
OUT_WRITE(SOL1_PIN, LOW);
|
||||||
|
OUT_WRITE(SOL2_PIN, LOW);
|
||||||
|
OUT_WRITE(SOL3_PIN, LOW);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M380: Enable solenoid on the active extruder
|
||||||
|
*/
|
||||||
|
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M381: Disable all solenoids
|
||||||
|
*/
|
||||||
|
inline void gcode_M381() { disable_all_solenoids(); }
|
||||||
|
|
||||||
|
#endif // EXT_SOLENOID
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M400: Finish all moves
|
||||||
|
*/
|
||||||
|
inline void gcode_M400() { st_synchronize(); }
|
||||||
|
|
||||||
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M401: Engage Z Servo endstop if available
|
||||||
|
*/
|
||||||
|
inline void gcode_M401() { engage_z_probe(); }
|
||||||
|
/**
|
||||||
|
* M402: Retract Z Servo endstop if enabled
|
||||||
|
*/
|
||||||
|
inline void gcode_M402() { retract_z_probe(); }
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef FILAMENT_SENSOR
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
|
||||||
|
*/
|
||||||
|
inline void gcode_M404() {
|
||||||
|
#if FILWIDTH_PIN > -1
|
||||||
|
if (code_seen('N')) {
|
||||||
|
filament_width_nominal = code_value();
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
||||||
|
SERIAL_PROTOCOLLN(filament_width_nominal);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M405: Turn on filament sensor for control
|
||||||
|
*/
|
||||||
|
inline void gcode_M405() {
|
||||||
|
if (code_seen('D')) meas_delay_cm = code_value();
|
||||||
|
if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
||||||
|
|
||||||
|
if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
|
||||||
|
int temp_ratio = widthFil_to_size_ratio();
|
||||||
|
|
||||||
|
for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
|
||||||
|
measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
|
||||||
|
|
||||||
|
delay_index1 = delay_index2 = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
filament_sensor = true;
|
||||||
|
|
||||||
|
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||||
|
//SERIAL_PROTOCOL(filament_width_meas);
|
||||||
|
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
||||||
|
//SERIAL_PROTOCOL(extrudemultiply);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M406: Turn off filament sensor for control
|
||||||
|
*/
|
||||||
|
inline void gcode_M406() { filament_sensor = false; }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M407: Get measured filament diameter on serial output
|
||||||
|
*/
|
||||||
|
inline void gcode_M407() {
|
||||||
|
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||||
|
SERIAL_PROTOCOLLN(filament_width_meas);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // FILAMENT_SENSOR
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M500: Store settings in EEPROM
|
||||||
|
*/
|
||||||
|
inline void gcode_M500() {
|
||||||
|
Config_StoreSettings();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M501: Read settings from EEPROM
|
||||||
|
*/
|
||||||
|
inline void gcode_M501() {
|
||||||
|
Config_RetrieveSettings();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M502: Revert to default settings
|
||||||
|
*/
|
||||||
|
inline void gcode_M502() {
|
||||||
|
Config_ResetDefault();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M503: print settings currently in memory
|
||||||
|
*/
|
||||||
|
inline void gcode_M503() {
|
||||||
|
Config_PrintSettings(code_seen('S') && code_value == 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
|
||||||
|
*/
|
||||||
|
inline void gcode_M540() {
|
||||||
|
if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||||
|
|
||||||
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||||
|
|
||||||
|
inline void gcode_SET_Z_PROBE_OFFSET() {
|
||||||
|
float value;
|
||||||
|
if (code_seen('Z')) {
|
||||||
|
value = code_value();
|
||||||
|
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
|
||||||
|
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
|
||||||
|
SERIAL_ECHOPGM(MSG_Z_MIN);
|
||||||
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
||||||
|
SERIAL_ECHOPGM(MSG_Z_MAX);
|
||||||
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
|
||||||
|
SERIAL_ECHO(-zprobe_zoffset);
|
||||||
|
SERIAL_PROTOCOLLN("");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||||
|
|
||||||
|
#ifdef FILAMENTCHANGEENABLE
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
||||||
|
*/
|
||||||
|
inline void gcode_M600() {
|
||||||
|
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
|
||||||
|
for (int i=0; i<NUM_AXIS; i++)
|
||||||
|
target[i] = lastpos[i] = current_position[i];
|
||||||
|
|
||||||
|
#define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
|
||||||
|
#ifdef DELTA
|
||||||
|
#define RUNPLAN calculate_delta(target); BASICPLAN
|
||||||
|
#else
|
||||||
|
#define RUNPLAN BASICPLAN
|
||||||
|
#endif
|
||||||
|
|
||||||
|
//retract by E
|
||||||
|
if (code_seen('E')) target[E_AXIS] += code_value();
|
||||||
|
#ifdef FILAMENTCHANGE_FIRSTRETRACT
|
||||||
|
else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
RUNPLAN;
|
||||||
|
|
||||||
|
//lift Z
|
||||||
|
if (code_seen('Z')) target[Z_AXIS] += code_value();
|
||||||
|
#ifdef FILAMENTCHANGE_ZADD
|
||||||
|
else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
RUNPLAN;
|
||||||
|
|
||||||
|
//move xy
|
||||||
|
if (code_seen('X')) target[X_AXIS] = code_value();
|
||||||
|
#ifdef FILAMENTCHANGE_XPOS
|
||||||
|
else target[X_AXIS] = FILAMENTCHANGE_XPOS;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (code_seen('Y')) target[Y_AXIS] = code_value();
|
||||||
|
#ifdef FILAMENTCHANGE_YPOS
|
||||||
|
else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
RUNPLAN;
|
||||||
|
|
||||||
|
if (code_seen('L')) target[E_AXIS] += code_value();
|
||||||
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
||||||
|
else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
RUNPLAN;
|
||||||
|
|
||||||
|
//finish moves
|
||||||
|
st_synchronize();
|
||||||
|
//disable extruder steppers so filament can be removed
|
||||||
|
disable_e0();
|
||||||
|
disable_e1();
|
||||||
|
disable_e2();
|
||||||
|
disable_e3();
|
||||||
|
delay(100);
|
||||||
|
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
||||||
|
uint8_t cnt = 0;
|
||||||
|
while (!lcd_clicked()) {
|
||||||
|
cnt++;
|
||||||
|
manage_heater();
|
||||||
|
manage_inactivity(true);
|
||||||
|
lcd_update();
|
||||||
|
if (cnt == 0) {
|
||||||
|
#if BEEPER > 0
|
||||||
|
OUT_WRITE(BEEPER,HIGH);
|
||||||
|
delay(3);
|
||||||
|
WRITE(BEEPER,LOW);
|
||||||
|
delay(3);
|
||||||
|
#else
|
||||||
|
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
||||||
|
lcd_buzz(1000/6, 100);
|
||||||
|
#else
|
||||||
|
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
} // while(!lcd_clicked)
|
||||||
|
|
||||||
|
//return to normal
|
||||||
|
if (code_seen('L')) target[E_AXIS] -= code_value();
|
||||||
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
||||||
|
else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
||||||
|
plan_set_e_position(current_position[E_AXIS]);
|
||||||
|
|
||||||
|
RUNPLAN; //should do nothing
|
||||||
|
|
||||||
|
lcd_reset_alert_level();
|
||||||
|
|
||||||
|
#ifdef DELTA
|
||||||
|
calculate_delta(lastpos);
|
||||||
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
|
||||||
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
||||||
|
#else
|
||||||
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
|
||||||
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
|
||||||
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // FILAMENTCHANGEENABLE
|
||||||
|
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M605: Set dual x-carriage movement mode
|
||||||
|
*
|
||||||
|
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
||||||
|
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
||||||
|
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
||||||
|
* millimeters x-offset and an optional differential hotend temperature of
|
||||||
|
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
||||||
|
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
||||||
|
*
|
||||||
|
* Note: the X axis should be homed after changing dual x-carriage mode.
|
||||||
|
*/
|
||||||
|
inline void gcode_M605() {
|
||||||
|
st_synchronize();
|
||||||
|
if (code_seen('S')) dual_x_carriage_mode = code_value();
|
||||||
|
switch(dual_x_carriage_mode) {
|
||||||
|
case DXC_DUPLICATION_MODE:
|
||||||
|
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
|
||||||
|
if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||||
|
SERIAL_ECHO(" ");
|
||||||
|
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
|
||||||
|
SERIAL_ECHO(",");
|
||||||
|
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
|
||||||
|
SERIAL_ECHO(" ");
|
||||||
|
SERIAL_ECHO(duplicate_extruder_x_offset);
|
||||||
|
SERIAL_ECHO(",");
|
||||||
|
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
|
||||||
break;
|
break;
|
||||||
#endif // Z_PROBE_SLED
|
case DXC_FULL_CONTROL_MODE:
|
||||||
#endif // ENABLE_AUTO_BED_LEVELING
|
case DXC_AUTO_PARK_MODE:
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
active_extruder_parked = false;
|
||||||
|
extruder_duplication_enabled = false;
|
||||||
|
delayed_move_time = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // DUAL_X_CARRIAGE
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
||||||
|
*/
|
||||||
|
inline void gcode_M907() {
|
||||||
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||||
|
for (int i=0;i<NUM_AXIS;i++)
|
||||||
|
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
|
||||||
|
if (code_seen('B')) digipot_current(4, code_value());
|
||||||
|
if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
|
||||||
|
#endif
|
||||||
|
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
||||||
|
if (code_seen('X')) digipot_current(0, code_value());
|
||||||
|
#endif
|
||||||
|
#ifdef MOTOR_CURRENT_PWM_Z_PIN
|
||||||
|
if (code_seen('Z')) digipot_current(1, code_value());
|
||||||
|
#endif
|
||||||
|
#ifdef MOTOR_CURRENT_PWM_E_PIN
|
||||||
|
if (code_seen('E')) digipot_current(2, code_value());
|
||||||
|
#endif
|
||||||
|
#ifdef DIGIPOT_I2C
|
||||||
|
// this one uses actual amps in floating point
|
||||||
|
for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
||||||
|
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
||||||
|
for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
||||||
|
*/
|
||||||
|
inline void gcode_M908() {
|
||||||
|
digitalPotWrite(
|
||||||
|
code_seen('P') ? code_value() : 0,
|
||||||
|
code_seen('S') ? code_value() : 0
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // DIGIPOTSS_PIN
|
||||||
|
|
||||||
|
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||||
|
inline void gcode_M350() {
|
||||||
|
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||||
|
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
||||||
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
||||||
|
if(code_seen('B')) microstep_mode(4,code_value());
|
||||||
|
microstep_readings();
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
|
||||||
|
* S# determines MS1 or MS2, X# sets the pin high/low.
|
||||||
|
*/
|
||||||
|
inline void gcode_M351() {
|
||||||
|
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||||
|
if (code_seen('S')) switch((int)code_value()) {
|
||||||
|
case 1:
|
||||||
|
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
|
||||||
|
if (code_seen('B')) microstep_ms(4, code_value(), -1);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
|
||||||
|
if (code_seen('B')) microstep_ms(4, -1, code_value());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
microstep_readings();
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* M999: Restart after being stopped
|
||||||
|
*/
|
||||||
|
inline void gcode_M999() {
|
||||||
|
Stopped = false;
|
||||||
|
lcd_reset_alert_level();
|
||||||
|
gcode_LastN = Stopped_gcode_LastN;
|
||||||
|
FlushSerialRequestResend();
|
||||||
|
}
|
||||||
|
|
||||||
|
inline void gcode_T() {
|
||||||
|
tmp_extruder = code_value();
|
||||||
|
if (tmp_extruder >= EXTRUDERS) {
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHO("T");
|
||||||
|
SERIAL_ECHO(tmp_extruder);
|
||||||
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
boolean make_move = false;
|
||||||
|
if (code_seen('F')) {
|
||||||
|
make_move = true;
|
||||||
|
next_feedrate = code_value();
|
||||||
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
||||||
|
}
|
||||||
|
#if EXTRUDERS > 1
|
||||||
|
if (tmp_extruder != active_extruder) {
|
||||||
|
// Save current position to return to after applying extruder offset
|
||||||
|
memcpy(destination, current_position, sizeof(destination));
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
|
||||||
|
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
|
||||||
|
// Park old head: 1) raise 2) move to park position 3) lower
|
||||||
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
||||||
|
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
||||||
|
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
||||||
|
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
|
||||||
|
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
|
||||||
|
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
||||||
|
st_synchronize();
|
||||||
|
}
|
||||||
|
|
||||||
|
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
||||||
|
current_position[Y_AXIS] = current_position[Y_AXIS] -
|
||||||
|
extruder_offset[Y_AXIS][active_extruder] +
|
||||||
|
extruder_offset[Y_AXIS][tmp_extruder];
|
||||||
|
current_position[Z_AXIS] = current_position[Z_AXIS] -
|
||||||
|
extruder_offset[Z_AXIS][active_extruder] +
|
||||||
|
extruder_offset[Z_AXIS][tmp_extruder];
|
||||||
|
|
||||||
|
active_extruder = tmp_extruder;
|
||||||
|
|
||||||
|
// This function resets the max/min values - the current position may be overwritten below.
