Merge pull request #6075 from thinkyhead/rc_cleanup_ubl_1

Additional cleanup of UBL code
This commit is contained in:
Scott Lahteine 2017-03-22 21:45:59 -05:00 committed by GitHub
commit d29ab8f2a6
44 changed files with 2241 additions and 2108 deletions

View file

@ -669,7 +669,7 @@
#define ABL_GRID (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)) #define ABL_GRID (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR))
#define HAS_ABL (ABL_PLANAR || ABL_GRID || ENABLED(AUTO_BED_LEVELING_UBL)) #define HAS_ABL (ABL_PLANAR || ABL_GRID || ENABLED(AUTO_BED_LEVELING_UBL))
#define PLANNER_LEVELING (HAS_ABL || ENABLED(MESH_BED_LEVELING)) #define PLANNER_LEVELING ((HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)) || ENABLED(MESH_BED_LEVELING))
#define HAS_PROBING_PROCEDURE (HAS_ABL || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)) #define HAS_PROBING_PROCEDURE (HAS_ABL || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST))
#if HAS_PROBING_PROCEDURE #if HAS_PROBING_PROCEDURE

View file

@ -747,42 +747,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -841,25 +847,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -876,7 +863,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -32,7 +32,7 @@
#define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place. #define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
#define BED_TEMP 60.0 #define BED_TEMP 60.0
#define HOTEND_TEMP 205.0 #define HOTEND_TEMP 205.0
#define OOOOZE_AMOUNT 0.3 #define OOZE_AMOUNT 0.3
#include "Marlin.h" #include "Marlin.h"
#include "Configuration.h" #include "Configuration.h"
@ -111,7 +111,7 @@
* Y # Y coordinate Specify the starting location of the drawing activity. * Y # Y coordinate Specify the starting location of the drawing activity.
*/ */
extern int UBL_has_control_of_LCD_Panel; extern bool ubl_has_control_of_lcd_panel;
extern float feedrate; extern float feedrate;
//extern bool relative_mode; //extern bool relative_mode;
extern Planner planner; extern Planner planner;
@ -141,12 +141,12 @@
bool prime_nozzle(); bool prime_nozzle();
void chirp_at_user(); void chirp_at_user();
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], Continue_with_closest = 0; static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
float G26_E_AXIS_feedrate = 0.020, float g26_e_axis_feedrate = 0.020,
Random_Deviation = 0.0, random_deviation = 0.0,
Layer_Height = LAYER_HEIGHT; layer_height = LAYER_HEIGHT;
bool G26_retracted = false; // We keep track of the state of the nozzle to know if it bool g26_retracted = false; // We keep track of the state of the nozzle to know if it
// is currently retracted or not. This allows us to be // is currently retracted or not. This allows us to be
// less careful because mis-matched retractions and un-retractions // less careful because mis-matched retractions and un-retractions
// won't leave us in a bad state. // won't leave us in a bad state.
@ -157,24 +157,24 @@
float valid_trig_angle(float); float valid_trig_angle(float);
mesh_index_pair find_closest_circle_to_print(float, float); mesh_index_pair find_closest_circle_to_print(float, float);
void debug_current_and_destination(char *title); void debug_current_and_destination(char *title);
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t); void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
//uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */ //uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
static float E_Pos_Delta, static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
Extrusion_Multiplier = EXTRUSION_MULTIPLIER, retraction_multiplier = RETRACTION_MULTIPLIER,
Retraction_Multiplier = RETRACTION_MULTIPLIER, nozzle = NOZZLE,
Nozzle = NOZZLE, filament_diameter = FILAMENT,
Filament = FILAMENT, prime_length = PRIME_LENGTH,
Prime_Length = PRIME_LENGTH, x_pos, y_pos,
X_Pos, Y_Pos,
bed_temp = BED_TEMP, bed_temp = BED_TEMP,
hotend_temp = HOTEND_TEMP, hotend_temp = HOTEND_TEMP,
Ooooze_Amount = OOOOZE_AMOUNT; ooze_amount = OOZE_AMOUNT;
int8_t Prime_Flag = 0; int8_t prime_flag = 0;
bool Keep_Heaters_On = false, bool keep_heaters_on = false;
G26_Debug_flag = false;
bool g26_debug_flag = false;
/** /**
* These support functions allow the use of large bit arrays of flags that take very * These support functions allow the use of large bit arrays of flags that take very
@ -217,17 +217,17 @@
current_position[E_AXIS] = 0.0; current_position[E_AXIS] = 0.0;
sync_plan_position_e(); sync_plan_position_e();
if (Prime_Flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out. if (prime_flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
goto LEAVE; goto LEAVE;
/** /**
* Bed is preheated * Bed is preheated
* *
* Nozzle is at temperature * Nozzle is at temperature
* *
* Filament is primed! * Filament is primed!
* *
* It's "Show Time" !!! * It's "Show Time" !!!
*/ */
// Clear all of the flags we need // Clear all of the flags we need
@ -239,17 +239,19 @@
// Move nozzle to the specified height for the first layer // Move nozzle to the specified height for the first layer
// //
set_destination_to_current(); set_destination_to_current();
destination[Z_AXIS] = Layer_Height; destination[Z_AXIS] = layer_height;
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], Ooooze_Amount); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
UBL_has_control_of_LCD_Panel = 1; // Take control of the LCD Panel! ubl_has_control_of_lcd_panel++; // Take control of the LCD Panel!
debug_current_and_destination((char *)"Starting G26 Mesh Validation Pattern."); debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern.");
wait_for_user = true;
do { do {
if (G29_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
if (!wait_for_user) { // Check if the user wants to stop the Mesh Validation
strcpy(lcd_status_message, "Mesh Validation Stopped."); // We can't do lcd_setstatus() without having it continue; strcpy(lcd_status_message, "Mesh Validation Stopped."); // We can't do lcd_setstatus() without having it continue;
while (G29_lcd_clicked()) idle(); // Debounce the switch click
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatus("Mesh Validation Stopped.", true); lcd_setstatus("Mesh Validation Stopped.", true);
lcd_quick_feedback(); lcd_quick_feedback();
@ -257,14 +259,14 @@
goto LEAVE; goto LEAVE;
} }
if (Continue_with_closest) if (continue_with_closest)
location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]); location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
else else
location = find_closest_circle_to_print(X_Pos, Y_Pos); // Find the closest Mesh Intersection to where we are now. location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) { if (location.x_index >= 0 && location.y_index >= 0) {
circle_x = blm.map_x_index_to_bed_location(location.x_index); circle_x = ubl.map_x_index_to_bed_location(location.x_index);
circle_y = blm.map_y_index_to_bed_location(location.y_index); circle_y = ubl.map_y_index_to_bed_location(location.y_index);
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
#ifdef DELTA #ifdef DELTA
@ -282,7 +284,7 @@
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
yi = location.y_index; yi = location.y_index;
if (G26_Debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPGM(" Doing circle at: (xi="); SERIAL_ECHOPGM(" Doing circle at: (xi=");
SERIAL_ECHO(xi); SERIAL_ECHO(xi);
SERIAL_ECHOPGM(", yi="); SERIAL_ECHOPGM(", yi=");
@ -322,14 +324,13 @@
* the CPU load and make the arc drawing faster and more smooth * the CPU load and make the arc drawing faster and more smooth
*/ */
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1]; float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
int tmp_div_30;
for (i = 0; i <= 360 / 30; i++) { for (i = 0; i <= 360 / 30; i++) {
cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0))); cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0))); sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
} }
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) { for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
tmp_div_30 = tmp / 30.0; int tmp_div_30 = tmp / 30.0;
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30; if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
@ -348,18 +349,18 @@
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif #endif
if (G26_Debug_flag) { if (g26_debug_flag) {
char ccc, *cptr, seg_msg[50], seg_num[10]; char ccc, *cptr, seg_msg[50], seg_num[10];
strcpy(seg_msg, " segment: "); strcpy(seg_msg, " segment: ");
strcpy(seg_num, " \n"); strcpy(seg_num, " \n");
cptr = (char *) "01234567890ABCDEF????????"; cptr = (char*) "01234567890ABCDEF????????";
ccc = cptr[tmp_div_30]; ccc = cptr[tmp_div_30];
seg_num[1] = ccc; seg_num[1] = ccc;
strcat(seg_msg, seg_num); strcat(seg_msg, seg_num);
debug_current_and_destination(seg_msg); debug_current_and_destination(seg_msg);
} }
print_line_from_here_to_there(x, y, Layer_Height, xe, ye, Layer_Height); print_line_from_here_to_there(x, y, layer_height, xe, ye, layer_height);
} }
lcd_init_counter++; lcd_init_counter++;
if (lcd_init_counter > 10) { if (lcd_init_counter > 10) {
@ -367,35 +368,37 @@
lcd_init(); // Some people's LCD Displays are locking up. This might help them lcd_init(); // Some people's LCD Displays are locking up. This might help them
} }
debug_current_and_destination((char *)"Looking for lines to connect."); debug_current_and_destination((char*)"Looking for lines to connect.");
look_for_lines_to_connect(); look_for_lines_to_connect();
debug_current_and_destination((char *)"Done with line connect."); debug_current_and_destination((char*)"Done with line connect.");
} }
debug_current_and_destination((char *)"Done with current circle."); debug_current_and_destination((char*)"Done with current circle.");
} }
while (location.x_index >= 0 && location.y_index >= 0) ; while (location.x_index >= 0 && location.y_index >= 0);
LEAVE: LEAVE:
wait_for_user = false;
retract_filament(); retract_filament();
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle
debug_current_and_destination((char *)"ready to do Z-Raise."); debug_current_and_destination((char*)"ready to do Z-Raise.");
move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
debug_current_and_destination((char *)"done doing Z-Raise."); debug_current_and_destination((char*)"done doing Z-Raise.");
destination[X_AXIS] = X_Pos; // Move back to the starting position destination[X_AXIS] = x_pos; // Move back to the starting position
destination[Y_AXIS] = Y_Pos; destination[Y_AXIS] = y_pos;
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
debug_current_and_destination((char *)"done doing X/Y move."); debug_current_and_destination((char*)"done doing X/Y move.");