|
||||||
|
axis_is_at_home(X_AXIS);
|
||||||
|
|
||||||
|
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
|
||||||
|
current_position[X_AXIS] = inactive_extruder_x_pos;
|
||||||
|
inactive_extruder_x_pos = destination[X_AXIS];
|
||||||
|
}
|
||||||
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
||||||
|
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
|
||||||
|
if (active_extruder == 0 || active_extruder_parked)
|
||||||
|
current_position[X_AXIS] = inactive_extruder_x_pos;
|
||||||
|
else
|
||||||
|
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
||||||
|
inactive_extruder_x_pos = destination[X_AXIS];
|
||||||
|
extruder_duplication_enabled = false;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// record raised toolhead position for use by unpark
|
||||||
|
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
||||||
|
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
||||||
|
active_extruder_parked = true;
|
||||||
|
delayed_move_time = 0;
|
||||||
|
}
|
||||||
|
#else // !DUAL_X_CARRIAGE
|
||||||
|
// Offset extruder (only by XY)
|
||||||
|
for (int i=X_AXIS; i<=Y_AXIS; i++)
|
||||||
|
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
|
||||||
|
// Set the new active extruder and position
|
||||||
|
active_extruder = tmp_extruder;
|
||||||
|
#endif // !DUAL_X_CARRIAGE
|
||||||
|
#ifdef DELTA
|
||||||
|
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
||||||
|
//sent position to plan_set_position();
|
||||||
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
|
||||||
|
#else
|
||||||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
#endif
|
||||||
|
// Move to the old position if 'F' was in the parameters
|
||||||
|
if (make_move && !Stopped) prepare_move();
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef EXT_SOLENOID
|
||||||
|
st_synchronize();
|
||||||
|
disable_all_solenoids();
|
||||||
|
enable_solenoid_on_active_extruder();
|
||||||
|
#endif // EXT_SOLENOID
|
||||||
|
|
||||||
|
#endif // EXTRUDERS > 1
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
|
||||||
|
SERIAL_PROTOCOLLN((int)active_extruder);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Process Commands and dispatch them to handlers
|
||||||
|
*/
|
||||||
|
void process_commands() {
|
||||||
|
if (code_seen('G')) {
|
||||||
|
|
||||||
|
int gCode = code_value_long();
|
||||||
|
|
||||||
|
switch(gCode) {
|
||||||
|
|
||||||
|
// G0, G1
|
||||||
|
case 0:
|
||||||
|
case 1:
|
||||||
|
gcode_G0_G1();
|
||||||
|
break;
|
||||||
|
|
||||||
|
// G2, G3
|
||||||
|
#ifndef SCARA
|
||||||
|
case 2: // G2 - CW ARC
|
||||||
|
case 3: // G3 - CCW ARC
|
||||||
|
gcode_G2_G3(gCode == 2);
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// G4 Dwell
|
||||||
|
case 4:
|
||||||
|
gcode_G4();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#ifdef FWRETRACT
|
||||||
|
|
||||||
|
case 10: // G10: retract
|
||||||
|
case 11: // G11: retract_recover
|
||||||
|
gcode_G10_G11(gCode == 10);
|
||||||
|
break;
|
||||||
|
|
||||||
|
#endif //FWRETRACT
|
||||||
|
|
||||||
|
case 28: // G28: Home all axes, one at a time
|
||||||
|
gcode_G28();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
|
|
||||||
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
||||||
|
gcode_G29();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#ifndef Z_PROBE_SLED
|
||||||
|
|
||||||
|
case 30: // G30 Single Z Probe
|
||||||
|
gcode_G30();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#else // Z_PROBE_SLED
|
||||||
|
|
||||||
|
case 31: // G31: dock the sled
|
||||||
|
case 32: // G32: undock the sled
|
||||||
|
dock_sled(gCode == 31);
|
||||||
|
break;
|
||||||
|
|
||||||
|
#endif // Z_PROBE_SLED
|
||||||
|
|
||||||
|
#endif // ENABLE_AUTO_BED_LEVELING
|
||||||
|
|
||||||
case 90: // G90
|
case 90: // G90
|
||||||
relative_mode = false;
|
relative_mode = false;
|
||||||
break;
|
break;
|
||||||
case 91: // G91
|
case 91: // G91
|
||||||
relative_mode = true;
|
relative_mode = true;
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case 92: // G92
|
case 92: // G92
|
||||||
if(!code_seen(axis_codes[E_AXIS]))
|
gcode_G92();
|
||||||
st_synchronize();
|
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
||||||
if(code_seen(axis_codes[i])) {
|
|
||||||
if(i == E_AXIS) {
|
|
||||||
current_position[i] = code_value();
|
|
||||||
plan_set_e_position(current_position[E_AXIS]);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
#ifdef SCARA
|
|
||||||
if (i == X_AXIS || i == Y_AXIS) {
|
|
||||||
current_position[i] = code_value();
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
current_position[i] = code_value()+add_homing[i];
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
current_position[i] = code_value()+add_homing[i];
|
|
||||||
#endif
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
else if(code_seen('M'))
|
else if (code_seen('M')) {
|
||||||
{
|
switch( (int)code_value() ) {
|
||||||
switch( (int)code_value() )
|
#ifdef ULTIPANEL
|
||||||
{
|
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
||||||
#ifdef ULTIPANEL
|
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
||||||
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
gcode_M0_M1();
|
||||||
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
break;
|
||||||
{
|
#endif // ULTIPANEL
|
||||||
char *src = strchr_pointer + 2;
|
|
||||||
|
|
||||||
codenum = 0;
|
case 17:
|
||||||
|
gcode_M17();
|
||||||
|
break;
|
||||||
|
|
||||||
bool hasP = false, hasS = false;
|
#ifdef SDSUPPORT
|
||||||
if (code_seen('P')) {
|
|
||||||
codenum = code_value(); // milliseconds to wait
|
|
||||||
hasP = codenum > 0;
|
|
||||||
}
|
|
||||||
if (code_seen('S')) {
|
|
||||||
codenum = code_value() * 1000; // seconds to wait
|
|
||||||
hasS = codenum > 0;
|
|
||||||
}
|
|
||||||
starpos = strchr(src, '*');
|
|
||||||
if (starpos != NULL) *(starpos) = '\0';
|
|
||||||
while (*src == ' ') ++src;
|
|
||||||
if (!hasP && !hasS && *src != '\0') {
|
|
||||||
lcd_setstatus(src);
|
|
||||||
} else {
|
|
||||||
LCD_MESSAGEPGM(MSG_USERWAIT);
|
|
||||||
}
|
|
||||||
|
|
||||||
lcd_ignore_click();
|
case 20: // M20 - list SD card
|
||||||
st_synchronize();
|
gcode_M20(); break;
|
||||||
previous_millis_cmd = millis();
|
case 21: // M21 - init SD card
|
||||||
if (codenum > 0){
|
gcode_M21(); break;
|
||||||
codenum += millis(); // keep track of when we started waiting
|
case 22: //M22 - release SD card
|
||||||
while(millis() < codenum && !lcd_clicked()){
|
gcode_M22(); break;
|
||||||
manage_heater();
|
case 23: //M23 - Select file
|
||||||
manage_inactivity();
|
gcode_M23(); break;
|
||||||
lcd_update();
|
case 24: //M24 - Start SD print
|
||||||
}
|
gcode_M24(); break;
|
||||||
lcd_ignore_click(false);
|
case 25: //M25 - Pause SD print
|
||||||
}else{
|
gcode_M25(); break;
|
||||||
if (!lcd_detected())
|
case 26: //M26 - Set SD index
|
||||||
break;
|
gcode_M26(); break;
|
||||||
while(!lcd_clicked()){
|
case 27: //M27 - Get SD status
|
||||||
manage_heater();
|
gcode_M27(); break;
|
||||||
manage_inactivity();
|
case 28: //M28 - Start SD write
|
||||||
lcd_update();
|
gcode_M28(); break;
|
||||||
}
|
case 29: //M29 - Stop SD write
|
||||||
}
|
gcode_M29(); break;
|
||||||
if (IS_SD_PRINTING)
|
case 30: //M30 <filename> Delete File
|
||||||
LCD_MESSAGEPGM(MSG_RESUMING);
|
gcode_M30(); break;
|
||||||
else
|
case 32: //M32 - Select file and start SD print
|
||||||
LCD_MESSAGEPGM(WELCOME_MSG);
|
gcode_M32(); break;
|
||||||
}
|
case 928: //M928 - Start SD write
|
||||||
break;
|
gcode_M928(); break;
|
||||||
#endif
|
|
||||||
case 17:
|
|
||||||
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
|
||||||
enable_x();
|
|
||||||
enable_y();
|
|
||||||
enable_z();
|
|
||||||
enable_e0();
|
|
||||||
enable_e1();
|
|
||||||
enable_e2();
|
|
||||||
enable_e3();
|
|
||||||
break;
|
|
||||||
|
|
||||||
#ifdef SDSUPPORT
|
#endif //SDSUPPORT
|
||||||
case 20: // M20 - list SD card
|
|
||||||
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
|
||||||
card.ls();
|
|
||||||
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
|
||||||
break;
|
|
||||||
case 21: // M21 - init SD card
|
|
||||||
|
|
||||||
card.initsd();
|
case 31: //M31 take time since the start of the SD print or an M109 command
|
||||||
|
gcode_M31();
|
||||||
|
break;
|
||||||
|
|
||||||
break;
|
case 42: //M42 -Change pin status via gcode
|
||||||
case 22: //M22 - release SD card
|
gcode_M42();
|
||||||
card.release();
|
break;
|
||||||
|
|
||||||
break;
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
|
||||||
case 23: //M23 - Select file
|
case 48: // M48 Z-Probe repeatability
|
||||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
gcode_M48();
|
||||||
if(starpos!=NULL)
|
break;
|
||||||
*(starpos)='\0';
|
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
|
||||||
card.openFile(strchr_pointer + 4,true);
|
|
||||||
break;
|
|
||||||
case 24: //M24 - Start SD print
|
|
||||||
card.startFileprint();
|
|
||||||
starttime=millis();
|
|
||||||
break;
|
|
||||||
case 25: //M25 - Pause SD print
|
|
||||||
card.pauseSDPrint();
|
|
||||||
break;
|
|
||||||
case 26: //M26 - Set SD index
|
|
||||||
if(card.cardOK && code_seen('S')) {
|
|
||||||
card.setIndex(code_value_long());
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 27: //M27 - Get SD status
|
|
||||||
card.getStatus();
|
|
||||||
break;
|
|
||||||
case 28: //M28 - Start SD write
|
|
||||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
||||||
if(starpos != NULL){
|
|
||||||
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
|
||||||
strchr_pointer = strchr(npos,' ') + 1;
|
|
||||||
*(starpos) = '\0';
|
|
||||||
}
|
|
||||||
card.openFile(strchr_pointer+4,false);
|
|
||||||
break;
|
|
||||||
case 29: //M29 - Stop SD write
|
|
||||||
//processed in write to file routine above
|
|
||||||
//card,saving = false;
|
|
||||||
break;
|
|
||||||
case 30: //M30 <filename> Delete File
|
|
||||||
if (card.cardOK){
|
|
||||||
card.closefile();
|
|
||||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
|
||||||
if(starpos != NULL){
|
|
||||||
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
|
||||||
strchr_pointer = strchr(npos,' ') + 1;
|
|
||||||
*(starpos) = '\0';
|
|
||||||
}
|
|
||||||
card.removeFile(strchr_pointer + 4);
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 32: //M32 - Select file and start SD print
|
|
||||||
{
|
|
||||||
if(card.sdprinting) {
|
|
||||||
st_synchronize();
|
|
||||||
|
|
||||||
}
|
case 104: // M104
|
||||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
gcode_M104();
|
||||||
|
break;
|
||||||
|
|
||||||
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
|
case 112: // M112 Emergency Stop
|
||||||
if(namestartpos==NULL)
|
gcode_M112();
|
||||||
{
|
break;
|
||||||
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
|
|
||||||
}
|
|
||||||
else
|
|
||||||
namestartpos++; //to skip the '!'
|
|
||||||
|
|
||||||
if(starpos!=NULL)
|
case 140: // M140 Set bed temp
|
||||||
*(starpos)='\0';
|
gcode_M140();
|
||||||
|
break;
|
||||||
|
|
||||||
bool call_procedure=(code_seen('P'));
|
case 105: // M105 Read current temperature
|
||||||
|
gcode_M105();
|
||||||
|
return;
|
||||||
|
break;
|
||||||
|
|
||||||
if(strchr_pointer>namestartpos)
|
case 109: // M109 Wait for temperature
|
||||||
call_procedure=false; //false alert, 'P' found within filename
|
gcode_M109();
|
||||||
|
break;
|
||||||
|
|
||||||
if( card.cardOK )
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||||
{
|
case 190: // M190 - Wait for bed heater to reach target.
|
||||||
card.openFile(namestartpos,true,!call_procedure);
|
gcode_M190();
|
||||||
if(code_seen('S'))
|
break;
|
||||||
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
|
#endif //TEMP_BED_PIN
|
||||||
card.setIndex(code_value_long());
|
|
||||||
card.startFileprint();
|
|
||||||
if(!call_procedure)
|
|
||||||
starttime=millis(); //procedure calls count as normal print time.
|
|
||||||
}
|
|
||||||
} break;
|
|
||||||
case 928: //M928 - Start SD write
|
|
||||||
starpos = (strchr(strchr_pointer + 5,'*'));
|
|
||||||
if(starpos != NULL){
|
|
||||||
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
|
||||||
strchr_pointer = strchr(npos,' ') + 1;
|
|
||||||
*(starpos) = '\0';
|
|
||||||
}
|
|
||||||
card.openLogFile(strchr_pointer+5);
|
|
||||||
break;
|
|
||||||
|
|
||||||
#endif //SDSUPPORT
|
|
||||||
|
|
||||||
case 31: //M31 take time since the start of the SD print or an M109 command
|
|
||||||
{
|
|
||||||
stoptime=millis();
|
|
||||||
char time[30];
|
|
||||||
unsigned long t=(stoptime-starttime)/1000;
|
|
||||||
int sec,min;
|
|
||||||
min=t/60;
|
|
||||||
sec=t%60;
|
|
||||||
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOLN(time);
|
|
||||||
lcd_setstatus(time);
|
|
||||||
autotempShutdown();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 42: //M42 -Change pin status via gcode
|
|
||||||
if (code_seen('S'))
|
|
||||||
{
|
|
||||||
int pin_status = code_value();
|
|
||||||
int pin_number = LED_PIN;
|
|
||||||
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
|
||||||
pin_number = code_value();
|
|
||||||
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
||||||
{
|
|
||||||
if (sensitive_pins[i] == pin_number)
|
|
||||||
{
|
|
||||||
pin_number = -1;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||||
if (pin_number == FAN_PIN)
|
case 106: //M106 Fan On
|
||||||
fanSpeed = pin_status;
|
gcode_M106();
|
||||||
#endif
|
|
||||||
if (pin_number > -1)
|
|
||||||
{
|
|
||||||
pinMode(pin_number, OUTPUT);
|
|
||||||
digitalWrite(pin_number, pin_status);
|
|
||||||
analogWrite(pin_number, pin_status);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
|
|
||||||
// M48 Z-Probe repeatability measurement function.
|
|
||||||
//
|
|
||||||
// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
|
|
||||||
//
|
|
||||||
// This function assumes the bed has been homed. Specificaly, that a G28 command
|
|
||||||
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
|
||||||
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
||||||
// regenerated.
|
|
||||||
//
|
|
||||||
// The number of samples will default to 10 if not specified. You can use upper or lower case
|
|
||||||
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
|
||||||
// N for its communication protocol and will get horribly confused if you send it a capital N.
|
|
||||||
//
|
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
||||||
#ifdef Z_PROBE_REPEATABILITY_TEST
|
|
||||||
|
|
||||||
case 48: // M48 Z-Probe repeatability
|
|
||||||
{
|
|
||||||
#if Z_MIN_PIN == -1
|
|
||||||
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
|
||||||
#endif
|
|
||||||
|
|
||||||
double sum=0.0;
|
|
||||||
double mean=0.0;
|
|
||||||
double sigma=0.0;
|
|
||||||
double sample_set[50];
|
|
||||||
int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
|
|
||||||
double X_current, Y_current, Z_current;
|
|
||||||
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
|
||||||
|
|
||||||
if (code_seen('V') || code_seen('v')) {
|
|
||||||
verbose_level = code_value();
|
|
||||||
if (verbose_level<0 || verbose_level>4 ) {
|
|
||||||
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
|
|
||||||
goto Sigma_Exit;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (verbose_level > 0) {
|
|
||||||
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
|
|
||||||
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
if (code_seen('n')) {
|
|
||||||
n_samples = code_value();
|
|
||||||
if (n_samples<4 || n_samples>50 ) {
|
|
||||||
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
|
|
||||||
goto Sigma_Exit;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
|
||||||
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
|
||||||
Z_current = st_get_position_mm(Z_AXIS);
|
|
||||||
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
||||||
ext_position = st_get_position_mm(E_AXIS);
|
|
||||||
|
|
||||||
if (code_seen('E') || code_seen('e') )
|
|
||||||
engage_probe_for_each_reading++;
|
|
||||||
|
|
||||||
if (code_seen('X') || code_seen('x') ) {
|
|
||||||
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
||||||
if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
|
|
||||||
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
|
|
||||||
goto Sigma_Exit;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (code_seen('Y') || code_seen('y') ) {
|
|
||||||
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
||||||
if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
|
|
||||||
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
|
|
||||||
goto Sigma_Exit;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (code_seen('L') || code_seen('l') ) {
|
|
||||||
n_legs = code_value();
|
|
||||||
if ( n_legs==1 )
|
|
||||||
n_legs = 2;
|
|
||||||
if ( n_legs<0 || n_legs>15 ) {
|
|
||||||
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
|
|
||||||
goto Sigma_Exit;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//
|
|
||||||
// Do all the preliminary setup work. First raise the probe.
|
|
||||||
//
|
|
||||||
|
|
||||||
st_synchronize();
|
|
||||||
plan_bed_level_matrix.set_to_identity();
|
|
||||||
plan_buffer_line( X_current, Y_current, Z_start_location,
|
|
||||||
ext_position,
|
|
||||||
homing_feedrate[Z_AXIS]/60,
|
|
||||||
active_extruder);
|
|
||||||
st_synchronize();
|
|
||||||
|
|
||||||
//
|
|
||||||
// Now get everything to the specified probe point So we can safely do a probe to
|
|
||||||
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
|
||||||
// use that as a starting point for each probe.
|
|
||||||
//
|
|
||||||
if (verbose_level > 2)
|
|
||||||
SERIAL_PROTOCOL("Positioning probe for the test.\n");
|
|
||||||
|
|
||||||
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
||||||
ext_position,
|
|
||||||
homing_feedrate[X_AXIS]/60,
|
|
||||||
active_extruder);
|
|
||||||
st_synchronize();
|
|
||||||
|
|
||||||
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
|
||||||
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
|
||||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
||||||
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
|
||||||
|
|
||||||
//
|
|
||||||
// OK, do the inital probe to get us close to the bed.
|
|
||||||
// Then retrace the right amount and use that in subsequent probes
|
|
||||||
//
|
|
||||||
|
|
||||||
engage_z_probe();
|
|
||||||
|
|
||||||
setup_for_endstop_move();
|
|
||||||
run_z_probe();
|
|
||||||
|
|
||||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
||||||
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
||||||
|
|
||||||
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
||||||
ext_position,
|
|
||||||
homing_feedrate[X_AXIS]/60,
|
|
||||||
active_extruder);
|
|
||||||
st_synchronize();
|
|
||||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
||||||
|
|
||||||
if (engage_probe_for_each_reading)
|
|
||||||
retract_z_probe();
|
|
||||||
|
|
||||||
for( n=0; n<n_samples; n++) {
|
|
||||||
|
|
||||||
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
|
||||||
|
|
||||||
if ( n_legs) {
|
|
||||||
double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
|
||||||
int rotational_direction, l;
|
|
||||||
|
|
||||||
rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
|
||||||
radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
|
|
||||||
theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
|
|
||||||
|
|
||||||
//SERIAL_ECHOPAIR("starting radius: ",radius);
|
|
||||||
//SERIAL_ECHOPAIR(" theta: ",theta);
|
|
||||||
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
|
||||||
//SERIAL_PROTOCOLLNPGM("");
|
|
||||||
|
|
||||||
for( l=0; l<n_legs-1; l++) {
|
|
||||||
if (rotational_direction==1)
|
|
||||||
theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
||||||
else
|
|
||||||
theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
|
||||||
|
|
||||||
radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
|
|
||||||
if ( radius<0.0 )
|
|
||||||
radius = -radius;
|
|
||||||
|
|
||||||
X_current = X_probe_location + cos(theta) * radius;
|
|
||||||
Y_current = Y_probe_location + sin(theta) * radius;
|
|
||||||
|
|
||||||
if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
|
|
||||||
X_current = X_MIN_POS;
|
|
||||||
if ( X_current>X_MAX_POS)
|
|
||||||
X_current = X_MAX_POS;
|
|
||||||
|
|
||||||
if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
|
|
||||||
Y_current = Y_MIN_POS;
|
|
||||||
if ( Y_current>Y_MAX_POS)
|
|
||||||
Y_current = Y_MAX_POS;
|
|
||||||
|
|
||||||
if (verbose_level>3 ) {
|
|
||||||
SERIAL_ECHOPAIR("x: ", X_current);
|
|
||||||
SERIAL_ECHOPAIR("y: ", Y_current);
|
|
||||||
SERIAL_PROTOCOLLNPGM("");
|
|
||||||
}
|
|
||||||
|
|
||||||
do_blocking_move_to( X_current, Y_current, Z_current );
|
|
||||||
}
|
|
||||||
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
|
||||||
}
|
|
||||||
|
|
||||||
if (engage_probe_for_each_reading) {
|
|
||||||
engage_z_probe();
|
|
||||||
delay(1000);
|
|
||||||
}
|
|
||||||
|
|
||||||
setup_for_endstop_move();
|
|
||||||
run_z_probe();
|
|
||||||
|
|
||||||
sample_set[n] = current_position[Z_AXIS];
|
|
||||||
|
|
||||||
//
|
|
||||||
// Get the current mean for the data points we have so far
|
|
||||||
//
|
|
||||||
sum=0.0;
|
|
||||||
for( j=0; j<=n; j++) {
|
|
||||||
sum = sum + sample_set[j];
|
|
||||||
}
|
|
||||||
mean = sum / (double (n+1));
|
|
||||||
//
|
|
||||||
// Now, use that mean to calculate the standard deviation for the
|
|
||||||
// data points we have so far
|
|
||||||
//
|
|
||||||
|
|
||||||
sum=0.0;
|
|
||||||
for( j=0; j<=n; j++) {
|
|
||||||
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
|
|
||||||
}
|
|
||||||
sigma = sqrt( sum / (double (n+1)) );
|
|
||||||
|
|
||||||
if (verbose_level > 1) {
|
|
||||||
SERIAL_PROTOCOL(n+1);
|
|
||||||
SERIAL_PROTOCOL(" of ");
|
|
||||||
SERIAL_PROTOCOL(n_samples);
|
|
||||||
SERIAL_PROTOCOLPGM(" z: ");
|
|
||||||
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (verbose_level > 2) {
|
|
||||||
SERIAL_PROTOCOL(" mean: ");
|
|
||||||
SERIAL_PROTOCOL_F(mean,6);
|
|
||||||
|
|
||||||
SERIAL_PROTOCOL(" sigma: ");
|
|
||||||
SERIAL_PROTOCOL_F(sigma,6);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (verbose_level > 0)
|
|
||||||
SERIAL_PROTOCOLPGM("\n");
|
|
||||||
|
|
||||||
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
||||||
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
|
||||||
st_synchronize();
|
|
||||||
|
|
||||||
if (engage_probe_for_each_reading) {
|
|
||||||
retract_z_probe();
|
|
||||||
delay(1000);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
retract_z_probe();
|
|
||||||
delay(1000);
|
|
||||||
|
|
||||||
clean_up_after_endstop_move();
|
|
||||||
|
|
||||||
// enable_endstops(true);
|
|
||||||
|
|
||||||
if (verbose_level > 0) {
|
|
||||||
SERIAL_PROTOCOLPGM("Mean: ");
|
|
||||||
SERIAL_PROTOCOL_F(mean, 6);
|
|
||||||
SERIAL_PROTOCOLPGM("\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
||||||
SERIAL_PROTOCOL_F(sigma, 6);
|
|
||||||
SERIAL_PROTOCOLPGM("\n\n");
|
|
||||||
|
|
||||||
Sigma_Exit:
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
#endif // Z_PROBE_REPEATABILITY_TEST
|
|
||||||
#endif // ENABLE_AUTO_BED_LEVELING
|
|
||||||
|
|
||||||
case 104: // M104
|
|
||||||
if(setTargetedHotend(104)){
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
|
||||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
|
||||||
#endif
|
|
||||||
setWatch();
|
|
||||||
break;
|
|
||||||
case 112: // M112 -Emergency Stop
|
|
||||||
kill();
|
|
||||||
break;
|
|
||||||
case 140: // M140 set bed temp
|
|
||||||
if (code_seen('S')) setTargetBed(code_value());
|
|
||||||
break;
|
|
||||||
case 105 : // M105
|
|
||||||
if(setTargetedHotend(105)){
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
|
||||||
SERIAL_PROTOCOLPGM("ok T:");
|
|
||||||
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
|
||||||
SERIAL_PROTOCOLPGM(" /");
|
|
||||||
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
|
||||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
||||||
SERIAL_PROTOCOLPGM(" B:");
|
|
||||||
SERIAL_PROTOCOL_F(degBed(),1);
|
|
||||||
SERIAL_PROTOCOLPGM(" /");
|
|
||||||
SERIAL_PROTOCOL_F(degTargetBed(),1);
|
|
||||||
#endif //TEMP_BED_PIN
|
|
||||||
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
||||||
SERIAL_PROTOCOLPGM(" T");
|
|
||||||
SERIAL_PROTOCOL(cur_extruder);
|
|
||||||
SERIAL_PROTOCOLPGM(":");
|
|
||||||
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
||||||
SERIAL_PROTOCOLPGM(" /");
|
|
||||||
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
SERIAL_ERROR_START;
|
|
||||||
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLPGM(" @:");
|
|
||||||
#ifdef EXTRUDER_WATTS
|
|
||||||
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
|
||||||
SERIAL_PROTOCOLPGM("W");
|
|
||||||
#else
|
|
||||||
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
|
||||||
#endif
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLPGM(" B@:");
|
|
||||||
#ifdef BED_WATTS
|
|
||||||
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
|
||||||
SERIAL_PROTOCOLPGM("W");
|
|
||||||
#else
|
|
||||||
SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef SHOW_TEMP_ADC_VALUES
|
|
||||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
||||||
SERIAL_PROTOCOLPGM(" ADC B:");
|
|
||||||
SERIAL_PROTOCOL_F(degBed(),1);
|
|
||||||
SERIAL_PROTOCOLPGM("C->");
|
|
||||||
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
|
|
||||||
#endif
|
|
||||||
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
||||||
SERIAL_PROTOCOLPGM(" T");
|
|
||||||
SERIAL_PROTOCOL(cur_extruder);
|
|
||||||
SERIAL_PROTOCOLPGM(":");
|
|
||||||
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
||||||
SERIAL_PROTOCOLPGM("C->");
|
|
||||||
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
return;
|
|
||||||
break;
|
|
||||||
case 109:
|
|
||||||
{// M109 - Wait for extruder heater to reach target.