UBL_has_control_of_LCD_Panel = 0; // Give back control of the LCD Panel! ubl_has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
if (!Keep_Heaters_On) { if (!keep_heaters_on) {
#if HAS_TEMP_BED #if HAS_TEMP_BED
thermalManager.setTargetBed(0.0); thermalManager.setTargetBed(0.0);
#endif #endif
@ -419,23 +422,23 @@
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!is_bit_set(circle_flags, i, j)) { if (!is_bit_set(circle_flags, i, j)) {
mx = blm.map_x_index_to_bed_location(i); // We found a circle that needs to be printed mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
my = blm.map_y_index_to_bed_location(j); my = ubl.map_y_index_to_bed_location(j);
dx = X - mx; // Get the distance to this intersection dx = X - mx; // Get the distance to this intersection
dy = Y - my; dy = Y - my;
f = HYPOT(dx, dy); f = HYPOT(dx, dy);
dx = X_Pos - mx; // It is possible that we are being called with the values dx = x_pos - mx; // It is possible that we are being called with the values
dy = Y_Pos - my; // to let us find the closest circle to the start position. dy = y_pos - my; // to let us find the closest circle to the start position.
f += HYPOT(dx, dy) / 15.0; // But if this is not the case, f += HYPOT(dx, dy) / 15.0; // But if this is not the case,
// we are going to add in a small // we are going to add in a small
// weighting to the distance calculation to help it choose // weighting to the distance calculation to help it choose
// a better place to continue. // a better place to continue.
if (Random_Deviation > 1.0) if (random_deviation > 1.0)
f += random(0.0, Random_Deviation); // Add in the specified amount of Random Noise to our search f += random(0.0, random_deviation); // Add in the specified amount of Random Noise to our search
if (f < closest) { if (f < closest) {
closest = f; // We found a closer location that is still closest = f; // We found a closer location that is still
@ -457,7 +460,7 @@
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS. if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS.
// This is already a half circle because we are at the edge of the bed. // This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) { if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
@ -466,11 +469,11 @@
// We found two circles that need a horizontal line to connect them // We found two circles that need a horizontal line to connect them
// Print it! // Print it!
// //
sx = blm.map_x_index_to_bed_location(i); sx = ubl.map_x_index_to_bed_location(i);
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
sy = blm.map_y_index_to_bed_location(j); sy = ubl.map_y_index_to_bed_location(j);
ex = blm.map_x_index_to_bed_location(i + 1); ex = ubl.map_x_index_to_bed_location(i + 1);
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
ey = sy; ey = sy;
@ -479,7 +482,7 @@
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (G26_Debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPGM(" Connecting with horizontal line (sx="); SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
SERIAL_ECHO(sx); SERIAL_ECHO(sx);
SERIAL_ECHOPGM(", sy="); SERIAL_ECHOPGM(", sy=");
@ -489,16 +492,16 @@
SERIAL_ECHOPGM(", ey="); SERIAL_ECHOPGM(", ey=");
SERIAL_ECHO(ey); SERIAL_ECHO(ey);
SERIAL_ECHOLNPGM(")"); SERIAL_ECHOLNPGM(")");
debug_current_and_destination((char *)"Connecting horizontal line."); debug_current_and_destination((char*)"Connecting horizontal line.");
} }
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height); print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
} }
} }
if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS. if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS.
// This is already a half circle because we are at the edge of the bed. // This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
if (!is_bit_set( vertical_mesh_line_flags, i, j)) { if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
@ -506,12 +509,12 @@
// We found two circles that need a vertical line to connect them // We found two circles that need a vertical line to connect them
// Print it! // Print it!
// //
sx = blm.map_x_index_to_bed_location(i); sx = ubl.map_x_index_to_bed_location(i);
sy = blm.map_y_index_to_bed_location(j); sy = ubl.map_y_index_to_bed_location(j);
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
ex = sx; ex = sx;
ey = blm.map_y_index_to_bed_location(j + 1); ey = ubl.map_y_index_to_bed_location(j + 1);
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
@ -519,7 +522,7 @@
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (G26_Debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPGM(" Connecting with vertical line (sx="); SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
SERIAL_ECHO(sx); SERIAL_ECHO(sx);
SERIAL_ECHOPGM(", sy="); SERIAL_ECHOPGM(", sy=");
@ -529,9 +532,9 @@
SERIAL_ECHOPGM(", ey="); SERIAL_ECHOPGM(", ey=");
SERIAL_ECHO(ey); SERIAL_ECHO(ey);
SERIAL_ECHOLNPGM(")"); SERIAL_ECHOLNPGM(")");
debug_current_and_destination((char *)"Connecting vertical line."); debug_current_and_destination((char*)"Connecting vertical line.");
} }
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height); print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
} }
} }
@ -545,8 +548,8 @@
float dx, dy, de, xy_dist, fpmm; float dx, dy, de, xy_dist, fpmm;
// if the title message starts with a '!' it is so important, we are going to // if the title message starts with a '!' it is so important, we are going to
// ignore the status of the G26_Debug_Flag // ignore the status of the g26_debug_flag
if (*title != '!' && !G26_Debug_flag) return; if (*title != '!' && !g26_debug_flag) return;
dx = current_position[X_AXIS] - destination[X_AXIS]; dx = current_position[X_AXIS] - destination[X_AXIS];
dy = current_position[Y_AXIS] - destination[Y_AXIS]; dy = current_position[Y_AXIS] - destination[Y_AXIS];
@ -563,43 +566,43 @@
else { else {
SERIAL_ECHOPGM(" fpmm="); SERIAL_ECHOPGM(" fpmm=");
fpmm = de / xy_dist; fpmm = de / xy_dist;
SERIAL_PROTOCOL_F(fpmm, 6); SERIAL_ECHO_F(fpmm, 6);
} }
SERIAL_ECHOPGM(" current=( "); SERIAL_ECHOPGM(" current=( ");
SERIAL_PROTOCOL_F(current_position[X_AXIS], 6); SERIAL_ECHO_F(current_position[X_AXIS], 6);
SERIAL_ECHOPGM(", "); SERIAL_ECHOPGM(", ");
SERIAL_PROTOCOL_F(current_position[Y_AXIS], 6); SERIAL_ECHO_F(current_position[Y_AXIS], 6);
SERIAL_ECHOPGM(", "); SERIAL_ECHOPGM(", ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); SERIAL_ECHO_F(current_position[Z_AXIS], 6);
SERIAL_ECHOPGM(", "); SERIAL_ECHOPGM(", ");
SERIAL_PROTOCOL_F(current_position[E_AXIS], 6); SERIAL_ECHO_F(current_position[E_AXIS], 6);
SERIAL_ECHOPGM(" ) destination=( "); SERIAL_ECHOPGM(" ) destination=( ");
if (current_position[X_AXIS] == destination[X_AXIS]) if (current_position[X_AXIS] == destination[X_AXIS])
SERIAL_ECHOPGM("-------------"); SERIAL_ECHOPGM("-------------");
else else
SERIAL_PROTOCOL_F(destination[X_AXIS], 6); SERIAL_ECHO_F(destination[X_AXIS], 6);
SERIAL_ECHOPGM(", "); SERIAL_ECHOPGM(", ");
if (current_position[Y_AXIS] == destination[Y_AXIS]) if (current_position[Y_AXIS] == destination[Y_AXIS])
SERIAL_ECHOPGM("-------------"); SERIAL_ECHOPGM("-------------");
else else
SERIAL_PROTOCOL_F(destination[Y_AXIS], 6); SERIAL_ECHO_F(destination[Y_AXIS], 6);
SERIAL_ECHOPGM(", "); SERIAL_ECHOPGM(", ");
if (current_position[Z_AXIS] == destination[Z_AXIS]) if (current_position[Z_AXIS] == destination[Z_AXIS])
SERIAL_ECHOPGM("-------------"); SERIAL_ECHOPGM("-------------");
else else
SERIAL_PROTOCOL_F(destination[Z_AXIS], 6); SERIAL_ECHO_F(destination[Z_AXIS], 6);
SERIAL_ECHOPGM(", "); SERIAL_ECHOPGM(", ");
if (current_position[E_AXIS] == destination[E_AXIS]) if (current_position[E_AXIS] == destination[E_AXIS])
SERIAL_ECHOPGM("-------------"); SERIAL_ECHOPGM("-------------");
else else
SERIAL_PROTOCOL_F(destination[E_AXIS], 6); SERIAL_ECHO_F(destination[E_AXIS], 6);
SERIAL_ECHOPGM(" ) "); SERIAL_ECHOPGM(" ) ");
SERIAL_ECHO(title); SERIAL_ECHO(title);
@ -617,16 +620,16 @@
float feed_value; float feed_value;
static float last_z = -999.99; static float last_z = -999.99;
bool has_XY_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
if (G26_Debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPAIR("in move_to() has_XY_component:", (int)has_XY_component); SERIAL_ECHOPAIR("in move_to() has_xy_component:", (int)has_xy_component);
SERIAL_EOL; SERIAL_EOL;
} }
if (z != last_z) { if (z != last_z) {
if (G26_Debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z); SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z);
SERIAL_EOL; SERIAL_EOL;
} }
@ -638,20 +641,20 @@
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_AXIS] = current_position[E_AXIS]; destination[E_AXIS] = current_position[E_AXIS];
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
stepper.synchronize(); stepper.synchronize();
set_destination_to_current(); set_destination_to_current();
if (G26_Debug_flag) if (g26_debug_flag)
debug_current_and_destination((char *)" in move_to() done with Z move"); debug_current_and_destination((char*)" in move_to() done with Z move");
} }
// Check if X or Y is involved in the movement. // Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or un_retract() // Yes: a 'normal' movement. No: a retract() or un_retract()
feed_value = has_XY_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (G26_Debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value); SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
SERIAL_EOL; SERIAL_EOL;
} }
@ -660,32 +663,32 @@
destination[Y_AXIS] = y; destination[Y_AXIS] = y;
destination[E_AXIS] += e_delta; destination[E_AXIS] += e_delta;
if (G26_Debug_flag) if (g26_debug_flag)
debug_current_and_destination((char *)" in move_to() doing last move"); debug_current_and_destination((char*)" in move_to() doing last move");
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
if (G26_Debug_flag) if (g26_debug_flag)
debug_current_and_destination((char *)" in move_to() after last move"); debug_current_and_destination((char*)" in move_to() after last move");
stepper.synchronize(); stepper.synchronize();
set_destination_to_current(); set_destination_to_current();
} }
void retract_filament() { void retract_filament() {
if (!G26_retracted) { // Only retract if we are not already retracted! if (!g26_retracted) { // Only retract if we are not already retracted!
G26_retracted = true; g26_retracted = true;
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract."); if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * Retraction_Multiplier); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Retraction done."); if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
} }
} }
void un_retract_filament() { void un_retract_filament() {
if (G26_retracted) { // Only un-retract if we are retracted. if (g26_retracted) { // Only un-retract if we are retracted.
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * Retraction_Multiplier); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
G26_retracted = false; g26_retracted = false;
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" unretract done."); if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
} }
} }
@ -724,7 +727,7 @@
// On very small lines we don't do the optimization because it just isn't worth it. // On very small lines we don't do the optimization because it just isn't worth it.
// //
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) { if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
if (G26_Debug_flag) if (g26_debug_flag)
SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()"); SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
return; return;
@ -734,19 +737,19 @@
if (dist_start > 2.0) { if (dist_start > 2.0) {
retract_filament(); retract_filament();
if (G26_Debug_flag) if (g26_debug_flag)
SERIAL_ECHOLNPGM(" filament retracted."); SERIAL_ECHOLNPGM(" filament retracted.");
} }
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
E_Pos_Delta = Line_Length * G26_E_AXIS_feedrate * Extrusion_Multiplier; float e_pos_delta = Line_Length * g26_e_axis_feedrate * extrusion_multiplier;
un_retract_filament(); un_retract_filament();
if (G26_Debug_flag) { if (g26_debug_flag) {
SERIAL_ECHOLNPGM(" doing printing move."); SERIAL_ECHOLNPGM(" doing printing move.");
debug_current_and_destination((char *)"doing final move_to() inside print_line_from_here_to_there()"); debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
} }
move_to(ex, ey, ez, E_Pos_Delta); // Get to the ending point with an appropriate amount of extrusion move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
} }
/** /**
@ -756,17 +759,17 @@
*/ */
bool parse_G26_parameters() { bool parse_G26_parameters() {
Extrusion_Multiplier = EXTRUSION_MULTIPLIER; extrusion_multiplier = EXTRUSION_MULTIPLIER;
Retraction_Multiplier = RETRACTION_MULTIPLIER; retraction_multiplier = RETRACTION_MULTIPLIER;
Nozzle = NOZZLE; nozzle = NOZZLE;
Filament = FILAMENT; filament_diameter = FILAMENT;
Layer_Height = LAYER_HEIGHT; layer_height = LAYER_HEIGHT;
Prime_Length = PRIME_LENGTH; prime_length = PRIME_LENGTH;
bed_temp = BED_TEMP; bed_temp = BED_TEMP;
hotend_temp = HOTEND_TEMP; hotend_temp = HOTEND_TEMP;
Ooooze_Amount = OOOOZE_AMOUNT; ooze_amount = OOZE_AMOUNT;
Prime_Flag = 0; prime_flag = 0;
Keep_Heaters_On = false; keep_heaters_on = false;
if (code_seen('B')) { if (code_seen('B')) {
bed_temp = code_value_float(); bed_temp = code_value_float();
@ -776,11 +779,11 @@
} }
} }
if (code_seen('C')) Continue_with_closest++; if (code_seen('C')) continue_with_closest++;
if (code_seen('L')) { if (code_seen('L')) {
Layer_Height = code_value_float(); layer_height = code_value_float();
if (Layer_Height<0.0 || Layer_Height>2.0) { if (layer_height < 0.0 || layer_height > 2.0) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -788,8 +791,8 @@
if (code_seen('Q')) { if (code_seen('Q')) {
if (code_has_value()) { if (code_has_value()) {
Retraction_Multiplier = code_value_float(); retraction_multiplier = code_value_float();
if (Retraction_Multiplier<.05 || Retraction_Multiplier>15.0) { if (retraction_multiplier < 0.05 || retraction_multiplier > 15.0) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -801,25 +804,25 @@
} }
if (code_seen('N')) { if (code_seen('N')) {
Nozzle = code_value_float(); nozzle = code_value_float();
if (Nozzle < 0.1 || Nozzle > 1.0) { if (nozzle < 0.1 || nozzle > 1.0) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR; return UBL_ERR;
} }
} }
if (code_seen('K')) Keep_Heaters_On++; if (code_seen('K')) keep_heaters_on++;
if (code_seen('O') && code_has_value()) if (code_seen('O') && code_has_value())
Ooooze_Amount = code_value_float(); ooze_amount = code_value_float();
if (code_seen('P')) { if (code_seen('P')) {
if (!code_has_value()) if (!code_has_value())
Prime_Flag = -1; prime_flag = -1;
else { else {
Prime_Flag++; prime_flag++;
Prime_Length = code_value_float(); prime_length = code_value_float();
if (Prime_Length < 0.0 || Prime_Length > 25.0) { if (prime_length < 0.0 || prime_length > 25.0) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -827,16 +830,17 @@
} }
if (code_seen('F')) { if (code_seen('F')) {
Filament = code_value_float(); filament_diameter = code_value_float();
if (Filament < 1.0 || Filament > 4.0) { if (filament_diameter < 1.0 || filament_diameter > 4.0) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR; return UBL_ERR;
} }
} }
Extrusion_Multiplier *= sq(1.75) / sq(Filament); // If we aren't using 1.75mm filament, we need to extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the // scale up or down the length needed to get the
// same volume of filament // same volume of filament
Extrusion_Multiplier *= Filament * sq(Nozzle) / sq(0.3); // Scale up by nozzle size
extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
if (code_seen('H')) { if (code_seen('H')) {
hotend_temp = code_value_float(); hotend_temp = code_value_float();
@ -848,15 +852,15 @@
if (code_seen('R')) { if (code_seen('R')) {
randomSeed(millis()); randomSeed(millis());
Random_Deviation = code_has_value() ? code_value_float() : 50.0; random_deviation = code_has_value() ? code_value_float() : 50.0;
} }
X_Pos = current_position[X_AXIS]; x_pos = current_position[X_AXIS];
Y_Pos = current_position[Y_AXIS]; y_pos = current_position[Y_AXIS];
if (code_seen('X')) { if (code_seen('X')) {
X_Pos = code_value_float(); x_pos = code_value_float();
if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) { if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible."); SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -864,8 +868,8 @@
else else
if (code_seen('Y')) { if (code_seen('Y')) {
Y_Pos = code_value_float(); y_pos = code_value_float();
if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) { if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible."); SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
return UBL_ERR; return UBL_ERR;
} }
@ -877,7 +881,7 @@
* alter the system's status. We wait until we know everything is correct before altering the state * alter the system's status. We wait until we know everything is correct before altering the state
* of the system. * of the system.
*/ */
blm.state.active = !code_seen('D'); ubl.state.active = !code_seen('D');
return UBL_OK; return UBL_OK;
} }
@ -893,17 +897,18 @@
lcd_setstatus("G26 Heating Bed.", true); lcd_setstatus("G26 Heating Bed.", true);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
UBL_has_control_of_LCD_Panel++; ubl_has_control_of_lcd_panel++;
thermalManager.setTargetBed(bed_temp); thermalManager.setTargetBed(bed_temp);
wait_for_user = true;
while (abs(thermalManager.degBed() - bed_temp) > 3) { while (abs(thermalManager.degBed() - bed_temp) > 3) {
if (G29_lcd_clicked()) { if (!wait_for_user) {
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue; strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
while (G29_lcd_clicked()) idle(); // Debounce the switch
lcd_setstatus("Leaving G26", true); // Now we do it right. lcd_setstatus("Leaving G26", true); // Now we do it right.
return UBL_ERR; return UBL_ERR;
} }
idle(); idle();
} }
wait_for_user = false;
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
} }
lcd_setstatus("G26 Heating Nozzle.", true); lcd_setstatus("G26 Heating Nozzle.", true);
@ -913,15 +918,16 @@
// Start heating the nozzle and wait for it to reach temperature. // Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(hotend_temp, 0); thermalManager.setTargetHotend(hotend_temp, 0);
wait_for_user = true;
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) { while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
if (G29_lcd_clicked()) { if (!wait_for_user) {
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue; strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
while (G29_lcd_clicked()) idle(); // Debounce the switch
lcd_setstatus("Leaving G26", true); // Now we do it right. lcd_setstatus("Leaving G26", true); // Now we do it right.
return UBL_ERR; return UBL_ERR;
} }
idle(); idle();
} }
wait_for_user = false;
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatus("", true); lcd_setstatus("", true);
@ -936,8 +942,8 @@
bool prime_nozzle() { bool prime_nozzle() {
float Total_Prime = 0.0; float Total_Prime = 0.0;
if (Prime_Flag == -1) { // The user wants to control how much filament gets purged if (prime_flag == -1) { // The user wants to control how much filament gets purged
lcd_setstatus("User Controled Prime", true); lcd_setstatus("User-Controlled Prime", true);
chirp_at_user(); chirp_at_user();
set_destination_to_current(); set_destination_to_current();
@ -946,15 +952,15 @@
// retracted(). We are here because we want to prime the nozzle. // retracted(). We are here because we want to prime the nozzle.
// So let's just unretract just to be sure. // So let's just unretract just to be sure.
UBL_has_control_of_LCD_Panel++; wait_for_user = true;
while (!G29_lcd_clicked()) { while (wait_for_user) {
chirp_at_user(); chirp_at_user();
destination[E_AXIS] += 0.25; destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE #ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25; Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR; if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif #endif
UBL_line_to_destination( ubl_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF); //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
@ -971,10 +977,8 @@
strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatus() without having it continue; strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatus() without having it continue;
// So... We cheat to get a message up. // So... We cheat to get a message up.
while (G29_lcd_clicked()) idle(); // Debounce the switch
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
UBL_has_control_of_LCD_Panel = 0; ubl_has_control_of_lcd_panel = false;
lcd_setstatus("Done Priming", true); // Now we do it right. lcd_setstatus("Done Priming", true); // Now we do it right.
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
@ -985,8 +989,8 @@
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
set_destination_to_current(); set_destination_to_current();
destination[E_AXIS] += Prime_Length; destination[E_AXIS] += prime_length;
UBL_line_to_destination( ubl_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF); //planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0