|
|
||||||
if(setTargetedHotend(109)){
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
LCD_MESSAGEPGM(MSG_HEATING);
|
|
||||||
#ifdef AUTOTEMP
|
|
||||||
autotemp_enabled=false;
|
|
||||||
#endif
|
|
||||||
if (code_seen('S')) {
|
|
||||||
setTargetHotend(code_value(), tmp_extruder);
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
|
||||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
|
||||||
#endif
|
|
||||||
CooldownNoWait = true;
|
|
||||||
} else if (code_seen('R')) {
|
|
||||||
setTargetHotend(code_value(), tmp_extruder);
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
|
||||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
|
||||||
#endif
|
|
||||||
CooldownNoWait = false;
|
|
||||||
}
|
|
||||||
#ifdef AUTOTEMP
|
|
||||||
if (code_seen('S')) autotemp_min=code_value();
|
|
||||||
if (code_seen('B')) autotemp_max=code_value();
|
|
||||||
if (code_seen('F'))
|
|
||||||
{
|
|
||||||
autotemp_factor=code_value();
|
|
||||||
autotemp_enabled=true;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
setWatch();
|
|
||||||
codenum = millis();
|
|
||||||
|
|
||||||
/* See if we are heating up or cooling down */
|
|
||||||
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
|
||||||
|
|
||||||
cancel_heatup = false;
|
|
||||||
|
|
||||||
#ifdef TEMP_RESIDENCY_TIME
|
|
||||||
long residencyStart;
|
|
||||||
residencyStart = -1;
|
|
||||||
/* continue to loop until we have reached the target temp
|
|
||||||
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
|
||||||
while((!cancel_heatup)&&((residencyStart == -1) ||
|
|
||||||
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
|
|
||||||
#else
|
|
||||||
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
|
|
||||||
#endif //TEMP_RESIDENCY_TIME
|
|
||||||
if( (millis() - codenum) > 1000UL )
|
|
||||||
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
|
|
||||||
SERIAL_PROTOCOLPGM("T:");
|
|
||||||
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
|
||||||
SERIAL_PROTOCOLPGM(" E:");
|
|
||||||
SERIAL_PROTOCOL((int)tmp_extruder);
|
|
||||||
#ifdef TEMP_RESIDENCY_TIME
|
|
||||||
SERIAL_PROTOCOLPGM(" W:");
|
|
||||||
if(residencyStart > -1)
|
|
||||||
{
|
|
||||||
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
|
||||||
SERIAL_PROTOCOLLN( codenum );
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
SERIAL_PROTOCOLLN( "?" );
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
#endif
|
|
||||||
codenum = millis();
|
|
||||||
}
|
|
||||||
manage_heater();
|
|
||||||
manage_inactivity();
|
|
||||||
lcd_update();
|
|
||||||
#ifdef TEMP_RESIDENCY_TIME
|
|
||||||
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
|
||||||
or when current temp falls outside the hysteresis after target temp was reached */
|
|
||||||
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
|
|
||||||
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
|
|
||||||
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
|
|
||||||
{
|
|
||||||
residencyStart = millis();
|
|
||||||
}
|
|
||||||
#endif //TEMP_RESIDENCY_TIME
|
|
||||||
}
|
|
||||||
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
|
||||||
starttime=millis();
|
|
||||||
previous_millis_cmd = millis();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 190: // M190 - Wait for bed heater to reach target.
|
|
||||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
||||||
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
|
||||||
if (code_seen('S')) {
|
|
||||||
setTargetBed(code_value());
|
|
||||||
CooldownNoWait = true;
|
|
||||||
} else if (code_seen('R')) {
|
|
||||||
setTargetBed(code_value());
|
|
||||||
CooldownNoWait = false;
|
|
||||||
}
|
|
||||||
codenum = millis();
|
|
||||||
|
|
||||||
cancel_heatup = false;
|
|
||||||
target_direction = isHeatingBed(); // true if heating, false if cooling
|
|
||||||
|
|
||||||
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
|
|
||||||
{
|
|
||||||
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
|
||||||
{
|
|
||||||
float tt=degHotend(active_extruder);
|
|
||||||
SERIAL_PROTOCOLPGM("T:");
|
|
||||||
SERIAL_PROTOCOL(tt);
|
|
||||||
SERIAL_PROTOCOLPGM(" E:");
|
|
||||||
SERIAL_PROTOCOL((int)active_extruder);
|
|
||||||
SERIAL_PROTOCOLPGM(" B:");
|
|
||||||
SERIAL_PROTOCOL_F(degBed(),1);
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
codenum = millis();
|
|
||||||
}
|
|
||||||
manage_heater();
|
|
||||||
manage_inactivity();
|
|
||||||
lcd_update();
|
|
||||||
}
|
|
||||||
LCD_MESSAGEPGM(MSG_BED_DONE);
|
|
||||||
previous_millis_cmd = millis();
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
|
|
||||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
||||||
case 106: //M106 Fan On
|
|
||||||
if (code_seen('S')){
|
|
||||||
fanSpeed=constrain(code_value(),0,255);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
fanSpeed=255;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 107: //M107 Fan Off
|
|
||||||
fanSpeed = 0;
|
|
||||||
break;
|
|
||||||
#endif //FAN_PIN
|
|
||||||
#ifdef BARICUDA
|
|
||||||
// PWM for HEATER_1_PIN
|
|
||||||
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
|
||||||
case 126: //M126 valve open
|
|
||||||
if (code_seen('S')){
|
|
||||||
ValvePressure=constrain(code_value(),0,255);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
ValvePressure=255;
|
|
||||||
}
|
|
||||||
break;
|
break;
|
||||||
case 127: //M127 valve closed
|
case 107: //M107 Fan Off
|
||||||
ValvePressure = 0;
|
gcode_M107();
|
||||||
break;
|
break;
|
||||||
#endif //HEATER_1_PIN
|
#endif //FAN_PIN
|
||||||
|
|
||||||
// PWM for HEATER_2_PIN
|
#ifdef BARICUDA
|
||||||
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
// PWM for HEATER_1_PIN
|
||||||
case 128: //M128 valve open
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
||||||
if (code_seen('S')){
|
case 126: // M126 valve open
|
||||||
EtoPPressure=constrain(code_value(),0,255);
|
gcode_M126();
|
||||||
}
|
break;
|
||||||
else {
|
case 127: // M127 valve closed
|
||||||
EtoPPressure=255;
|
gcode_M127();
|
||||||
}
|
break;
|
||||||
|
#endif //HEATER_1_PIN
|
||||||
|
|
||||||
|
// PWM for HEATER_2_PIN
|
||||||
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
||||||
|
case 128: // M128 valve open
|
||||||
|
gcode_M128();
|
||||||
|
break;
|
||||||
|
case 129: // M129 valve closed
|
||||||
|
gcode_M129();
|
||||||
|
break;
|
||||||
|
#endif //HEATER_2_PIN
|
||||||
|
#endif //BARICUDA
|
||||||
|
|
||||||
|
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||||
|
|
||||||
|
case 80: // M80 - Turn on Power Supply
|
||||||
|
gcode_M80();
|
||||||
break;
|
break;
|
||||||
case 129: //M129 valve closed
|
|
||||||
EtoPPressure = 0;
|
|
||||||
break;
|
|
||||||
#endif //HEATER_2_PIN
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
#endif // PS_ON_PIN
|
||||||
case 80: // M80 - Turn on Power Supply
|
|
||||||
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
|
|
||||||
|
|
||||||
// If you have a switch on suicide pin, this is useful
|
|
||||||
// if you want to start another print with suicide feature after
|
|
||||||
// a print without suicide...