View file

@ -89,7 +89,7 @@ FORCE_INLINE void store_char(unsigned char c) {
} }
} }
#if defined(M_USARTx_UDRE_vect) #ifdef M_USARTx_UDRE_vect
ISR(M_USARTx_UDRE_vect) { ISR(M_USARTx_UDRE_vect) {
_tx_udr_empty_irq(); _tx_udr_empty_irq();
} }
@ -97,7 +97,7 @@ FORCE_INLINE void store_char(unsigned char c) {
#endif // TX_BUFFER_SIZE #endif // TX_BUFFER_SIZE
#if defined(M_USARTx_RX_vect) #ifdef M_USARTx_RX_vect
ISR(M_USARTx_RX_vect) { ISR(M_USARTx_RX_vect) {
unsigned char c = M_UDRx; unsigned char c = M_UDRx;
store_char(c); store_char(c);

103
Marlin/Marlin_main.cpp Normal file → Executable file
View file

@ -301,7 +301,7 @@
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
bed_leveling blm; unified_bed_leveling ubl;
#endif #endif
bool Running = true; bool Running = true;
@ -508,7 +508,13 @@ static uint8_t target_extruder;
#endif #endif
#if ENABLED(Z_DUAL_ENDSTOPS) #if ENABLED(Z_DUAL_ENDSTOPS)
float z_endstop_adj = 0; float z_endstop_adj =
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
Z_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
;
#endif #endif
// Extruder offsets // Extruder offsets
@ -2281,7 +2287,7 @@ static void clean_up_after_endstop_or_probe_move() {
if (enable) planner.unapply_leveling(current_position); if (enable) planner.unapply_leveling(current_position);
} }
#elif HAS_ABL #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1])); const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
@ -2302,7 +2308,11 @@ static void clean_up_after_endstop_or_probe_move() {
else else
planner.unapply_leveling(current_position); planner.unapply_leveling(current_position);
} }
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (ubl.state.eeprom_storage_slot == 0) {
ubl.state.active = enable;
ubl.store_state();
}
#endif #endif
} }
@ -2476,7 +2486,7 @@ static void clean_up_after_endstop_or_probe_move() {
SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOLCHAR(' ');
float offset = fn(x, y); float offset = fn(x, y);
if (offset != UNPROBED) { if (offset != UNPROBED) {
if (offset >= 0) SERIAL_CHAR('+'); if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
SERIAL_PROTOCOL_F(offset, precision); SERIAL_PROTOCOL_F(offset, precision);
} }
else else
@ -3248,7 +3258,9 @@ inline void gcode_G4() {
#endif #endif
SERIAL_ECHOPGM("Probe: "); SERIAL_ECHOPGM("Probe: ");
#if ENABLED(FIX_MOUNTED_PROBE) #if ENABLED(PROBE_MANUALLY)
SERIAL_ECHOLNPGM("PROBE_MANUALLY");
#elif ENABLED(FIX_MOUNTED_PROBE)
SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE"); SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
#elif ENABLED(BLTOUCH) #elif ENABLED(BLTOUCH)
SERIAL_ECHOLNPGM("BLTOUCH"); SERIAL_ECHOLNPGM("BLTOUCH");
@ -3304,7 +3316,7 @@ inline void gcode_G4() {
#endif #endif
if (planner.abl_enabled) { if (planner.abl_enabled) {
SERIAL_ECHOLNPGM(" (enabled)"); SERIAL_ECHOLNPGM(" (enabled)");
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT) || ENABLED(AUTO_BED_LEVELING_UBL) #if ABL_PLANAR
float diff[XYZ] = { float diff[XYZ] = {
stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS], stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS], stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
@ -3319,12 +3331,19 @@ inline void gcode_G4() {
SERIAL_ECHOPGM(" Z"); SERIAL_ECHOPGM(" Z");
if (diff[Z_AXIS] > 0) SERIAL_CHAR('+'); if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
SERIAL_ECHO(diff[Z_AXIS]); SERIAL_ECHO(diff[Z_AXIS]);
#elif ENABLED(AUTO_BED_LEVELING_UBL)
SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position)); SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
#endif #endif
} }
else
SERIAL_ECHOLNPGM(" (disabled)");
SERIAL_EOL; SERIAL_EOL;
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)
SERIAL_ECHOPGM("Mesh Bed Leveling"); SERIAL_ECHOPGM("Mesh Bed Leveling");
if (mbl.active()) { if (mbl.active()) {
float lz = current_position[Z_AXIS]; float lz = current_position[Z_AXIS];
@ -3332,9 +3351,12 @@ inline void gcode_G4() {
SERIAL_ECHOLNPGM(" (enabled)"); SERIAL_ECHOLNPGM(" (enabled)");
SERIAL_ECHOPAIR("MBL Adjustment Z", lz); SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
} }
SERIAL_EOL; else
#endif SERIAL_ECHOPGM(" (disabled)");
SERIAL_EOL;
#endif // MESH_BED_LEVELING
} }
#endif // DEBUG_LEVELING_FEATURE #endif // DEBUG_LEVELING_FEATURE
@ -5344,7 +5366,7 @@ inline void gcode_M104() {
SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1); SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
#if ENABLED(SHOW_TEMP_ADC_VALUES) #if ENABLED(SHOW_TEMP_ADC_VALUES)
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR); SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
SERIAL_CHAR(')'); SERIAL_PROTOCOLCHAR(')');
#endif #endif
#endif #endif
#if HAS_TEMP_BED #if HAS_TEMP_BED
@ -5354,7 +5376,7 @@ inline void gcode_M104() {
SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1); SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
#if ENABLED(SHOW_TEMP_ADC_VALUES) #if ENABLED(SHOW_TEMP_ADC_VALUES)
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR); SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
SERIAL_CHAR(')'); SERIAL_PROTOCOLCHAR(')');
#endif #endif
#endif #endif
#if HOTENDS > 1 #if HOTENDS > 1
@ -5366,7 +5388,7 @@ inline void gcode_M104() {
SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1); SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
#if ENABLED(SHOW_TEMP_ADC_VALUES) #if ENABLED(SHOW_TEMP_ADC_VALUES)
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR); SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
SERIAL_CHAR(')'); SERIAL_PROTOCOLCHAR(')');
#endif #endif
} }
#endif #endif
@ -7122,7 +7144,7 @@ void quickstop_stepper() {
* *
* S[bool] Turns leveling on or off * S[bool] Turns leveling on or off
* Z[height] Sets the Z fade height (0 or none to disable) * Z[height] Sets the Z fade height (0 or none to disable)
* V[bool] Verbose - Print the levelng grid * V[bool] Verbose - Print the leveling grid
*/ */
inline void gcode_M420() { inline void gcode_M420() {
bool to_enable = false; bool to_enable = false;
@ -7139,6 +7161,8 @@ void quickstop_stepper() {
const bool new_status = const bool new_status =
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
mbl.active() mbl.active()
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.state.active
#else #else
planner.abl_enabled planner.abl_enabled
#endif #endif
@ -7164,7 +7188,7 @@ void quickstop_stepper() {
#endif #endif
} }
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
blm.display_map(0); // Right now, we only support one type of map ubl.display_map(0); // Right now, we only support one type of map
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)
if (mbl.has_mesh()) { if (mbl.has_mesh()) {
SERIAL_ECHOLNPGM("Mesh Bed Level data:"); SERIAL_ECHOLNPGM("Mesh Bed Level data:");
@ -8001,7 +8025,7 @@ inline void gcode_M999() {
inline void invalid_extruder_error(const uint8_t &e) { inline void invalid_extruder_error(const uint8_t &e) {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_CHAR('T'); SERIAL_CHAR('T');
SERIAL_PROTOCOL_F(e, DEC); SERIAL_ECHO_F(e, DEC);
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER); SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
} }
@ -8604,13 +8628,13 @@ void process_next_command() {
#endif // Z_MIN_PROBE_REPEATABILITY_TEST #endif // Z_MIN_PROBE_REPEATABILITY_TEST
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
case 49: // M49: Turn on or off G26_Debug_flag for verbose output case 49: // M49: Turn on or off g26_debug_flag for verbose output
if (G26_Debug_flag) { if (g26_debug_flag) {
SERIAL_PROTOCOLPGM("UBL Debug Flag turned off.\n"); SERIAL_PROTOCOLPGM("UBL Debug Flag turned off.\n");
G26_Debug_flag = 0; } g26_debug_flag = 0; }
else { else {
SERIAL_PROTOCOLPGM("UBL Debug Flag turned on.\n"); SERIAL_PROTOCOLPGM("UBL Debug Flag turned on.\n");
G26_Debug_flag++; } g26_debug_flag++; }
break; break;
#endif // Z_MIN_PROBE_REPEATABILITY_TEST #endif // Z_MIN_PROBE_REPEATABILITY_TEST
@ -9745,11 +9769,11 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
} }
else else
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
if (blm.state.active) { if (ubl.state.active) {
// UBL_line_to_destination(MMS_SCALED(feedrate_mm_s)); // ubl_line_to_destination(MMS_SCALED(feedrate_mm_s));
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
// (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder); // (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder);
MMS_SCALED(feedrate_mm_s), active_extruder); MMS_SCALED(feedrate_mm_s), active_extruder);
@ -10188,35 +10212,35 @@ void prepare_move_to_destination() {
void setPwmFrequency(uint8_t pin, int val) { void setPwmFrequency(uint8_t pin, int val) {
val &= 0x07; val &= 0x07;
switch (digitalPinToTimer(pin)) { switch (digitalPinToTimer(pin)) {
#if defined(TCCR0A) #ifdef TCCR0A
case TIMER0A: case TIMER0A:
case TIMER0B: case TIMER0B:
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val; // TCCR0B |= val;
break; break;
#endif #endif
#if defined(TCCR1A) #ifdef TCCR1A
case TIMER1A: case TIMER1A:
case TIMER1B: case TIMER1B:
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val; // TCCR1B |= val;
break; break;
#endif #endif
#if defined(TCCR2) #ifdef TCCR2
case TIMER2: case TIMER2:
case TIMER2: case TIMER2:
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2 |= val; TCCR2 |= val;
break; break;
#endif #endif
#if defined(TCCR2A) #ifdef TCCR2A
case TIMER2A: case TIMER2A:
case TIMER2B: case TIMER2B:
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
TCCR2B |= val; TCCR2B |= val;
break; break;
#endif #endif
#if defined(TCCR3A) #ifdef TCCR3A
case TIMER3A: case TIMER3A:
case TIMER3B: case TIMER3B:
case TIMER3C: case TIMER3C:
@ -10224,7 +10248,7 @@ void prepare_move_to_destination() {
TCCR3B |= val; TCCR3B |= val;
break; break;
#endif #endif
#if defined(TCCR4A) #ifdef TCCR4A
case TIMER4A: case TIMER4A:
case TIMER4B: case TIMER4B:
case TIMER4C: case TIMER4C:
@ -10232,7 +10256,7 @@ void prepare_move_to_destination() {
TCCR4B |= val; TCCR4B |= val;
break; break;
#endif #endif
#if defined(TCCR5A) #ifdef TCCR5A
case TIMER5A: case TIMER5A:
case TIMER5B: case TIMER5B:
case TIMER5C: case TIMER5C:
@ -10476,23 +10500,12 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
previous_cmd_ms = ms; // refresh_cmd_timeout() previous_cmd_ms = ms; // refresh_cmd_timeout()
#if IS_KINEMATIC const float olde = current_position[E_AXIS];
inverse_kinematics(current_position); current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
ADJUST_DELTA(current_position); planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
planner.buffer_line( current_position[E_AXIS] = olde;
delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], planner.set_e_position_mm(olde);
current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
);
#else
planner.buffer_line(
current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
);
#endif
stepper.synchronize(); stepper.synchronize();
planner.set_e_position_mm(current_position[E_AXIS]);
#if ENABLED(SWITCHING_EXTRUDER) #if ENABLED(SWITCHING_EXTRUDER)
E0_ENABLE_WRITE(oldstatus); E0_ENABLE_WRITE(oldstatus);
#else #else

View file

@ -576,17 +576,15 @@ static_assert(1 >= 0
#endif #endif
/** /**
* Check if Probe_Offset * Grid Points is greater than Probing Range * Check auto bed leveling sub-options, especially probe points
*/ */
#if ABL_GRID #if ABL_GRID
#ifndef DELTA_PROBEABLE_RADIUS #ifndef DELTA_PROBEABLE_RADIUS
// Be sure points are in the right order
#if LEFT_PROBE_BED_POSITION > RIGHT_PROBE_BED_POSITION #if LEFT_PROBE_BED_POSITION > RIGHT_PROBE_BED_POSITION
#error "LEFT_PROBE_BED_POSITION must be less than RIGHT_PROBE_BED_POSITION." #error "LEFT_PROBE_BED_POSITION must be less than RIGHT_PROBE_BED_POSITION."
#elif FRONT_PROBE_BED_POSITION > BACK_PROBE_BED_POSITION #elif FRONT_PROBE_BED_POSITION > BACK_PROBE_BED_POSITION
#error "FRONT_PROBE_BED_POSITION must be less than BACK_PROBE_BED_POSITION." #error "FRONT_PROBE_BED_POSITION must be less than BACK_PROBE_BED_POSITION."
#endif #endif
// Make sure probing points are reachable
#if LEFT_PROBE_BED_POSITION < MIN_PROBE_X #if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
#error "The given LEFT_PROBE_BED_POSITION can't be reached by the Z probe." #error "The given LEFT_PROBE_BED_POSITION can't be reached by the Z probe."
#elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X #elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
@ -597,29 +595,39 @@ static_assert(1 >= 0
#error "The given BACK_PROBE_BED_POSITION can't be reached by the Z probe." #error "The given BACK_PROBE_BED_POSITION can't be reached by the Z probe."
#endif #endif
#endif #endif
#else // !ABL_GRID #elif ENABLED(AUTO_BED_LEVELING_UBL)
#if ENABLED(AUTO_BED_LEVELING_UBL) #if DISABLED(EEPROM_SETTINGS)
#ifndef EEPROM_SETTINGS #error "AUTO_BED_LEVELING_UBL requires EEPROM_SETTINGS. Please update your configuration."
#error "AUTO_BED_LEVELING_UBL requires EEPROM_SETTINGS. Please update your configuration." #elif UBL_MESH_NUM_X_POINTS < 3 || UBL_MESH_NUM_X_POINTS > 15 || UBL_MESH_NUM_Y_POINTS < 3 || UBL_MESH_NUM_Y_POINTS > 15
#endif #error "UBL_MESH_NUM_[XY]_POINTS must be a whole number between 3 and 15."
#else // !UBL #elif UBL_PROBE_PT_1_X < MIN_PROBE_X || UBL_PROBE_PT_1_X > MAX_PROBE_X
// Check the triangulation points #error "The given UBL_PROBE_PT_1_X can't be reached by the Z probe."
#if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X #elif UBL_PROBE_PT_2_X < MIN_PROBE_X || UBL_PROBE_PT_2_X > MAX_PROBE_X
#error "The given ABL_PROBE_PT_1_X can't be reached by the Z probe." #error "The given UBL_PROBE_PT_2_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X #elif UBL_PROBE_PT_3_X < MIN_PROBE_X || UBL_PROBE_PT_3_X > MAX_PROBE_X
#error "The given ABL_PROBE_PT_2_X can't be reached by the Z probe." #error "The given UBL_PROBE_PT_3_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X #elif UBL_PROBE_PT_1_Y < MIN_PROBE_Y || UBL_PROBE_PT_1_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_3_X can't be reached by the Z probe." #error "The given UBL_PROBE_PT_1_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y #elif UBL_PROBE_PT_2_Y < MIN_PROBE_Y || UBL_PROBE_PT_2_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_1_Y can't be reached by the Z probe." #error "The given UBL_PROBE_PT_2_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y #elif UBL_PROBE_PT_3_Y < MIN_PROBE_Y || UBL_PROBE_PT_3_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_2_Y can't be reached by the Z probe." #error "The given UBL_PROBE_PT_3_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y #endif
#error "The given ABL_PROBE_PT_3_Y can't be reached by the Z probe." #else // AUTO_BED_LEVELING_3POINT
#endif #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
#endif // !AUTO_BED_LEVEING_UBL #error "The given ABL_PROBE_PT_1_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
#endif // !ABL_GRID #error "The given ABL_PROBE_PT_2_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
#error "The given ABL_PROBE_PT_3_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_1_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_2_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_3_Y can't be reached by the Z probe."
#endif
#endif // AUTO_BED_LEVELING_3POINT
#endif // HAS_ABL #endif // HAS_ABL

View file

@ -37,27 +37,27 @@
// from the search location // from the search location
} mesh_index_pair; } mesh_index_pair;
struct vector { double dx, dy, dz; }; typedef struct { double dx, dy, dz; } vector;
enum Mesh_Point_Type { INVALID, REAL, SET_IN_BITMAP }; enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
bool axis_unhomed_error(bool, bool, bool); bool axis_unhomed_error(bool, bool, bool);
void dump(char *str, float f); void dump(char *str, float f);
bool G29_lcd_clicked(); bool ubl_lcd_clicked();
void probe_entire_mesh(float, float, bool, bool); void probe_entire_mesh(float, float, bool, bool);
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t); void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
void manually_probe_remaining_mesh(float, float, float, float, bool); void manually_probe_remaining_mesh(float, float, float, float, bool);
struct vector tilt_mesh_based_on_3pts(float, float, float); vector tilt_mesh_based_on_3pts(float, float, float);
void new_set_bed_level_equation_3pts(float, float, float); void new_set_bed_level_equation_3pts(float, float, float);
float measure_business_card_thickness(float); float measure_business_card_thickness(float);
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type, float, float, bool, unsigned int[16]); mesh_index_pair find_closest_mesh_point_of_type(MeshPointType, float, float, bool, unsigned int[16]);
void Find_Mean_Mesh_Height(); void find_mean_mesh_height();
void Shift_Mesh_Height(); void shift_mesh_height();
bool G29_Parameter_Parsing(); bool g29_parameter_parsing();
void G29_What_Command(); void g29_what_command();
void G29_EEPROM_Dump(); void g29_eeprom_dump();
void G29_Kompare_Current_Mesh_to_Stored_Mesh(); void g29_compare_current_mesh_to_stored_mesh();
void fine_tune_mesh(float, float, float, bool); void fine_tune_mesh(float, float, bool);
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y); void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y); void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y); bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
@ -68,8 +68,8 @@
void gcode_G29(); void gcode_G29();
extern char conv[9]; extern char conv[9];
void save_UBL_active_state_and_disable(); void save_ubl_active_state_and_disable();
void restore_UBL_active_state_and_leave(); void restore_ubl_active_state_and_leave();
/////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////
@ -83,19 +83,19 @@
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0)) #define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0)) #define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
extern bool G26_Debug_flag; extern bool g26_debug_flag;
extern float last_specified_z; extern float last_specified_z;
extern float fade_scaling_factor_for_current_height; extern float fade_scaling_factor_for_current_height;
extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
extern float mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
extern float mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
class bed_leveling { class unified_bed_leveling {
public: public:
struct ubl_state { struct ubl_state {
bool active = false; bool active = false;
float z_offset = 0.0; float z_offset = 0.0;
int EEPROM_storage_slot = -1, int eeprom_storage_slot = -1,
n_x = UBL_MESH_NUM_X_POINTS, n_x = UBL_MESH_NUM_X_POINTS,
n_y = UBL_MESH_NUM_Y_POINTS; n_y = UBL_MESH_NUM_Y_POINTS;
float mesh_x_min = UBL_MESH_MIN_X, float mesh_x_min = UBL_MESH_MIN_X,
@ -104,8 +104,8 @@
mesh_y_max = UBL_MESH_MAX_Y, mesh_y_max = UBL_MESH_MAX_Y,
mesh_x_dist = MESH_X_DIST, mesh_x_dist = MESH_X_DIST,
mesh_y_dist = MESH_Y_DIST, mesh_y_dist = MESH_Y_DIST,
G29_Correction_Fade_Height = 10.0, g29_correction_fade_height = 10.0,
G29_Fade_Height_Multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
// point divide. So, we keep this number in both forms. The first // point divide. So, we keep this number in both forms. The first
// is for the user. The second one is the one that is actually used // is for the user. The second one is the one that is actually used
// again and again and again during the correction calculations. // again and again and again during the correction calculations.
@ -119,8 +119,8 @@
// the padding[] to keep the size the same! // the padding[] to keep the size the same!
} state, pre_initialized; } state, pre_initialized;
bed_leveling(); unified_bed_leveling();
// ~bed_leveling(); // No destructor because this object never goes away! // ~unified_bed_leveling(); // No destructor because this object never goes away!
void display_map(int); void display_map(int);
@ -203,7 +203,7 @@
return NAN; return NAN;
} }
const float a0ma1diva2ma1 = (x0 - mesh_index_to_X_location[x1_i]) * (1.0 / (MESH_X_DIST)), const float a0ma1diva2ma1 = (x0 - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi], z1 = z_values[x1_i][yi],
z2 = z_values[x1_i + 1][yi], z2 = z_values[x1_i + 1][yi],
dz = (z2 - z1); dz = (z2 - z1);
@ -224,7 +224,7 @@
return NAN; return NAN;
} }
const float a0ma1diva2ma1 = (y0 - mesh_index_to_Y_location[y1_i]) * (1.0 / (MESH_Y_DIST)), const float a0ma1diva2ma1 = (y0 - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i], z1 = z_values[xi][y1_i],
z2 = z_values[xi][y1_i + 1], z2 = z_values[xi][y1_i + 1],
dz = (z2 - z1); dz = (z2 - z1);
@ -271,20 +271,20 @@
SERIAL_ECHOPAIR(" raw get_z_correction(", x0); SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
SERIAL_ECHOPAIR(",", y0); SERIAL_ECHOPAIR(",", y0);
SERIAL_ECHOPGM(")="); SERIAL_ECHOPGM(")=");
SERIAL_PROTOCOL_F(z0, 6); SERIAL_ECHO_F(z0, 6);
} }
#endif #endif
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) { if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM(" >>>---> "); SERIAL_ECHOPGM(" >>>---> ");
SERIAL_PROTOCOL_F(z0, 6); SERIAL_ECHO_F(z0, 6);
SERIAL_EOL; SERIAL_EOL;
} }
#endif #endif
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in blm.z_values[][] and propagate through the z0 = 0.0; // in ubl.z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out // calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the // because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction. // information we need to complete the height correction.
@ -311,21 +311,21 @@
* If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active * If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active
* or if the current Z Height is past the specified 'Fade Height' * or if the current Z Height is past the specified 'Fade Height'
*/ */
FORCE_INLINE float fade_scaling_factor_for_Z(float current_z) { FORCE_INLINE float fade_scaling_factor_for_z(float current_z) {
if (last_specified_z == current_z) if (last_specified_z == current_z)
return fade_scaling_factor_for_current_height; return fade_scaling_factor_for_current_height;
last_specified_z = current_z; last_specified_z = current_z;
fade_scaling_factor_for_current_height = fade_scaling_factor_for_current_height =
state.active && current_z < state.G29_Correction_Fade_Height state.active && current_z < state.g29_correction_fade_height
? 1.0 - (current_z * state.G29_Fade_Height_Multiplier) ? 1.0 - (current_z * state.g29_fade_height_multiplier)
: 0.0; : 0.0;
return fade_scaling_factor_for_current_height; return fade_scaling_factor_for_current_height;
} }
}; };
extern bed_leveling blm; extern unified_bed_leveling ubl;
extern int Unified_Bed_Leveling_EEPROM_start; extern int ubl_eeprom_start;
#endif // AUTO_BED_LEVELING_UBL #endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H #endif // UNIFIED_BED_LEVELING_H

View file

@ -28,52 +28,59 @@
#include "hex_print_routines.h" #include "hex_print_routines.h"
/** /**
* These variables used to be declared inside the bed_leveling class. We are going to still declare * These variables used to be declared inside the unified_bed_leveling class. We are going to
* them within the .cpp file for bed leveling. But there is only one instance of the bed leveling * still declare them within the .cpp file for bed leveling. But there is only one instance of
* object and we can get rid of a level of inderection by not making them 'member data'. So, in the * the bed leveling object and we can get rid of a level of inderection by not making them
* interest of speed, we do it this way. When we move to a 32-Bit processor, they can be moved * 'member data'. So, in the interest of speed, we do it this way. On a 32-bit CPU they can be
* back inside the bed leveling class. * moved back inside the bed leveling class.
*/ */
float last_specified_z, float last_specified_z,
fade_scaling_factor_for_current_height, fade_scaling_factor_for_current_height,
z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS], z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
bed_leveling::bed_leveling() { unified_bed_leveling::unified_bed_leveling() {
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety
mesh_index_to_X_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i); mesh_index_to_x_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i);
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety
mesh_index_to_Y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i); mesh_index_to_y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
reset(); reset();
} }
void bed_leveling::store_state() { void unified_bed_leveling::store_state() {
int k = E2END - sizeof(blm.state); int k = E2END - sizeof(ubl.state);
eeprom_write_block((void *)&blm.state, (void *)k, sizeof(blm.state)); eeprom_write_block((void *)&ubl.state, (void *)k, sizeof(ubl.state));
} }
void bed_leveling::load_state() { void unified_bed_leveling::load_state() {
int k = E2END - sizeof(blm.state); int k = E2END - sizeof(ubl.state);
eeprom_read_block((void *)&blm.state, (void *)k, sizeof(blm.state)); eeprom_read_block((void *)&ubl.state, (void *)k, sizeof(ubl.state));
if (sanity_check()) if (sanity_check())
SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n"); SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n");
// These lines can go away in a few weeks. They are just /**
// to make sure people updating thier firmware won't be using * These lines can go away in a few weeks. They are just
if (blm.state.G29_Fade_Height_Multiplier != 1.0 / blm.state.G29_Correction_Fade_Height) { // an incomplete Bed_Leveling.state structure. For speed * to make sure people updating thier firmware won't be using
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; // we now multiply by the inverse of the Fade Height instead of * an incomplete Bed_Leveling.state structure. For speed
store_state(); // dividing by it. Soon... all of the old structures will be * we now multiply by the inverse of the Fade Height instead of
} // updated, but until then, we try to ease the transition * dividing by it. Soon... all of the old structures will be
// for our Beta testers. * updated, but until then, we try to ease the transition
* for our Beta testers.
*/
if (ubl.state.g29_fade_height_multiplier != 1.0 / ubl.state.g29_correction_fade_height) {
ubl.state.g29_fade_height_multiplier = 1.0 / ubl.state.g29_correction_fade_height;
store_state();
}
} }
void bed_leveling::load_mesh(int m) { void unified_bed_leveling::load_mesh(int m) {
int k = E2END - sizeof(blm.state), int k = E2END - sizeof(ubl.state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); j = (k - ubl_eeprom_start) / sizeof(z_values);
if (m == -1) { if (m == -1) {
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n"); SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
@ -81,7 +88,7 @@
return; return;
} }
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) { if (m < 0 || m >= j || ubl_eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
return; return;
} }
@ -96,11 +103,11 @@
SERIAL_EOL; SERIAL_EOL;
} }
void bed_leveling:: store_mesh(int m) { void unified_bed_leveling:: store_mesh(int m) {
int k = E2END - sizeof(state), int k = E2END - sizeof(state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); j = (k - ubl_eeprom_start) / sizeof(z_values);
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) { if (m < 0 || m >= j || ubl_eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
SERIAL_PROTOCOL(m); SERIAL_PROTOCOL(m);
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n"); SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
@ -122,18 +129,18 @@
SERIAL_EOL; SERIAL_EOL;
} }
void bed_leveling::reset() { void unified_bed_leveling::reset() {
state.active = false; state.active = false;
state.z_offset = 0; state.z_offset = 0;
state.EEPROM_storage_slot = -1; state.eeprom_storage_slot = -1;
ZERO(z_values); ZERO(z_values);
last_specified_z = -999.9; // We can't pre-initialize these values in the declaration last_specified_z = -999.9;
fade_scaling_factor_for_current_height = 0.0; // due to C++11 constraints fade_scaling_factor_for_current_height = 0.0;
} }
void bed_leveling::invalidate() { void unified_bed_leveling::invalidate() {
prt_hex_word((unsigned int)this); prt_hex_word((unsigned int)this);
SERIAL_EOL; SERIAL_EOL;
@ -144,7 +151,7 @@
z_values[x][y] = NAN; z_values[x][y] = NAN;
} }
void bed_leveling::display_map(int map_type) { void unified_bed_leveling::display_map(int map_type) {
float f, current_xi, current_yi; float f, current_xi, current_yi;
int8_t i, j; int8_t i, j;
UNUSED(map_type); UNUSED(map_type);
@ -155,8 +162,8 @@
SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1); SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1);
SERIAL_ECHOPGM(") "); SERIAL_ECHOPGM(") ");
current_xi = blm.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0); current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0);
current_yi = blm.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0); current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
SERIAL_ECHOPGM(" "); SERIAL_ECHOPGM(" ");
@ -166,16 +173,18 @@
SERIAL_ECHOLNPGM(")"); SERIAL_ECHOLNPGM(")");
// if (map_type || 1) { // if (map_type || 1) {
SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X);
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
SERIAL_CHAR(')');
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++) SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X);
SERIAL_ECHOPGM(" "); SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
SERIAL_CHAR(')');
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
SERIAL_ECHOPGM(" ");
SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X);
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
SERIAL_ECHOLNPGM(")");
SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X);
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
SERIAL_ECHOLNPGM(")");
// } // }
for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) { for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) {
@ -235,51 +244,51 @@
SERIAL_EOL; SERIAL_EOL;
} }
bool bed_leveling::sanity_check() { bool unified_bed_leveling::sanity_check() {
uint8_t error_flag = 0; uint8_t error_flag = 0;
if (state.n_x != UBL_MESH_NUM_X_POINTS) { if (state.n_x != UBL_MESH_NUM_X_POINTS) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n");
error_flag++; error_flag++;
} }
if (state.n_y != UBL_MESH_NUM_Y_POINTS) { if (state.n_y != UBL_MESH_NUM_Y_POINTS) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_x_min != UBL_MESH_MIN_X) { if (state.mesh_x_min != UBL_MESH_MIN_X) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_y_min != UBL_MESH_MIN_Y) { if (state.mesh_y_min != UBL_MESH_MIN_Y) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_x_max != UBL_MESH_MAX_X) { if (state.mesh_x_max != UBL_MESH_MAX_X) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_y_max != UBL_MESH_MAX_Y) { if (state.mesh_y_max != UBL_MESH_MAX_Y) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_x_dist != MESH_X_DIST) { if (state.mesh_x_dist != MESH_X_DIST) {
SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n"); SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_y_dist != MESH_Y_DIST) { if (state.mesh_y_dist != MESH_Y_DIST) {
SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n"); SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
error_flag++; error_flag++;
} }
int k = E2END - sizeof(blm.state), const int k = E2END - sizeof(ubl.state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); j = (k - ubl_eeprom_start) / sizeof(z_values);
if (j < 1) { if (j < 1) {
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n"); SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");