|
|
||||||
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
|
|
||||||
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef ULTIPANEL
|
|
||||||
powersupply = true;
|
|
||||||
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
||||||
lcd_update();
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
case 81: // M81 - Turn off Power Supply
|
case 81: // M81 - Turn off Power Supply
|
||||||
disable_heater();
|
gcode_M81();
|
||||||
st_synchronize();
|
|
||||||
disable_e0();
|
|
||||||
disable_e1();
|
|
||||||
disable_e2();
|
|
||||||
disable_e3();
|
|
||||||
finishAndDisableSteppers();
|
|
||||||
fanSpeed = 0;
|
|
||||||
delay(1000); // Wait a little before to switch off
|
|
||||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
|
||||||
st_synchronize();
|
|
||||||
suicide();
|
|
||||||
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
|
|
||||||
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
||||||
#endif
|
|
||||||
#ifdef ULTIPANEL
|
|
||||||
powersupply = false;
|
|
||||||
LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
|
|
||||||
lcd_update();
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
|
|
||||||
case 82:
|
|
||||||
axis_relative_modes[3] = false;
|
|
||||||
break;
|
|
||||||
case 83:
|
|
||||||
axis_relative_modes[3] = true;
|
|
||||||
break;
|
|
||||||
case 18: //compatibility
|
|
||||||
case 84: // M84
|
|
||||||
if(code_seen('S')){
|
|
||||||
stepper_inactive_time = code_value() * 1000;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
|
||||||
if(all_axis)
|
|
||||||
{
|
|
||||||
st_synchronize();
|
|
||||||
disable_e0();
|
|
||||||
disable_e1();
|
|
||||||
disable_e2();
|
|
||||||
disable_e3();
|
|
||||||
finishAndDisableSteppers();
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
st_synchronize();
|
|
||||||
if(code_seen('X')) disable_x();
|
|
||||||
if(code_seen('Y')) disable_y();
|
|
||||||
if(code_seen('Z')) disable_z();
|
|
||||||
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
|
||||||
if(code_seen('E')) {
|
|
||||||
disable_e0();
|
|
||||||
disable_e1();
|
|
||||||
disable_e2();
|
|
||||||
disable_e3();
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 85: // M85
|
|
||||||
if(code_seen('S')) {
|
|
||||||
max_inactive_time = code_value() * 1000;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 92: // M92
|
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++)
|
|
||||||
{
|
|
||||||
if(code_seen(axis_codes[i]))
|
|
||||||
{
|
|
||||||
if(i == 3) { // E
|
|
||||||
float value = code_value();
|
|
||||||
if(value < 20.0) {
|
|
||||||
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
|
||||||
max_e_jerk *= factor;
|
|
||||||
max_feedrate[i] *= factor;
|
|
||||||
axis_steps_per_sqr_second[i] *= factor;
|
|
||||||
}
|
|
||||||
axis_steps_per_unit[i] = value;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
axis_steps_per_unit[i] = code_value();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 115: // M115
|
|
||||||
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
|
|
||||||
break;
|
|
||||||
case 117: // M117 display message
|
|
||||||
starpos = (strchr(strchr_pointer + 5,'*'));
|
|
||||||
if(starpos!=NULL)
|
|
||||||
*(starpos)='\0';
|
|
||||||
lcd_setstatus(strchr_pointer + 5);
|
|
||||||
break;
|
|
||||||
case 114: // M114
|
|
||||||
SERIAL_PROTOCOLPGM("X:");
|
|
||||||
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
||||||
SERIAL_PROTOCOLPGM(" Y:");
|
|
||||||
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
||||||
SERIAL_PROTOCOLPGM(" Z:");
|
|
||||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
||||||
SERIAL_PROTOCOLPGM(" E:");
|
|
||||||
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
|
||||||
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
|
||||||
SERIAL_PROTOCOLPGM(" Y:");
|
|
||||||
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
|
||||||
SERIAL_PROTOCOLPGM(" Z:");
|
|
||||||
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
#ifdef SCARA
|
|
||||||
SERIAL_PROTOCOLPGM("SCARA Theta:");
|
|
||||||
SERIAL_PROTOCOL(delta[X_AXIS]);
|
|
||||||
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
|
||||||
SERIAL_PROTOCOL(delta[Y_AXIS]);
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
|
|
||||||
SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
|
|
||||||
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
|
|
||||||
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
|
||||||
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
|
|
||||||
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
|
||||||
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
case 120: // M120
|
|
||||||
enable_endstops(false) ;
|
|
||||||
break;
|
|
||||||
case 121: // M121
|
|
||||||
enable_endstops(true) ;
|
|
||||||
break;
|
|
||||||
case 119: // M119
|
|
||||||
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
|
|
||||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
|
||||||
SERIAL_PROTOCOLPGM(MSG_X_MIN);
|
|
||||||
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
||||||
#endif
|
|
||||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
|
||||||
SERIAL_PROTOCOLPGM(MSG_X_MAX);
|
|
||||||
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
||||||
#endif
|
|
||||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
|
||||||
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
|
|
||||||
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
||||||
#endif
|
|
||||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
|
||||||
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
|
|
||||||
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
||||||
#endif
|
|
||||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
|
||||||
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
|
|
||||||
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
||||||
#endif
|
|
||||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
|
||||||
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
|
|
||||||
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
//TODO: update for all axis, use for loop
|
|
||||||
#ifdef BLINKM
|
|
||||||
case 150: // M150
|
|
||||||
{
|
|
||||||
byte red;
|
|
||||||
byte grn;
|
|
||||||
byte blu;
|
|
||||||
|
|
||||||
if(code_seen('R')) red = code_value();
|
|
||||||
if(code_seen('U')) grn = code_value();
|
|
||||||
if(code_seen('B')) blu = code_value();
|
|
||||||
|
|
||||||
SendColors(red,grn,blu);
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif //BLINKM
|
|
||||||
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
||||||
{
|
|
||||||
|
|
||||||
tmp_extruder = active_extruder;
|
|
||||||
if(code_seen('T')) {
|
|
||||||
tmp_extruder = code_value();
|
|
||||||
if(tmp_extruder >= EXTRUDERS) {
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
float area = .0;
|
|
||||||
if(code_seen('D')) {
|
|
||||||
float diameter = code_value();
|
|
||||||
// setting any extruder filament size disables volumetric on the assumption that
|
|
||||||
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
||||||
// for all extruders
|
|
||||||
volumetric_enabled = (diameter != 0.0);
|
|
||||||
if (volumetric_enabled) {
|
|
||||||
filament_size[tmp_extruder] = diameter;
|
|
||||||
// make sure all extruders have some sane value for the filament size
|
|
||||||
for (int i=0; i<EXTRUDERS; i++)
|
|
||||||
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
//reserved for setting filament diameter via UFID or filament measuring device
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
calculate_volumetric_multipliers();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 201: // M201
|
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++)
|
|
||||||
{
|
|
||||||
if(code_seen(axis_codes[i]))
|
|
||||||
{
|
|
||||||
max_acceleration_units_per_sq_second[i] = code_value();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
||||||
reset_acceleration_rates();
|
|
||||||
break;
|
|
||||||
#if 0 // Not used for Sprinter/grbl gen6
|
|
||||||
case 202: // M202
|
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
||||||
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
case 203: // M203 max feedrate mm/sec
|
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
||||||
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
||||||
{
|
|
||||||
if(code_seen('S')) acceleration = code_value() ;
|
|
||||||
if(code_seen('T')) retract_acceleration = code_value() ;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
||||||
{
|
|
||||||
if(code_seen('S')) minimumfeedrate = code_value();
|
|
||||||
if(code_seen('T')) mintravelfeedrate = code_value();
|
|
||||||
if(code_seen('B')) minsegmenttime = code_value() ;
|
|
||||||
if(code_seen('X')) max_xy_jerk = code_value() ;
|
|
||||||
if(code_seen('Z')) max_z_jerk = code_value() ;
|
|
||||||
if(code_seen('E')) max_e_jerk = code_value() ;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 206: // M206 additional homing offset
|
|
||||||
for(int8_t i=0; i < 3; i++)
|
|
||||||
{
|
|
||||||
if(code_seen(axis_codes[i])) add_homing[i] = code_value();
|
|
||||||
}
|
|
||||||
#ifdef SCARA
|
|
||||||
if(code_seen('T')) // Theta
|
|
||||||
{
|
|
||||||
add_homing[X_AXIS] = code_value() ;
|
|
||||||
}
|
|
||||||
if(code_seen('P')) // Psi
|
|
||||||
{
|
|
||||||
add_homing[Y_AXIS] = code_value() ;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
break;
|
|
||||||
#ifdef DELTA
|
|
||||||
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
|
|
||||||
if(code_seen('L')) {
|
|
||||||
delta_diagonal_rod= code_value();
|
|
||||||
}
|
|
||||||
if(code_seen('R')) {
|
|
||||||
delta_radius= code_value();
|
|
||||||
}
|
|
||||||
if(code_seen('S')) {
|
|
||||||
delta_segments_per_second= code_value();
|
|
||||||
}
|
|
||||||
|
|
||||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
||||||
break;
|
|
||||||
case 666: // M666 set delta endstop adjustemnt
|
|
||||||
for(int8_t i=0; i < 3; i++)
|
|
||||||
{
|
|
||||||
if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
#ifdef FWRETRACT
|
|
||||||
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
||||||
{
|
|
||||||
if(code_seen('S'))
|
|
||||||
{
|
|
||||||
retract_length = code_value() ;
|
|
||||||
}
|
|
||||||
if(code_seen('F'))
|
|
||||||
{
|
|
||||||
retract_feedrate = code_value()/60 ;
|
|
||||||
}
|
|
||||||
if(code_seen('Z'))
|
|
||||||
{
|
|
||||||
retract_zlift = code_value() ;
|
|
||||||
}
|
|
||||||
}break;
|
|
||||||
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
||||||
{
|
|
||||||
if(code_seen('S'))
|
|
||||||
{
|
|
||||||
retract_recover_length = code_value() ;
|
|
||||||
}
|
|
||||||
if(code_seen('F'))
|
|
||||||
{
|
|
||||||
retract_recover_feedrate = code_value()/60 ;
|
|
||||||
}
|
|
||||||
}break;
|
|
||||||
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
||||||
{
|
|
||||||
if(code_seen('S'))
|
|
||||||
{
|
|
||||||
int t= code_value() ;
|
|
||||||
switch(t)
|
|
||||||
{
|
|
||||||
case 0:
|
|
||||||
case 1:
|
|
||||||
{
|
|
||||||
autoretract_enabled = (t == 1);
|
|
||||||
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
|
|
||||||
}break;
|
|
||||||
default:
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
|
||||||
SERIAL_ECHO(cmdbuffer[bufindr]);
|
|
||||||
SERIAL_ECHOLNPGM("\"");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}break;
|
|
||||||
#endif // FWRETRACT
|
|
||||||
#if EXTRUDERS > 1
|
|
||||||
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
||||||
{
|
|
||||||
if(setTargetedHotend(218)){
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
if(code_seen('X'))
|
|
||||||
{
|
|
||||||
extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
|
||||||
}
|
|
||||||
if(code_seen('Y'))
|
|
||||||
{
|
|
||||||
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
|
||||||
}
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
if(code_seen('Z'))
|
|
||||||
{
|
|
||||||
extruder_offset[Z_AXIS][tmp_extruder] = code_value();
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
||||||
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
|
|
||||||
{
|
|
||||||
SERIAL_ECHO(" ");
|
|
||||||
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
|
||||||
SERIAL_ECHO(",");
|
|
||||||
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
SERIAL_ECHO(",");
|
|
||||||
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
SERIAL_EOL;
|
|
||||||
}break;
|
|
||||||
#endif
|
|
||||||
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
|
||||||
{
|
|
||||||
if(code_seen('S'))
|
|
||||||
{
|
|
||||||
feedmultiply = code_value() ;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
|
||||||
{
|
|
||||||
if(code_seen('S'))
|
|
||||||
{
|
|
||||||
int tmp_code = code_value();
|
|
||||||
if (code_seen('T'))
|
|
||||||
{
|
|
||||||
if(setTargetedHotend(221)){
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
extruder_multiply[tmp_extruder] = tmp_code;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
extrudemultiply = tmp_code ;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
|
|
||||||
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
||||||
{
|
|
||||||
if(code_seen('P')){
|
|
||||||
int pin_number = code_value(); // pin number
|
|
||||||
int pin_state = -1; // required pin state - default is inverted
|
|
||||||
|
|
||||||
if(code_seen('S')) pin_state = code_value(); // required pin state
|
|
||||||
|
|
||||||
if(pin_state >= -1 && pin_state <= 1){
|
|
||||||
|
|
||||||
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
|
||||||
{
|
|
||||||
if (sensitive_pins[i] == pin_number)
|
|
||||||
{
|
|
||||||
pin_number = -1;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (pin_number > -1)
|
|
||||||
{
|
|
||||||
int target = LOW;
|
|
||||||
|
|
||||||
st_synchronize();
|
|
||||||
|
|
||||||
pinMode(pin_number, INPUT);
|
|
||||||
|
|
||||||
switch(pin_state){
|
|
||||||
case 1:
|
|
||||||
target = HIGH;
|
|
||||||
break;
|
|
||||||
|
|
||||||
case 0:
|
|
||||||
target = LOW;
|
|
||||||
break;
|
|
||||||
|
|
||||||
case -1:
|
|
||||||
target = !digitalRead(pin_number);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
while(digitalRead(pin_number) != target){
|
|
||||||
manage_heater();
|
|
||||||
manage_inactivity();
|
|
||||||
lcd_update();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
|
|
||||||
#if NUM_SERVOS > 0
|
|
||||||
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
||||||
{
|
|
||||||
int servo_index = -1;
|
|
||||||
int servo_position = 0;
|
|
||||||
if (code_seen('P'))
|
|
||||||
servo_index = code_value();
|
|
||||||
if (code_seen('S')) {
|
|
||||||
servo_position = code_value();
|
|
||||||
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
|
||||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
||||||
servos[servo_index].attach(0);
|
|
||||||
#endif
|
|
||||||
servos[servo_index].write(servo_position);
|
|
||||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
||||||
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
||||||
servos[servo_index].detach();
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHO("Servo ");
|
|
||||||
SERIAL_ECHO(servo_index);
|
|
||||||
SERIAL_ECHOLN(" out of range");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if (servo_index >= 0) {
|
|
||||||
SERIAL_PROTOCOL(MSG_OK);
|
|
||||||
SERIAL_PROTOCOL(" Servo ");
|
|
||||||
SERIAL_PROTOCOL(servo_index);
|
|
||||||
SERIAL_PROTOCOL(": ");
|
|
||||||
SERIAL_PROTOCOL(servos[servo_index].read());
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif // NUM_SERVOS > 0
|
|
||||||
|
|
||||||
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
|
|
||||||
case 300: // M300
|
|
||||||
{
|
|
||||||
int beepS = code_seen('S') ? code_value() : 110;
|
|
||||||
int beepP = code_seen('P') ? code_value() : 1000;
|
|
||||||
if (beepS > 0)
|
|
||||||
{
|
|
||||||
#if BEEPER > 0
|
|
||||||
tone(BEEPER, beepS);
|
|
||||||
delay(beepP);
|
|
||||||
noTone(BEEPER);
|
|
||||||
#elif defined(ULTRALCD)
|
|
||||||
lcd_buzz(beepS, beepP);
|
|
||||||
#elif defined(LCD_USE_I2C_BUZZER)
|
|
||||||
lcd_buzz(beepP, beepS);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
delay(beepP);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif // M300
|
|
||||||
|
|
||||||
#ifdef PIDTEMP
|
|
||||||
case 301: // M301
|
|
||||||
{
|
|
||||||
|
|
||||||
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
|
||||||
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
|
||||||
int e = 0; // extruder being updated
|
|
||||||
if (code_seen('E'))
|
|
||||||
{
|
|
||||||
e = (int)code_value();
|
|
||||||
}
|
|
||||||
if (e < EXTRUDERS) // catch bad input value
|
|
||||||
{
|
|
||||||
|
|
||||||
if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
|
|
||||||
if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
|
|
||||||
if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
|
|
||||||
#ifdef PID_ADD_EXTRUSION_RATE
|
|
||||||
if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
updatePID();
|
|
||||||
SERIAL_PROTOCOL(MSG_OK);
|
|
||||||
#ifdef PID_PARAMS_PER_EXTRUDER
|
|
||||||
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
|
|
||||||
SERIAL_PROTOCOL(e);
|
|
||||||
#endif // PID_PARAMS_PER_EXTRUDER
|
|
||||||
SERIAL_PROTOCOL(" p:");
|
|
||||||
SERIAL_PROTOCOL(PID_PARAM(Kp,e));
|
|
||||||
SERIAL_PROTOCOL(" i:");
|
|
||||||
SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
|
|
||||||
SERIAL_PROTOCOL(" d:");
|
|
||||||
SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
|
|
||||||
#ifdef PID_ADD_EXTRUSION_RATE
|
|
||||||
SERIAL_PROTOCOL(" c:");
|
|
||||||
//Kc does not have scaling applied above, or in resetting defaults
|
|
||||||
SERIAL_PROTOCOL(PID_PARAM(Kc,e));
|
|
||||||
#endif
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif //PIDTEMP
|
|
||||||
#ifdef PIDTEMPBED
|
|
||||||
case 304: // M304
|
|
||||||
{
|
|
||||||
if(code_seen('P')) bedKp = code_value();
|
|
||||||
if(code_seen('I')) bedKi = scalePID_i(code_value());
|
|
||||||
if(code_seen('D')) bedKd = scalePID_d(code_value());
|
|
||||||
|
|
||||||
updatePID();
|
|
||||||
SERIAL_PROTOCOL(MSG_OK);
|
|
||||||
SERIAL_PROTOCOL(" p:");
|
|
||||||
SERIAL_PROTOCOL(bedKp);
|
|
||||||
SERIAL_PROTOCOL(" i:");
|
|
||||||
SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
|
||||||
SERIAL_PROTOCOL(" d:");
|
|
||||||
SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif //PIDTEMP
|
|
||||||
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
||||||
{
|
|
||||||
#ifdef CHDK
|
|
||||||
|
|
||||||
OUT_WRITE(CHDK, HIGH);
|
|
||||||
chdkHigh = millis();
|
|
||||||
chdkActive = true;
|
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
|
||||||
const uint8_t NUM_PULSES=16;
|
|
||||||
const float PULSE_LENGTH=0.01524;
|
|
||||||
for(int i=0; i < NUM_PULSES; i++) {
|
|
||||||
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
||||||
_delay_ms(PULSE_LENGTH);
|
|
||||||
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
||||||
_delay_ms(PULSE_LENGTH);
|
|
||||||
}
|
|
||||||
delay(7.33);
|
|
||||||
for(int i=0; i < NUM_PULSES; i++) {
|
|
||||||
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
||||||
_delay_ms(PULSE_LENGTH);
|
|
||||||
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
||||||
_delay_ms(PULSE_LENGTH);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
#endif //chdk end if
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#ifdef DOGLCD
|
|
||||||
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
|
||||||
{
|
|
||||||
if (code_seen('C')) {
|
|
||||||
lcd_setcontrast( ((int)code_value())&63 );
|
|
||||||
}
|
|
||||||
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
||||||
SERIAL_PROTOCOL(lcd_contrast);
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
||||||
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
|
||||||
{
|
|
||||||
float temp = .0;
|
|
||||||
if (code_seen('S')) temp=code_value();
|
|
||||||
set_extrude_min_temp(temp);
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
case 303: // M303 PID autotune
|
|
||||||
{
|
|
||||||
float temp = 150.0;
|
|
||||||
int e=0;
|
|
||||||
int c=5;
|
|
||||||
if (code_seen('E')) e=code_value();
|
|
||||||
if (e<0)
|
|
||||||
temp=70;
|
|
||||||
if (code_seen('S')) temp=code_value();
|
|
||||||
if (code_seen('C')) c=code_value();
|
|
||||||
PID_autotune(temp, e, c);
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#ifdef SCARA
|
|
||||||
case 360: // M360 SCARA Theta pos1
|
|
||||||
SERIAL_ECHOLN(" Cal: Theta 0 ");
|
|
||||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
||||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
||||||
if(Stopped == false) {
|
|
||||||
//get_coordinates(); // For X Y Z E F
|
|
||||||
delta[X_AXIS] = 0;
|
|
||||||
delta[Y_AXIS] = 120;
|
|
||||||
calculate_SCARA_forward_Transform(delta);
|
|
||||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
||||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
||||||
|
|
||||||
prepare_move();
|
|
||||||
//ClearToSend();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
|
|
||||||
case 361: // SCARA Theta pos2
|
|
||||||
SERIAL_ECHOLN(" Cal: Theta 90 ");
|
|
||||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
||||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
||||||
if(Stopped == false) {
|
|
||||||
//get_coordinates(); // For X Y Z E F
|
|
||||||
delta[X_AXIS] = 90;
|
|
||||||
delta[Y_AXIS] = 130;
|
|
||||||
calculate_SCARA_forward_Transform(delta);
|
|
||||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
||||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
||||||
|
|
||||||
prepare_move();
|
|
||||||
//ClearToSend();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 362: // SCARA Psi pos1
|
|
||||||
SERIAL_ECHOLN(" Cal: Psi 0 ");
|
|
||||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
||||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
||||||
if(Stopped == false) {
|
|
||||||
//get_coordinates(); // For X Y Z E F
|
|
||||||
delta[X_AXIS] = 60;
|
|
||||||
delta[Y_AXIS] = 180;
|
|
||||||
calculate_SCARA_forward_Transform(delta);
|
|
||||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
||||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
||||||
|
|
||||||
prepare_move();
|
|
||||||
//ClearToSend();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 363: // SCARA Psi pos2
|
|
||||||
SERIAL_ECHOLN(" Cal: Psi 90 ");
|
|
||||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
||||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
||||||
if(Stopped == false) {
|
|
||||||
//get_coordinates(); // For X Y Z E F
|
|
||||||
delta[X_AXIS] = 50;
|
|
||||||
delta[Y_AXIS] = 90;
|
|
||||||
calculate_SCARA_forward_Transform(delta);
|
|
||||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
||||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
||||||
|
|
||||||
prepare_move();
|
|
||||||
//ClearToSend();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 364: // SCARA Psi pos3 (90 deg to Theta)
|
|
||||||
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
|
|
||||||
// SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
||||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
||||||
if(Stopped == false) {
|
|
||||||
//get_coordinates(); // For X Y Z E F
|
|
||||||
delta[X_AXIS] = 45;
|
|
||||||
delta[Y_AXIS] = 135;
|
|
||||||
calculate_SCARA_forward_Transform(delta);
|
|
||||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
||||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
||||||
|
|
||||||
prepare_move();
|
|
||||||
//ClearToSend();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 365: // M364 Set SCARA scaling for X Y Z
|
|
||||||
for(int8_t i=0; i < 3; i++)
|
|
||||||
{
|
|
||||||
if(code_seen(axis_codes[i]))
|
|
||||||
{
|
|
||||||
|
|
||||||
axis_scaling[i] = code_value();
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef EXT_SOLENOID
|
|
||||||
case 380:
|
|
||||||
enable_solenoid_on_active_extruder();
|
|
||||||
break;
|
break;
|
||||||
|
|
||||||
case 381:
|
case 82:
|
||||||
disable_all_solenoids();
|
gcode_M82();
|
||||||
break;
|
break;
|
||||||
#endif //EXT_SOLENOID
|
case 83:
|
||||||
|
gcode_M83();
|
||||||
|
break;
|
||||||
|
case 18: //compatibility
|
||||||
|
case 84: // M84
|
||||||
|
gcode_M18_M84();
|
||||||
|
break;
|
||||||
|
case 85: // M85
|
||||||
|
gcode_M85();
|
||||||
|
break;
|
||||||
|
case 92: // M92
|
||||||
|
gcode_M92();
|
||||||
|
break;
|
||||||
|
case 115: // M115
|
||||||
|
gcode_M115();
|
||||||
|
break;
|
||||||
|
case 117: // M117 display message
|
||||||
|
gcode_M117();
|
||||||
|
break;
|
||||||
|
case 114: // M114
|
||||||
|
gcode_M114();
|
||||||
|
break;
|
||||||
|
case 120: // M120
|
||||||
|
gcode_M120();
|
||||||
|
break;
|
||||||
|
case 121: // M121
|
||||||
|
gcode_M121();
|
||||||
|
break;
|
||||||
|
case 119: // M119
|
||||||
|
gcode_M119();
|
||||||
|
break;
|
||||||
|
//TODO: update for all axis, use for loop
|
||||||
|
|
||||||
case 400: // M400 finish all moves
|
#ifdef BLINKM
|
||||||
{
|
|
||||||
st_synchronize();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
|
||||||
case 401:
|
|
||||||
{
|
|
||||||
engage_z_probe(); // Engage Z Servo endstop if available
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
|
|
||||||
case 402:
|
case 150: // M150
|
||||||
{
|
gcode_M150();
|
||||||
retract_z_probe(); // Retract Z Servo endstop if enabled
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef FILAMENT_SENSOR
|
|
||||||
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
|
||||||
{
|
|
||||||
#if (FILWIDTH_PIN > -1)
|
|
||||||
if(code_seen('N')) filament_width_nominal=code_value();
|
|
||||||
else{
|
|
||||||
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
||||||
SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
|
|
||||||
case 405: //M405 Turn on filament sensor for control
|
|
||||||
{
|
|
||||||
|
|
||||||
|
|
||||||
if(code_seen('D')) meas_delay_cm=code_value();
|
|
||||||
|
|
||||||
if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
|
|
||||||
meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
|
||||||
|
|
||||||
if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
|
|
||||||
{
|
|
||||||
int temp_ratio = widthFil_to_size_ratio();
|
|
||||||
|
|
||||||
for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
|
|
||||||
measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
|
|
||||||
}
|
|
||||||
delay_index1=0;
|
|
||||||
delay_index2=0;
|
|
||||||
}
|
|
||||||
|
|
||||||
filament_sensor = true ;
|
|
||||||
|
|
||||||
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
||||||
//SERIAL_PROTOCOL(filament_width_meas);