View file

@ -37,10 +37,6 @@
void lcd_return_to_status(); void lcd_return_to_status();
bool lcd_clicked(); bool lcd_clicked();
void lcd_implementation_clear(); void lcd_implementation_clear();
void lcd_mesh_edit_setup(float inital);
float lcd_mesh_edit();
void lcd_z_offset_edit_setup(float);
float lcd_z_offset_edit();
extern float meshedit_done; extern float meshedit_done;
extern long babysteps_done; extern long babysteps_done;
@ -65,268 +61,250 @@
extern void lcd_quick_feedback(); extern void lcd_quick_feedback();
/** /**
* G29: Unified Bed Leveling by Roxy * G29: Unified Bed Leveling by Roxy
*/
// Transform required to compensate for bed level
//extern matrix_3x3 plan_bed_level_matrix;
/**
* Get the position applying the bed level matrix
*/
//vector_3 plan_get_position();
// static void set_bed_level_equation_lsq(double* plane_equation_coefficients);
// static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3);
/**
* G29: Mesh Based Compensation System
* *
* Parameters understood by this leveling system: * Parameters understood by this leveling system:
* *
* A Activate Activate the Unified Bed Leveling system. * A Activate Activate the Unified Bed Leveling system.
* *
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
* G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
* as a shim that the nozzle will pinch as it is lowered. The idea is that you * as a shim that the nozzle will pinch as it is lowered. The idea is that you
* can easily feel the nozzle getting to the same height by the amount of resistance * can easily feel the nozzle getting to the same height by the amount of resistance
* the business card exhibits to movement. You should try to achieve the same amount * the business card exhibits to movement. You should try to achieve the same amount
* of resistance on each probed point to facilitate accurate and repeatable measurements. * of resistance on each probed point to facilitate accurate and repeatable measurements.
* You should be very careful not to drive the nozzle into the bussiness card with a * You should be very careful not to drive the nozzle into the bussiness card with a
* lot of force as it is very possible to cause damage to your printer if your are * lot of force as it is very possible to cause damage to your printer if your are
* careless. If you use the B option with G29 P2 B you can leave the number parameter off * careless. If you use the B option with G29 P2 B you can leave the number parameter off
* on its first use to enable measurement of the business card thickness. Subsequent usage * on its first use to enable measurement of the business card thickness. Subsequent usage
* of the B parameter can have the number previously measured supplied to the command. * of the B parameter can have the number previously measured supplied to the command.
* Incidently, you are much better off using something like a Spark Gap feeler gauge than * Incidently, you are much better off using something like a Spark Gap feeler gauge than
* something that compresses like a Business Card. * something that compresses like a Business Card.
* *
* C Continue Continue, Constant, Current Location. This is not a primary command. C is used to * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
* further refine the behaviour of several other commands. Issuing a G29 P1 C will * further refine the behaviour of several other commands. Issuing a G29 P1 C will
* continue the generation of a partially constructed Mesh without invalidating what has * continue the generation of a partially constructed Mesh without invalidating what has
* been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
* location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
* it indicates to use the current location instead of defaulting to the center of the print bed. * it indicates to use the current location instead of defaulting to the center of the print bed.
* *
* D Disable Disable the Unified Bed Leveling system. * D Disable Disable the Unified Bed Leveling system.
* *
* E Stow_probe Stow the probe after each sampled point. * E Stow_probe Stow the probe after each sampled point.
* *
* F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the specified height, * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
* no correction is applied and natural printer kenimatics take over. If no number is specified * specified height, no correction is applied and natural printer kenimatics take over. If no
* for the command, 10mm is assummed to be reasonable. * number is specified for the command, 10mm is assumed to be reasonable.
* *
* G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on * G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on
* a side. * a side.
* *
* H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
* default is 5mm. * default is 5mm.
* *
* I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
* the X and Y parameter are used. If no number is specified, only the closest Mesh * the X and Y parameter are used. If no number is specified, only the closest Mesh
* point to the location is invalidated. The M parameter is available as well to produce * point to the location is invalidated. The M parameter is available as well to produce
* a map after the operation. This command is useful to invalidate a portion of the * a map after the operation. This command is useful to invalidate a portion of the
* Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
* attempting to invalidate an isolated bad point in the mesh, the M option will indicate * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
* where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
* the bed and use this feature to select the center of the area (or cell) you want to * the bed and use this feature to select the center of the area (or cell) you want to
* invalidate. * invalidate.
* *
* K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
* command litterly performs a difference between two Mesh. * command literally performs a diff between two Meshes.
* *
* L Load * Load Mesh from the previously activated location in the EEPROM. * L Load * Load Mesh from the previously activated location in the EEPROM.
* *
* L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
* for subsequent Load and Store operations. * for subsequent Load and Store operations.
* *
* O Map * Display the Mesh Map Topology. * O Map * Display the Mesh Map Topology.
* The parameter can be specified alone (ie. G29 O) or in combination with many of the * The parameter can be specified alone (ie. G29 O) or in combination with many of the
* other commands. The Mesh Map option works with all of the Phase * other commands. The Mesh Map option works with all of the Phase
* commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O)
* *
* N No Home G29 normally insists that a G28 has been performed. You can over rule this with an * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
* N option. In general, you should not do this. This can only be done safely with * N option. In general, you should not do this. This can only be done safely with
* commands that do not move the nozzle. * commands that do not move the nozzle.
* *
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
* start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
* each additional Phase that processes it. * each additional Phase that processes it.
* *
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
* was turned on. Setting the entire Mesh to Zero is a special case that allows * was turned on. Setting the entire Mesh to Zero is a special case that allows
* a subsequent G or T leveling operation for backward compatability. * a subsequent G or T leveling operation for backward compatability.
* *
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
* the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
* DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
* generated. This will be handled in Phase 2. If the Phase 1 command is given the * generated. This will be handled in Phase 2. If the Phase 1 command is given the
* C (Continue) parameter it does not invalidate the Mesh prior to automatically * C (Continue) parameter it does not invalidate the Mesh prior to automatically
* probing needed locations. This allows you to invalidate portions of the Mesh but still * probing needed locations. This allows you to invalidate portions of the Mesh but still
* use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
* parameter can be given to prioritize where the command should be trying to measure points. * parameter can be given to prioritize where the command should be trying to measure points.
* If the X and Y parameters are not specified the current probe position is used. Phase 1 * If the X and Y parameters are not specified the current probe position is used. Phase 1
* allows you to specify the M (Map) parameter so you can watch the generation of the Mesh. * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
* Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
* It will suspend generation of the Mesh if it sees the user request that. (This check is * It will suspend generation of the Mesh if it sees the user request that. (This check is
* only done between probe points. You will need to press and hold the switch until the * only done between probe points. You will need to press and hold the switch until the
* Phase 1 command can detect it.) * Phase 1 command can detect it.)
* *
* P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H * P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H
* parameter to control the height between Mesh points. The default height for movement * parameter to control the height between Mesh points. The default height for movement
* between Mesh points is 5mm. A smaller number can be used to make this part of the * between Mesh points is 5mm. A smaller number can be used to make this part of the
* calibration less time consuming. You will be running the nozzle down until it just barely * calibration less time consuming. You will be running the nozzle down until it just barely
* touches the glass. You should have the nozzle clean with no plastic obstructing your view. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
* Use caution and move slowly. It is possible to damage your printer if you are careless. * Use caution and move slowly. It is possible to damage your printer if you are careless.
* Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
* nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
* *
* The H parameter can be set negative if your Mesh dips in a large area. You can press * The H parameter can be set negative if your Mesh dips in a large area. You can press
* and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
* can then re-issue the G29 P 2 command with an H parameter that is more suitable for the * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
* area you are manually probing. Note that the command tries to start you in a corner * area you are manually probing. Note that the command tries to start you in a corner
* of the bed where movement will be predictable. You can force the location to be used in * of the bed where movement will be predictable. You can force the location to be used in
* the distance calculations by using the X and Y parameters. You may find it is helpful to * the distance calculations by using the X and Y parameters. You may find it is helpful to
* print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where * print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
* the nozzle will need to move in order to complete the command. The C parameter is * the nozzle will need to move in order to complete the command. The C parameter is
* available on the Phase 2 command also and indicates the search for points to measure should * available on the Phase 2 command also and indicates the search for points to measure should
* be done based on the current location of the nozzle. * be done based on the current location of the nozzle.
* *
* A B parameter is also available for this command and described up above. It places the * A B parameter is also available for this command and described up above. It places the
* manual probe subsystem into Business Card mode where the thickness of a business care is * manual probe subsystem into Business Card mode where the thickness of a business care is
* measured and then used to accurately set the nozzle height in all manual probing for the * measured and then used to accurately set the nozzle height in all manual probing for the
* duration of the command. (S for Shim mode would be a better parameter name, but S is needed * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
* for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
* better results if you use a flexible Shim that does not compress very much. That makes it * better results if you use a flexible Shim that does not compress very much. That makes it
* easier for you to get the nozzle to press with similar amounts of force against the shim so you * easier for you to get the nozzle to press with similar amounts of force against the shim so you
* can get accurate measurements. As you are starting to touch the nozzle against the shim try * can get accurate measurements. As you are starting to touch the nozzle against the shim try
* to get it to grasp the shim with the same force as when you measured the thickness of the * to get it to grasp the shim with the same force as when you measured the thickness of the
* shim at the start of the command. * shim at the start of the command.
* *
* Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
* of the Mesh being built. * of the Mesh being built.
* *
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is used to * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is
* specify the Constant value to fill all invalid areas of the Mesh. If no C parameter is * used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter
* specified, a value of 0.0 is assumed. The R parameter can be given to specify the number * is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
* of points to set. If the R parameter is specified the current nozzle position is used to * of points to set. If the R parameter is specified the current nozzle position is used to
* find the closest points to alter unless the X and Y parameter are used to specify the fill * find the closest points to alter unless the X and Y parameter are used to specify the fill
* location. * location.
* *
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
* an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
* (More work and details on doing this later!) * (More work and details on doing this later!)
* The System will search for the closest Mesh Point to the nozzle. It will move the * The System will search for the closest Mesh Point to the nozzle. It will move the
* nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