|
|
||||||
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
||||||
//SERIAL_PROTOCOL(extrudemultiply);
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
|
|
||||||
case 406: //M406 Turn off filament sensor for control
|
|
||||||
{
|
|
||||||
filament_sensor = false ;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
|
|
||||||
case 407: //M407 Display measured filament diameter
|
|
||||||
{
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
||||||
SERIAL_PROTOCOLLN(filament_width_meas);
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
case 500: // M500 Store settings in EEPROM
|
|
||||||
{
|
|
||||||
Config_StoreSettings();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 501: // M501 Read settings from EEPROM
|
|
||||||
{
|
|
||||||
Config_RetrieveSettings();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 502: // M502 Revert to default settings
|
|
||||||
{
|
|
||||||
Config_ResetDefault();
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 503: // M503 print settings currently in memory
|
|
||||||
{
|
|
||||||
Config_PrintSettings(code_seen('S') && code_value == 0);
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
||||||
case 540:
|
|
||||||
{
|
|
||||||
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
||||||
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
|
||||||
{
|
|
||||||
float value;
|
|
||||||
if (code_seen('Z'))
|
|
||||||
{
|
|
||||||
value = code_value();
|
|
||||||
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
|
|
||||||
{
|
|
||||||
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
|
|
||||||
SERIAL_ECHOPGM(MSG_Z_MIN);
|
|
||||||
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
|
||||||
SERIAL_ECHOPGM(MSG_Z_MAX);
|
|
||||||
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
|
|
||||||
SERIAL_ECHO(-zprobe_zoffset);
|
|
||||||
SERIAL_PROTOCOLLN("");
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
||||||
|
|
||||||
#ifdef FILAMENTCHANGEENABLE
|
|
||||||
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
||||||
{
|
|
||||||
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate/60;
|
|
||||||
for (int i=0; i<NUM_AXIS; i++)
|
|
||||||
target[i] = lastpos[i] = current_position[i];
|
|
||||||
|
|
||||||
#define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
|
|
||||||
#ifdef DELTA
|
|
||||||
#define RUNPLAN calculate_delta(target); BASICPLAN
|
|
||||||
#else
|
|
||||||
#define RUNPLAN BASICPLAN
|
|
||||||
#endif
|
|
||||||
|
|
||||||
//retract by E
|
|
||||||
if(code_seen('E'))
|
|
||||||
{
|
|
||||||
target[E_AXIS]+= code_value();
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
#ifdef FILAMENTCHANGE_FIRSTRETRACT
|
|
||||||
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
RUNPLAN;
|
|
||||||
|
|
||||||
//lift Z
|
|
||||||
if(code_seen('Z'))
|
|
||||||
{
|
|
||||||
target[Z_AXIS]+= code_value();
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
#ifdef FILAMENTCHANGE_ZADD
|
|
||||||
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
RUNPLAN;
|
|
||||||
|
|
||||||
//move xy
|
|
||||||
if(code_seen('X'))
|
|
||||||
{
|
|
||||||
target[X_AXIS]= code_value();
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
#ifdef FILAMENTCHANGE_XPOS
|
|
||||||
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
if(code_seen('Y'))
|
|
||||||
{
|
|
||||||
target[Y_AXIS]= code_value();
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
#ifdef FILAMENTCHANGE_YPOS
|
|
||||||
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
RUNPLAN;
|
|
||||||
|
|
||||||
if(code_seen('L'))
|
|
||||||
{
|
|
||||||
target[E_AXIS]+= code_value();
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
||||||
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
RUNPLAN;
|
|
||||||
|
|
||||||
//finish moves
|
|
||||||
st_synchronize();
|
|
||||||
//disable extruder steppers so filament can be removed
|
|
||||||
disable_e0();
|
|
||||||
disable_e1();
|
|
||||||
disable_e2();
|
|
||||||
disable_e3();
|
|
||||||
delay(100);
|
|
||||||
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
|
||||||
uint8_t cnt=0;
|
|
||||||
while(!lcd_clicked()){
|
|
||||||
cnt++;
|
|
||||||
manage_heater();
|
|
||||||
manage_inactivity(true);
|
|
||||||
lcd_update();
|
|
||||||
if(cnt==0)
|
|
||||||
{
|
|
||||||
#if BEEPER > 0
|
|
||||||
OUT_WRITE(BEEPER,HIGH);
|
|
||||||
delay(3);
|
|
||||||
WRITE(BEEPER,LOW);
|
|
||||||
delay(3);
|
|
||||||
#else
|
|
||||||
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
||||||
lcd_buzz(1000/6,100);
|
|
||||||
#else
|
|
||||||
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//return to normal
|
|
||||||
if(code_seen('L'))
|
|
||||||
{
|
|
||||||
target[E_AXIS]+= -code_value();
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
||||||
target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
|
||||||
plan_set_e_position(current_position[E_AXIS]);
|
|
||||||
|
|
||||||
RUNPLAN; //should do nothing
|
|
||||||
|
|
||||||
//reset LCD alert message
|
|
||||||
lcd_reset_alert_level();
|
|
||||||
|
|
||||||
#ifdef DELTA
|
|
||||||
calculate_delta(lastpos);
|
|
||||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
|
|
||||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
|
||||||
#else
|
|
||||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
|
|
||||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
|
|
||||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif //FILAMENTCHANGEENABLE
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
case 605: // Set dual x-carriage movement mode:
|
|
||||||
// M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
|
||||||
// M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
|
||||||
// M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
|
||||||
// millimeters x-offset and an optional differential hotend temperature of
|
|
||||||
// mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
|
||||||
// the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
|
||||||
//
|
|
||||||
// Note: the X axis should be homed after changing dual x-carriage mode.
|
|
||||||
{
|
|
||||||
st_synchronize();
|
|
||||||
|
|
||||||
if (code_seen('S'))
|
|
||||||
dual_x_carriage_mode = code_value();
|
|
||||||
|
|
||||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
|
|
||||||
{
|
|
||||||
if (code_seen('X'))
|
|
||||||
duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
|
|
||||||
|
|
||||||
if (code_seen('R'))
|
|
||||||
duplicate_extruder_temp_offset = code_value();
|
|
||||||
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
||||||
SERIAL_ECHO(" ");
|
|
||||||
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
|
|
||||||
SERIAL_ECHO(",");
|
|
||||||
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
|
|
||||||
SERIAL_ECHO(" ");
|
|
||||||
SERIAL_ECHO(duplicate_extruder_x_offset);
|
|
||||||
SERIAL_ECHO(",");
|
|
||||||
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
|
|
||||||
}
|
|
||||||
else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
|
|
||||||
{
|
|
||||||
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
||||||
}
|
|
||||||
|
|
||||||
active_extruder_parked = false;
|
|
||||||
extruder_duplication_enabled = false;
|
|
||||||
delayed_move_time = 0;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
#endif //DUAL_X_CARRIAGE
|
|
||||||
|
|
||||||
case 907: // M907 Set digital trimpot motor current using axis codes.
|
|
||||||
{
|
|
||||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
||||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
|
|
||||||
if(code_seen('B')) digipot_current(4,code_value());
|
|
||||||
if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
|
|
||||||
#endif
|
|
||||||
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
|
||||||
if(code_seen('X')) digipot_current(0, code_value());
|
|
||||||
#endif
|
|
||||||
#ifdef MOTOR_CURRENT_PWM_Z_PIN
|
|
||||||
if(code_seen('Z')) digipot_current(1, code_value());
|
|
||||||
#endif
|
|
||||||
#ifdef MOTOR_CURRENT_PWM_E_PIN
|
|
||||||
if(code_seen('E')) digipot_current(2, code_value());
|
|
||||||
#endif
|
|
||||||
#ifdef DIGIPOT_I2C
|
|
||||||
// this one uses actual amps in floating point
|
|
||||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
|
||||||
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
||||||
for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 908: // M908 Control digital trimpot directly.
|
|
||||||
{
|
|
||||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
|
||||||
uint8_t channel,current;
|
|
||||||
if(code_seen('P')) channel=code_value();
|
|
||||||
if(code_seen('S')) current=code_value();
|
|
||||||
digitalPotWrite(channel, current);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
||||||
{
|
|
||||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
||||||
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
|
||||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
|
||||||
if(code_seen('B')) microstep_mode(4,code_value());
|
|
||||||
microstep_readings();
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
||||||
{
|
|
||||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
|
||||||
if(code_seen('S')) switch((int)code_value())
|
|
||||||
{
|
|
||||||
case 1:
|
|
||||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
|
|
||||||
if(code_seen('B')) microstep_ms(4,code_value(),-1);
|
|
||||||
break;
|
break;
|
||||||
case 2:
|
|
||||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
|
|
||||||
if(code_seen('B')) microstep_ms(4,-1,code_value());
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
microstep_readings();
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 999: // M999: Restart after being stopped
|
|
||||||
Stopped = false;
|
|
||||||
lcd_reset_alert_level();
|
|
||||||
gcode_LastN = Stopped_gcode_LastN;
|
|
||||||
FlushSerialRequestResend();
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
else if(code_seen('T'))
|
#endif //BLINKM
|
||||||
{
|
|
||||||
tmp_extruder = code_value();
|
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
||||||
if(tmp_extruder >= EXTRUDERS) {
|
gcode_M200();
|
||||||
SERIAL_ECHO_START;
|
break;
|
||||||
SERIAL_ECHO("T");
|
case 201: // M201
|
||||||
SERIAL_ECHO(tmp_extruder);
|
gcode_M201();
|
||||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
break;
|
||||||
}
|
#if 0 // Not used for Sprinter/grbl gen6
|
||||||
else {
|
case 202: // M202
|
||||||
boolean make_move = false;
|
gcode_M202();
|
||||||
if(code_seen('F')) {
|
break;
|
||||||
make_move = true;
|
#endif
|
||||||
next_feedrate = code_value();
|
case 203: // M203 max feedrate mm/sec
|
||||||
if(next_feedrate > 0.0) {
|
gcode_M203();
|
||||||
feedrate = next_feedrate;
|
break;
|
||||||
}
|
case 204: // M204 acclereration S normal moves T filmanent only moves
|
||||||
}
|
gcode_M204();
|
||||||
|
break;
|
||||||
|
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
||||||
|
gcode_M205();
|
||||||
|
break;
|
||||||
|
case 206: // M206 additional homing offset
|
||||||
|
gcode_M206();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#ifdef DELTA
|
||||||
|
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
|
||||||
|
gcode_M665();
|
||||||
|
break;
|
||||||
|
case 666: // M666 set delta endstop adjustment
|
||||||
|
gcode_M666();
|
||||||
|
break;
|
||||||
|
#endif // DELTA
|
||||||
|
|
||||||
|
#ifdef FWRETRACT
|
||||||
|
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
||||||
|
gcode_M207();
|
||||||
|
break;
|
||||||
|
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
||||||
|
gcode_M208();
|
||||||
|
break;
|
||||||
|
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
||||||
|
gcode_M209();
|
||||||
|
break;
|
||||||
|
#endif // FWRETRACT
|
||||||
|
|
||||||
#if EXTRUDERS > 1
|
#if EXTRUDERS > 1
|
||||||
if(tmp_extruder != active_extruder) {
|
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
||||||
// Save current position to return to after applying extruder offset
|
gcode_M218();
|
||||||
memcpy(destination, current_position, sizeof(destination));
|
break;
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
|
|
||||||
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
|
|
||||||
{
|
|
||||||
// Park old head: 1) raise 2) move to park position 3) lower
|
|
||||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
|
||||||
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
||||||
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
|
||||||
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
|
|
||||||
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
|
|
||||||
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
||||||
st_synchronize();
|
|
||||||
}
|
|
||||||
|
|
||||||
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
|
||||||
current_position[Y_AXIS] = current_position[Y_AXIS] -
|
|
||||||
extruder_offset[Y_AXIS][active_extruder] +
|
|
||||||
extruder_offset[Y_AXIS][tmp_extruder];
|
|
||||||
current_position[Z_AXIS] = current_position[Z_AXIS] -
|
|
||||||
extruder_offset[Z_AXIS][active_extruder] +
|
|
||||||
extruder_offset[Z_AXIS][tmp_extruder];
|
|
||||||
|
|
||||||
active_extruder = tmp_extruder;
|
|
||||||
|
|
||||||
// This function resets the max/min values - the current position may be overwritten below.
|
|
||||||
axis_is_at_home(X_AXIS);
|
|
||||||
|
|
||||||
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
|
|
||||||
{
|
|
||||||
current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
||||||
inactive_extruder_x_pos = destination[X_AXIS];
|
|
||||||
}
|
|
||||||
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
|
|
||||||
{
|
|
||||||
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
|
|
||||||
if (active_extruder == 0 || active_extruder_parked)
|
|
||||||
current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
||||||
else
|
|
||||||
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
|
||||||
inactive_extruder_x_pos = destination[X_AXIS];
|
|
||||||
extruder_duplication_enabled = false;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
// record raised toolhead position for use by unpark
|
|
||||||
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
|
||||||
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
|
||||||
active_extruder_parked = true;
|
|
||||||
delayed_move_time = 0;
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
// Offset extruder (only by XY)
|
|
||||||
int i;
|
|
||||||
for(i = 0; i < 2; i++) {
|
|
||||||
current_position[i] = current_position[i] -
|
|
||||||
extruder_offset[i][active_extruder] +
|
|
||||||
extruder_offset[i][tmp_extruder];
|
|
||||||
}
|
|
||||||
// Set the new active extruder and position
|
|
||||||
active_extruder = tmp_extruder;
|
|
||||||
#endif //else DUAL_X_CARRIAGE
|
|
||||||
#ifdef DELTA
|
|
||||||
|
|
||||||
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
|
||||||
//sent position to plan_set_position();
|
|
||||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
|
|
||||||
|
|
||||||
#else
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
||||||
|
|
||||||
#endif
|
|
||||||
// Move to the old position if 'F' was in the parameters
|
|
||||||
if(make_move && Stopped == false) {
|
|
||||||
prepare_move();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef EXT_SOLENOID
|
|
||||||
st_synchronize();
|
|
||||||
disable_all_solenoids();
|
|
||||||
enable_solenoid_on_active_extruder();
|
|
||||||
#endif //EXT_SOLENOID
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
|
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
||||||
SERIAL_PROTOCOLLN((int)active_extruder);
|
gcode_M220();
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
||||||
|
gcode_M221();
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
||||||
|
gcode_M226();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#if NUM_SERVOS > 0
|
||||||
|
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
||||||
|
gcode_M280();
|
||||||
|
break;
|
||||||
|
#endif // NUM_SERVOS > 0
|
||||||
|
|
||||||
|
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
|
||||||
|
case 300: // M300 - Play beep tone
|
||||||
|
gcode_M300();
|
||||||
|
break;
|
||||||
|
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
|
||||||
|
|
||||||
|
#ifdef PIDTEMP
|
||||||
|
case 301: // M301
|
||||||
|
gcode_M301();
|
||||||
|
break;
|
||||||
|
#endif // PIDTEMP
|
||||||
|
|
||||||
|
#ifdef PIDTEMPBED
|
||||||
|
case 304: // M304
|
||||||
|
gcode_M304();
|
||||||
|
break;
|
||||||
|
#endif // PIDTEMPBED
|
||||||
|
|
||||||
|
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
|
||||||
|
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
||||||
|
gcode_M240();
|
||||||
|
break;
|
||||||
|
#endif // CHDK || PHOTOGRAPH_PIN
|
||||||
|
|
||||||
|
#ifdef DOGLCD
|
||||||
|
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
||||||
|
gcode_M250();
|
||||||
|
break;
|
||||||
|
#endif // DOGLCD
|
||||||
|
|
||||||
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||||
|
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
||||||
|
gcode_M302();
|
||||||
|
break;
|
||||||
|
#endif // PREVENT_DANGEROUS_EXTRUDE
|
||||||
|
|
||||||
|
case 303: // M303 PID autotune
|
||||||
|
gcode_M303();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#ifdef SCARA
|
||||||
|
case 360: // M360 SCARA Theta pos1
|
||||||
|
if (gcode_M360()) return;
|
||||||
|
break;
|
||||||
|
case 361: // M361 SCARA Theta pos2
|
||||||
|
if (gcode_M361()) return;
|
||||||
|
break;
|
||||||
|
case 362: // M362 SCARA Psi pos1
|
||||||
|
if (gcode_M362()) return;
|
||||||
|
break;
|
||||||
|
case 363: // M363 SCARA Psi pos2
|
||||||
|
if (gcode_M363()) return;
|
||||||
|
break;
|
||||||
|
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
|
||||||
|
if (gcode_M364()) return;
|
||||||
|
break;
|
||||||
|
case 365: // M365 Set SCARA scaling for X Y Z
|
||||||
|
gcode_M365();
|
||||||
|
break;
|
||||||
|
#endif // SCARA
|
||||||
|
|
||||||
|
case 400: // M400 finish all moves
|
||||||
|
gcode_M400();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
||||||
|
case 401:
|
||||||
|
gcode_M401();
|
||||||
|
break;
|
||||||
|
case 402:
|
||||||
|
gcode_M402();
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef FILAMENT_SENSOR
|
||||||
|
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
||||||
|
gcode_M404();
|
||||||
|
break;
|
||||||
|
case 405: //M405 Turn on filament sensor for control
|
||||||
|
gcode_M405();
|
||||||
|
break;
|
||||||
|
case 406: //M406 Turn off filament sensor for control
|
||||||
|
gcode_M406();
|
||||||
|
break;
|
||||||
|
case 407: //M407 Display measured filament diameter
|
||||||
|
gcode_M407();
|
||||||
|
break;
|
||||||
|
#endif // FILAMENT_SENSOR
|
||||||
|
|
||||||
|
case 500: // M500 Store settings in EEPROM
|
||||||
|
gcode_M500();
|
||||||
|
break;
|
||||||
|
case 501: // M501 Read settings from EEPROM
|
||||||
|
gcode_M501();
|
||||||
|
break;
|
||||||
|
case 502: // M502 Revert to default settings
|
||||||
|
gcode_M502();
|
||||||
|
break;
|
||||||
|
case 503: // M503 print settings currently in memory
|
||||||
|
gcode_M503();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||||
|
case 540:
|
||||||
|
gcode_M540();
|
||||||
|
break;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||||
|
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
||||||
|
gcode_SET_Z_PROBE_OFFSET();
|
||||||
|
break;
|
||||||
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||||
|
|
||||||
|
#ifdef FILAMENTCHANGEENABLE
|
||||||
|
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
||||||
|
gcode_M600();
|
||||||
|
break;
|
||||||
|
#endif // FILAMENTCHANGEENABLE
|
||||||
|
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
case 605:
|
||||||
|
gcode_M605();
|
||||||
|
break;
|
||||||
|
#endif // DUAL_X_CARRIAGE
|
||||||
|
|
||||||
|
case 907: // M907 Set digital trimpot motor current using axis codes.
|
||||||
|
gcode_M907();
|
||||||
|
break;
|
||||||
|
|
||||||
|
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||||
|
case 908: // M908 Control digital trimpot directly.
|
||||||
|
gcode_M908();
|
||||||
|
break;
|
||||||
|
#endif // DIGIPOTSS_PIN
|
||||||
|
|
||||||
|
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||||
|
gcode_M350();
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
||||||
|
gcode_M351();
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 999: // M999: Restart after being Stopped
|
||||||
|
gcode_M999();
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
else
|
else if (code_seen('T')) {
|
||||||
{
|
gcode_T();
|
||||||
|
}
|
||||||
|
|
||||||
|
else {
|
||||||
SERIAL_ECHO_START;
|
SERIAL_ECHO_START;
|
||||||
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
||||||
SERIAL_ECHO(cmdbuffer[bufindr]);
|
SERIAL_ECHO(cmdbuffer[bufindr]);
|
||||||
|
@ -4260,13 +4845,13 @@ void clamp_to_software_endstops(float target[3])
|
||||||
#ifdef DELTA
|
#ifdef DELTA
|
||||||
void recalc_delta_settings(float radius, float diagonal_rod)
|
void recalc_delta_settings(float radius, float diagonal_rod)
|
||||||
{
|
{
|
||||||
delta_tower1_x= -SIN_60*radius; // front left tower
|
delta_tower1_x= -SIN_60*radius; // front left tower
|
||||||
delta_tower1_y= -COS_60*radius;
|
delta_tower1_y= -COS_60*radius;
|
||||||
delta_tower2_x= SIN_60*radius; // front right tower
|
delta_tower2_x= SIN_60*radius; // front right tower
|
||||||
delta_tower2_y= -COS_60*radius;
|
delta_tower2_y= -COS_60*radius;
|
||||||
delta_tower3_x= 0.0; // back middle tower
|
delta_tower3_x= 0.0; // back middle tower
|
||||||
delta_tower3_y= radius;
|
delta_tower3_y= radius;
|
||||||
delta_diagonal_rod_2= sq(diagonal_rod);
|
delta_diagonal_rod_2= sq(diagonal_rod);
|
||||||
}
|
}
|
||||||
|
|
||||||
void calculate_delta(float cartesian[3])
|
void calculate_delta(float cartesian[3])
|
||||||
|
@ -4304,12 +4889,12 @@ void prepare_move()
|
||||||
|
|
||||||
float difference[NUM_AXIS];
|
float difference[NUM_AXIS];
|
||||||
for (int8_t i=0; i < NUM_AXIS; i++) {
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
difference[i] = destination[i] - current_position[i];
|
difference[i] = destination[i] - current_position[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
|
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
|
||||||
sq(difference[Y_AXIS]) +
|
sq(difference[Y_AXIS]) +
|
||||||
sq(difference[Z_AXIS]));
|
sq(difference[Z_AXIS]));
|
||||||
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
||||||
if (cartesian_mm < 0.000001) { return; }
|
if (cartesian_mm < 0.000001) { return; }
|
||||||
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
||||||
|
@ -4318,13 +4903,13 @@ int steps = max(1, int(scara_segments_per_second * seconds));
|
||||||
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
||||||
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
||||||
for (int s = 1; s <= steps; s++) {
|
for (int s = 1; s <= steps; s++) {
|
||||||
float fraction = float(s) / float(steps);
|
float fraction = float(s) / float(steps);
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
destination[i] = current_position[i] + difference[i] * fraction;
|
destination[i] = current_position[i] + difference[i] * fraction;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
calculate_delta(destination);
|
calculate_delta(destination);
|
||||||
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
|
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
|
||||||
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
|
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
|
||||||
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
|
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
|
||||||
|
@ -4332,9 +4917,9 @@ for (int s = 1; s <= steps; s++) {
|
||||||
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
||||||
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
||||||
|
|
||||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
||||||
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
||||||
active_extruder);
|
active_extruder);
|
||||||
}
|
}
|
||||||
#endif // SCARA
|
#endif // SCARA
|
||||||
|
|
||||||
|
@ -4507,7 +5092,7 @@ void calculate_SCARA_forward_Transform(float f_scara[3])
|
||||||
|
|
||||||
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
|
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
|
||||||
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
|
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
|
||||||
|
|
||||||
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
|
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
|
||||||
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
||||||
}
|
}
|
||||||
|
@ -4597,9 +5182,9 @@ void handle_status_leds(void) {
|
||||||
|
|
||||||
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
|
||||||
{
|
{
|
||||||
|
|
||||||
#if defined(KILL_PIN) && KILL_PIN > -1
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
||||||
static int killCount = 0; // make the inactivity button a bit less responsive
|
static int killCount = 0; // make the inactivity button a bit less responsive
|
||||||
const int KILL_DELAY = 10000;
|
const int KILL_DELAY = 10000;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -4608,7 +5193,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
|
||||||
const int HOME_DEBOUNCE_DELAY = 10000;
|
const int HOME_DEBOUNCE_DELAY = 10000;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
if(buflen < (BUFSIZE-1))
|
if(buflen < (BUFSIZE-1))
|
||||||
get_command();
|
get_command();
|
||||||
|
|
||||||
|
@ -4744,7 +5329,7 @@ void kill()
|
||||||
sei(); // enable interrupts
|
sei(); // enable interrupts
|
||||||
for ( int i=5; i--; lcd_update())
|
for ( int i=5; i--; lcd_update())
|
||||||
{
|
{
|
||||||
delay(200);
|
delay(200);
|
||||||
}
|
}
|
||||||
cli(); // disable interrupts
|
cli(); // disable interrupts
|
||||||
suicide();
|
suicide();
|
||||||
|
@ -4875,43 +5460,3 @@ void calculate_volumetric_multipliers() {
|
||||||
for (int i=0; i<EXTRUDERS; i++)
|
for (int i=0; i<EXTRUDERS; i++)
|
||||||
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef EXT_SOLENOID
|
|
||||||
|
|
||||||
void enable_solenoid(uint8_t num) {
|
|
||||||
switch(num) {
|
|
||||||
case 0:
|
|
||||||
OUT_WRITE(SOL0_PIN, HIGH);
|
|
||||||
break;
|
|
||||||
#if defined(SOL1_PIN) && SOL1_PIN > -1
|
|
||||||
case 1:
|
|
||||||
OUT_WRITE(SOL1_PIN, HIGH);
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
#if defined(SOL2_PIN) && SOL2_PIN > -1
|
|
||||||
case 2:
|
|
||||||
OUT_WRITE(SOL2_PIN, HIGH);
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
#if defined(SOL3_PIN) && SOL3_PIN > -1
|
|
||||||
case 3:
|
|
||||||
OUT_WRITE(SOL3_PIN, HIGH);
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
default:
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
|
||||||
|
|
||||||
void disable_all_solenoids() {
|
|
||||||
OUT_WRITE(SOL0_PIN, LOW);
|
|
||||||
OUT_WRITE(SOL1_PIN, LOW);
|
|
||||||
OUT_WRITE(SOL2_PIN, LOW);
|
|
||||||
OUT_WRITE(SOL3_PIN, LOW);
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif //EXT_SOLENOID
|
|
||||||
|
|
Reference in a new issue