* so it is just barely touching the bed. When the user clicks the control, the System * so it is just barely touching the bed. When the user clicks the control, the System
* will lock in that height for that point in the Mesh Compensation System. * will lock in that height for that point in the Mesh Compensation System.
* *
* Phase 4 has several additional parameters that the user may find helpful. Phase 4 * Phase 4 has several additional parameters that the user may find helpful. Phase 4
* can be started at a specific location by specifying an X and Y parameter. Phase 4 * can be started at a specific location by specifying an X and Y parameter. Phase 4
* can be requested to continue the adjustment of Mesh Points by using the R(epeat) * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
* parameter. If the Repetition count is not specified, it is assumed the user wishes * parameter. If the Repetition count is not specified, it is assumed the user wishes
* to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
* The command can be terminated early (or after the area of interest has been edited) by * The command can be terminated early (or after the area of interest has been edited) by
* pressing and holding the encoder wheel until the system recognizes the exit request. * pressing and holding the encoder wheel until the system recognizes the exit request.
* Phase 4's general form is G29 P4 [R # of points] [X position] [Y position] * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
* *
* Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
* information left on the printer's bed from the G26 command it is very straight forward * information left on the printer's bed from the G26 command it is very straight forward
* and easy to fine tune the Mesh. One concept that is important to remember and that * and easy to fine tune the Mesh. One concept that is important to remember and that
* will make using the Phase 4 command easy to use is this: You are editing the Mesh Points. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
* If you have too little clearance and not much plastic was extruded in an area, you want to * If you have too little clearance and not much plastic was extruded in an area, you want to
* LOWER the Mesh Point at the location. If you did not get good adheasion, you want to * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
* RAISE the Mesh Point at that location. * RAISE the Mesh Point at that location.
* *
* *
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
* Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
* execute a G29 P6 C <mean height>. * execute a G29 P6 C <mean height>.
* *
* P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
* with the C parameter. Being able to adjust the height of a Mesh is useful tool. It * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
* can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally, * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
* 0.000 at the Z Home location. * 0.000 at the Z Home location.
* *
* Q Test * Load specified Test Pattern to assist in checking correct operation of system. This * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
* command is not anticipated to be of much value to the typical user. It is intended * command is not anticipated to be of much value to the typical user. It is intended
* for developers to help them verify correct operation of the Unified Bed Leveling System. * for developers to help them verify correct operation of the Unified Bed Leveling System.
* *
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
* current state of the Unified Bed Leveling system in the EEPROM. * current state of the Unified Bed Leveling system in the EEPROM.
* *
* S # Store Store the current Mesh at the specified location in EEPROM. Activate this location * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
* for subsequent Load and Store operations. It will also store the current state of * for subsequent Load and Store operations. It will also store the current state of
* the Unified Bed Leveling system in the EEPROM. * the Unified Bed Leveling system in the EEPROM.
* *
* S -1 Store Store the current Mesh as a print out that is suitable to be feed back into * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
* the system at a later date. The text generated can be saved and later sent by PronterFace or * the system at a later date. The text generated can be saved and later sent by PronterFace or
* Repetier Host to reconstruct the current mesh on another machine. * Repetier Host to reconstruct the current mesh on another machine.
* *
* T 3-Point Perform a 3 Point Bed Leveling on the current Mesh * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
* *
* W What? Display valuable data the Unified Bed Leveling System knows. * W What? Display valuable data the Unified Bed Leveling System knows.
* *
* X # * * Specify X Location for this line of commands * X # * * X Location for this line of commands
* *
* Y # * * Specify Y Location for this line of commands * Y # * * Y Location for this line of commands
* *
* Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
* by just doing a G29 Z * by just doing a G29 Z
* *
* Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference. * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
* zprobe_zoffset is added to the calculation. * zprobe_zoffset is added to the calculation.
* *
* *
* Release Notes: * Release Notes:
* You MUST do a M502 & M500 pair of commands to initialize the storage. Failure to do this * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
* will cause all kinds of problems. Enabling EEPROM Storage is highly recommended. With * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
* EEPROM Storage of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
* G29 P0 G respectively.) * respectively.)
* *
* Z-Probe Sleds are not currently fully supported. There were too many complications caused * Z-Probe Sleds are not currently fully supported. There were too many complications caused
* by them to support them in the Unified Bed Leveling code. Support for them will be handled * by them to support them in the Unified Bed Leveling code. Support for them will be handled
* better in the upcoming Z-Probe Object that will happen during the Code Clean Up phase. (That * better in the upcoming Z-Probe Object that will happen during the Code Clean Up phase. (That
* is what they really are: A special case of the Z-Probe.) When a Z-Probe Object appears, it * is what they really are: A special case of the Z-Probe.) When a Z-Probe Object appears, it
* should slip in under the Unified Bed Leveling code without major trauma. * should slip in under the Unified Bed Leveling code without major trauma.
* *
* When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
* the Unified Bed Leveling probes points further and further away from the starting location. (The * the Unified Bed Leveling probes points further and further away from the starting location. (The
* starting location defaults to the center of the bed.) The original Grid and Mesh leveling used * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
* a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
* allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
* perform a small print and check out your settings quicker. You do not need to populate the * perform a small print and check out your settings quicker. You do not need to populate the
* entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
* you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
* gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
* *
* The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
* to get this Mesh data correct for a user's printer. We do not want this data destroyed as * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
* new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
* the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
* other data stored in the EEPROM. (For sure the developers are going to complain about this, but * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
* this is going to be helpful to the users!) * this is going to be helpful to the users!)
* *
* The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions
* we now have the functionality and features of all three systems combined. * we now have the functionality and features of all three systems combined.
*/ */
int Unified_Bed_Leveling_EEPROM_start = -1; int ubl_eeprom_start = -1;
int UBL_has_control_of_LCD_Panel = 0; bool ubl_has_control_of_lcd_panel = false;
volatile int G29_encoderDiff = 0; // This is volatile because it is getting changed at interrupt time. volatile uint8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
// We keep the simple parameter flags and values as 'static' because we break out the // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
// parameter parsing into a support routine. static int g29_verbose_level = 0, test_value = 0,
phase_value = -1, repetition_cnt = 1;
static int G29_Verbose_Level = 0, Test_Value = 0, static bool repeat_flag = UBL_OK, c_flag = false, x_flag = UBL_OK, y_flag = UBL_OK, statistics_flag = UBL_OK, business_card_mode = false;
Phase_Value = -1, Repetition_Cnt = 1; static float x_pos = 0.0, y_pos = 0.0, height_value = 5.0, measured_z, card_thickness = 0.0, constant = 0.0;
static bool Repeat_Flag = UBL_OK, C_Flag = false, X_Flag = UBL_OK, Y_Flag = UBL_OK, Statistics_Flag = UBL_OK, Business_Card_Mode = false; static int storage_slot = 0, test_pattern = 0;
static float X_Pos = 0.0, Y_Pos = 0.0, Height_Value = 5.0, measured_z, card_thickness = 0.0, Constant = 0.0;
static int Storage_Slot = 0, Test_Pattern = 0;
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
void lcd_setstatus(const char* message, bool persist); void lcd_setstatus(const char* message, bool persist);
@ -334,19 +312,18 @@
void gcode_G29() { void gcode_G29() {
mesh_index_pair location; mesh_index_pair location;
int i, j, k; int j, k;
float Z1, Z2, Z3; float Z1, Z2, Z3;
G29_Verbose_Level = 0; // These may change, but let's get some reasonable values into them. g29_verbose_level = 0; // These may change, but let's get some reasonable values into them.
Repeat_Flag = UBL_OK; repeat_flag = UBL_OK;
Repetition_Cnt = 1; repetition_cnt = 1;
C_Flag = false; c_flag = false;
SERIAL_PROTOCOLPGM("Unified_Bed_Leveling_EEPROM_start="); SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start);
SERIAL_PROTOCOLLN(Unified_Bed_Leveling_EEPROM_start);
if (Unified_Bed_Leveling_EEPROM_start < 0) { if (ubl_eeprom_start < 0) {
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it "); SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n"); SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
return; return;
} }
@ -354,14 +331,14 @@
if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
gcode_G28(); gcode_G28();
if (G29_Parameter_Parsing()) return; // abort if parsing the simple parameters causes a problem, if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
// Invalidate Mesh Points. This command is a little bit asymetrical because // Invalidate Mesh Points. This command is a little bit asymetrical because
// it directly specifies the repetition count and does not use the 'R' parameter. // it directly specifies the repetition count and does not use the 'R' parameter.
if (code_seen('I')) { if (code_seen('I')) {
Repetition_Cnt = code_has_value() ? code_value_int() : 1; repetition_cnt = code_has_value() ? code_value_int() : 1;
while (Repetition_Cnt--) { while (repetition_cnt--) {
location = find_closest_mesh_point_of_type(REAL, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) { if (location.x_index < 0) {
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
break; // No more invalid Mesh Points to populate break; // No more invalid Mesh Points to populate
@ -373,38 +350,38 @@
if (code_seen('Q')) { if (code_seen('Q')) {
if (code_has_value()) Test_Pattern = code_value_int(); if (code_has_value()) test_pattern = code_value_int();
if (Test_Pattern < 0 || Test_Pattern > 4) { if (test_pattern < 0 || test_pattern > 4) {
SERIAL_PROTOCOLLNPGM("Invalid Test_Pattern value. (0-4)\n"); SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-4)\n");
return; return;
} }
SERIAL_PROTOCOLLNPGM("Loading Test_Pattern values.\n"); SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
switch (Test_Pattern) { switch (test_pattern) {
case 0: case 0:
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a bowl shape. This is for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape. This is
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { // similar to what a user would see with for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // similar to what a user would see with
Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - i; // a poorly calibrated Delta. Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x; // a poorly calibrated Delta.
Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - j; Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
z_values[i][j] += 2.0 * HYPOT(Z1, Z2); z_values[x][y] += 2.0 * HYPOT(Z1, Z2);
} }
} }
break; break;
case 1: case 1:
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a diagonal line several Mesh for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh
z_values[i][i] += 9.999; // cells thick that is raised z_values[x][x] += 9.999; // cells thick that is raised
if (i < UBL_MESH_NUM_Y_POINTS - 1) if (x < UBL_MESH_NUM_Y_POINTS - 1)
z_values[i][i + 1] += 9.999; // We want the altered line several mesh points thick z_values[x][x + 1] += 9.999; // We want the altered line several mesh points thick
if (i > 0) if (x > 0)
z_values[i][i - 1] += 9.999; // We want the altered line several mesh points thick z_values[x][x - 1] += 9.999; // We want the altered line several mesh points thick
} }
break; break;
case 2: case 2:
// Allow the user to specify the height because 10mm is // Allow the user to specify the height because 10mm is
// a little bit extreme in some cases. // a little bit extreme in some cases.
for (i = (UBL_MESH_NUM_X_POINTS) / 3.0; i < 2 * ((UBL_MESH_NUM_X_POINTS) / 3.0); i++) // Create a rectangular raised area in for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
for (j = (UBL_MESH_NUM_Y_POINTS) / 3.0; j < 2 * ((UBL_MESH_NUM_Y_POINTS) / 3.0); j++) // the center of the bed for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
z_values[i][j] += code_seen('C') ? Constant : 9.99; z_values[x][y] += code_seen('C') ? constant : 9.99;
break; break;
case 3: case 3:
break; break;
@ -412,34 +389,34 @@
} }
if (code_seen('P')) { if (code_seen('P')) {
Phase_Value = code_value_int(); phase_value = code_value_int();
if (Phase_Value < 0 || Phase_Value > 7) { if (phase_value < 0 || phase_value > 7) {
SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n"); SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
return; return;
} }
switch (Phase_Value) { switch (phase_value) {
// //
// Zero Mesh Data // Zero Mesh Data
// //
case 0: case 0:
blm.reset(); ubl.reset();
SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n"); SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
break; break;
// //
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
// //
case 1: case 1:
if (!code_seen('C') ) { if (!code_seen('C') ) {
blm.invalidate(); ubl.invalidate();
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n"); SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
} }
if (G29_Verbose_Level > 1) { if (g29_verbose_level > 1) {
SERIAL_ECHOPGM("Probing Mesh Points Closest to ("); SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
SERIAL_ECHO(X_Pos); SERIAL_ECHO(x_pos);
SERIAL_ECHOPAIR(",", Y_Pos); SERIAL_ECHOPAIR(",", y_pos);
SERIAL_PROTOCOLLNPGM(")\n"); SERIAL_PROTOCOLLNPGM(")\n");
} }
probe_entire_mesh( X_Pos+X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER, probe_entire_mesh( x_pos+X_PROBE_OFFSET_FROM_EXTRUDER, y_pos+Y_PROBE_OFFSET_FROM_EXTRUDER,
code_seen('O') || code_seen('M'), code_seen('E')); code_seen('O') || code_seen('M'), code_seen('E'));
break; break;
// //
@ -448,90 +425,90 @@
case 2: case 2:
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (!X_Flag && !Y_Flag) { // use a good default location for the path if (!x_flag && !y_flag) { // use a good default location for the path
X_Pos = X_MIN_POS; x_pos = X_MIN_POS;
Y_Pos = Y_MIN_POS; y_pos = Y_MIN_POS;
if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
X_Pos = X_MAX_POS; // intentional. It should cause the probed points to follow a x_pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
Y_Pos = Y_MAX_POS; // have Delta printers default to the center of the bed. y_pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
} // For now, until that is decided, it can be forced with the X } // For now, until that is decided, it can be forced with the X
// and Y parameters. // and Y parameters.
if (code_seen('C')) { if (code_seen('C')) {
X_Pos = current_position[X_AXIS]; x_pos = current_position[X_AXIS];
Y_Pos = current_position[Y_AXIS]; y_pos = current_position[Y_AXIS];
} }
Height_Value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES; height_value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
if ((Business_Card_Mode = code_seen('B'))) { if ((business_card_mode = code_seen('B'))) {
card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(Height_Value); card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height_value);
if (fabs(card_thickness) > 1.5) { if (fabs(card_thickness) > 1.5) {
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n"); SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n");
return; return;
} }
} }
manually_probe_remaining_mesh( X_Pos, Y_Pos, Height_Value, card_thickness, code_seen('O') || code_seen('M')); manually_probe_remaining_mesh(x_pos, y_pos, height_value, card_thickness, code_seen('O') || code_seen('M'));
break; break;
// //
// Populate invalid Mesh areas with a constant // Populate invalid Mesh areas with a constant
// //
case 3: case 3:
Height_Value = 0.0; // Assume 0.0 until proven otherwise height_value = 0.0; // Assume 0.0 until proven otherwise
if (code_seen('C')) Height_Value = Constant; if (code_seen('C')) height_value = constant;
// If no repetition is specified, do the whole Mesh // If no repetition is specified, do the whole Mesh
if (!Repeat_Flag) Repetition_Cnt = 9999; if (!repeat_flag) repetition_cnt = 9999;
while (Repetition_Cnt--) { while (repetition_cnt--) {
location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) break; // No more invalid Mesh Points to populate if (location.x_index < 0) break; // No more invalid Mesh Points to populate
z_values[location.x_index][location.y_index] = Height_Value; z_values[location.x_index][location.y_index] = height_value;
} }
break; break;
// //
// Fine Tune (Or Edit) the Mesh // Fine Tune (Or Edit) the Mesh
// //
case 4: case 4:
fine_tune_mesh(X_Pos, Y_Pos, Height_Value, code_seen('O') || code_seen('M')); fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
break; break;
case 5: case 5:
Find_Mean_Mesh_Height(); find_mean_mesh_height();
break; break;
case 6: case 6:
Shift_Mesh_Height(); shift_mesh_height();
break; break;
case 10: case 10:
UBL_has_control_of_LCD_Panel++; // Debug code... Pay no attention to this stuff // Debug code... Pay no attention to this stuff
SERIAL_ECHO_START; // it can be removed soon. // it can be removed soon.
SERIAL_ECHOPGM("Checking G29 has control of LCD Panel:\n"); SERIAL_ECHO_START;
while(!G29_lcd_clicked()) { SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
wait_for_user = true;
while (wait_for_user) {
idle(); idle();
delay(250); delay(250);
SERIAL_PROTOCOL(G29_encoderDiff); SERIAL_ECHO((int)ubl_encoderDiff);
G29_encoderDiff = 0; ubl_encoderDiff = 0;
SERIAL_EOL; SERIAL_EOL;
} }
while (G29_lcd_clicked()) idle(); SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
UBL_has_control_of_LCD_Panel = 0;;
SERIAL_ECHOPGM("G29 giving back control of LCD Panel.\n");
break; break;
} }
} }
if (code_seen('T')) { if (code_seen('T')) {
Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset; Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset; Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset; Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
// We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean // We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is) // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
Z1 -= blm.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y); Z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
Z2 -= blm.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y); Z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
Z3 -= blm.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y); Z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0); do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
tilt_mesh_based_on_3pts(Z1, Z2, Z3); tilt_mesh_based_on_3pts(Z1, Z2, Z3);
@ -541,13 +518,13 @@
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
// good to have the extra information. Soon... we prune this to just a few items // good to have the extra information. Soon... we prune this to just a few items
// //
if (code_seen('W')) G29_What_Command(); if (code_seen('W')) g29_what_command();
// //
// When we are fully debugged, the EEPROM dump command will get deleted also. But // When we are fully debugged, the EEPROM dump command will get deleted also. But
// right now, it is good to have the extra information. Soon... we prune this. // right now, it is good to have the extra information. Soon... we prune this.
// //
if (code_seen('J')) G29_EEPROM_Dump(); // EEPROM Dump if (code_seen('J')) g29_eeprom_dump(); // EEPROM Dump
// //
// When we are fully debugged, this may go away. But there are some valid // When we are fully debugged, this may go away. But there are some valid
@ -555,26 +532,26 @@
// //
if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
G29_Kompare_Current_Mesh_to_Stored_Mesh(); g29_compare_current_mesh_to_stored_mesh();
// //
// Load a Mesh from the EEPROM // Load a Mesh from the EEPROM
// //
if (code_seen('L')) { // Load Current Mesh Data if (code_seen('L')) { // Load Current Mesh Data
Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot; storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
k = E2END - sizeof(blm.state); k = E2END - sizeof(ubl.state);
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); j = (k - ubl_eeprom_start) / sizeof(z_values);
if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) { if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return; return;
} }
blm.load_mesh(Storage_Slot); ubl.load_mesh(storage_slot);
blm.state.EEPROM_storage_slot = Storage_Slot; ubl.state.eeprom_storage_slot = storage_slot;
if (Storage_Slot != blm.state.EEPROM_storage_slot) if (storage_slot != ubl.state.eeprom_storage_slot)
blm.store_state(); ubl.store_state();
SERIAL_PROTOCOLLNPGM("Done.\n"); SERIAL_PROTOCOLLNPGM("Done.\n");
} }
@ -583,53 +560,48 @@
// //
if (code_seen('S')) { // Store (or Save) Current Mesh Data if (code_seen('S')) { // Store (or Save) Current Mesh Data
Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot; storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
if (Storage_Slot == -1) { // Special case, we are going to 'Export' the mesh to the if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
SERIAL_ECHOPGM("G29 I 999\n"); // host in a form it can be reconstructed on a different machine SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[i][j])) { if (!isnan(z_values[x][y])) {
SERIAL_ECHOPAIR("M421 I ", i); SERIAL_ECHOPAIR("M421 I ", x);
SERIAL_ECHOPAIR(" J ", j); SERIAL_ECHOPAIR(" J ", y);
SERIAL_ECHOPGM(" Z "); SERIAL_ECHOPGM(" Z ");
SERIAL_PROTOCOL_F(z_values[i][j], 6); SERIAL_ECHO_F(z_values[x][y], 6);
SERIAL_EOL; SERIAL_EOL;
} }
}
}
return; return;
} }
int k = E2END - sizeof(blm.state), int k = E2END - sizeof(ubl.state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values); j = (k - ubl_eeprom_start) / sizeof(z_values);
if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) { if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
goto LEAVE; goto LEAVE;
} }
blm.store_mesh(Storage_Slot); ubl.store_mesh(storage_slot);
blm.state.EEPROM_storage_slot = Storage_Slot; ubl.state.eeprom_storage_slot = storage_slot;
// //
// if (Storage_Slot != blm.state.EEPROM_storage_slot) // if (storage_slot != ubl.state.eeprom_storage_slot)
blm.store_state(); // Always save an updated copy of the UBL State info ubl.store_state(); // Always save an updated copy of the UBL State info
SERIAL_PROTOCOLLNPGM("Done.\n"); SERIAL_PROTOCOLLNPGM("Done.\n");
} }
if (code_seen('O') || code_seen('M')) { if (code_seen('O') || code_seen('M'))
i = code_has_value() ? code_value_int() : 0; ubl.display_map(code_has_value() ? code_value_int() : 0);
blm.display_map(i);
}
if (code_seen('Z')) { if (code_seen('Z')) {
if (code_has_value()) { if (code_has_value())
blm.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
}
else { else {
save_UBL_active_state_and_disable(); save_ubl_active_state_and_disable();
//measured_z = probe_pt(X_Pos + X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, G29_Verbose_Level); //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
measured_z = 1.5; measured_z = 1.5;
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
@ -637,149 +609,154 @@
// it won't be that painful to spin the Encoder Wheel for 1.5mm // it won't be that painful to spin the Encoder Wheel for 1.5mm
lcd_implementation_clear(); lcd_implementation_clear();
lcd_z_offset_edit_setup(measured_z); lcd_z_offset_edit_setup(measured_z);
wait_for_user = true;
do { do {
measured_z = lcd_z_offset_edit(); measured_z = lcd_z_offset_edit();
idle(); idle();
do_blocking_move_to_z(measured_z); do_blocking_move_to_z(measured_z);
} while (!G29_lcd_clicked()); } while (wait_for_user);
UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked. ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( ) // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
// or here. So, until we are done looking for a long Encoder Wheel Press, // or here. So, until we are done looking for a long Encoder Wheel Press,
// we need to take control of the panel // we need to take control of the panel
millis_t nxt = millis() + 1500UL;
lcd_return_to_status(); lcd_return_to_status();
while (G29_lcd_clicked()) { // debounce and watch for abort
const millis_t nxt = millis() + 1500UL;
while (ubl_lcd_clicked()) { // debounce and watch for abort
idle(); idle();
if (ELAPSED(millis(), nxt)) { if (ELAPSED(millis(), nxt)) {
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped."); SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_setstatus("Z-Offset Stopped", true); lcd_setstatus("Z-Offset Stopped", true);
ubl_has_control_of_lcd_panel = false;
while (G29_lcd_clicked()) idle(); restore_ubl_active_state_and_leave();
UBL_has_control_of_LCD_Panel = 0;
restore_UBL_active_state_and_leave();
goto LEAVE; goto LEAVE;
} }
} }
UBL_has_control_of_LCD_Panel = 0; ubl_has_control_of_lcd_panel = false;
delay(20); // We don't want any switch noise. delay(20); // We don't want any switch noise.
blm.state.z_offset = measured_z; ubl.state.z_offset = measured_z;
lcd_implementation_clear(); lcd_implementation_clear();
restore_UBL_active_state_and_leave(); restore_ubl_active_state_and_leave();
} }
} }
LEAVE: LEAVE:
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatus(" ", true); lcd_setstatus(" ", true);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
UBL_has_control_of_LCD_Panel = 0;
ubl_has_control_of_lcd_panel = false;
} }
void Find_Mean_Mesh_Height() { void find_mean_mesh_height() {
int i, j, n; uint8_t x, y;
int n;
float sum, sum_of_diff_squared, sigma, difference, mean; float sum, sum_of_diff_squared, sigma, difference, mean;
sum = sum_of_diff_squared = 0.0; sum = sum_of_diff_squared = 0.0;
n = 0; n = 0;
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[i][j])) { if (!isnan(z_values[x][y])) {
sum += z_values[i][j]; sum += z_values[x][y];
n++; n++;
} }
}
}
mean = sum / n; mean = sum / n;
// //
// Now do the sumation of the squares of difference from mean // Now do the sumation of the squares of difference from mean
// //
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[i][j])) { if (!isnan(z_values[x][y])) {
difference = (z_values[i][j] - mean); difference = (z_values[x][y] - mean);
sum_of_diff_squared += difference * difference; sum_of_diff_squared += difference * difference;
} }
}
}
SERIAL_ECHOLNPAIR("# of samples: ", n); SERIAL_ECHOLNPAIR("# of samples: ", n);
SERIAL_ECHOPGM("Mean Mesh Height: "); SERIAL_ECHOPGM("Mean Mesh Height: ");
SERIAL_PROTOCOL_F(mean, 6); SERIAL_ECHO_F(mean, 6);
SERIAL_EOL; SERIAL_EOL;
sigma = sqrt( sum_of_diff_squared / (n + 1)); sigma = sqrt(sum_of_diff_squared / (n + 1));
SERIAL_ECHOPGM("Standard Deviation: "); SERIAL_ECHOPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6); SERIAL_ECHO_F(sigma, 6);
SERIAL_EOL; SERIAL_EOL;
if (C_Flag) if (c_flag)
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[i][j])) if (!isnan(z_values[x][y]))
z_values[i][j] -= mean + Constant; z_values[x][y] -= mean + constant;
} }
void Shift_Mesh_Height( ) { void shift_mesh_height( ) {
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[i][j])) if (!isnan(z_values[x][y]))
z_values[i][j] += Constant; z_values[x][y] += constant;
} }
// probe_entire_mesh(X_Pos, Y_Pos) probes all invalidated locations of the mesh that can be reached /**
// by the probe. It attempts to fill in locations closest to the nozzle's start location first. * Probe all invalidated locations of the mesh that can be reached by the probe.
* This attempts to fill in locations closest to the nozzle's start location first.
void probe_entire_mesh(float X_Pos, float Y_Pos, bool do_UBL_MESH_Map, bool stow_probe) { */
void probe_entire_mesh(float x_pos, float y_pos, bool do_ubl_mesh_map, bool stow_probe) {
mesh_index_pair location; mesh_index_pair location;
float xProbe, yProbe, measured_z; float xProbe, yProbe, measured_z;
UBL_has_control_of_LCD_Panel++; ubl_has_control_of_lcd_panel++;
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
DEPLOY_PROBE(); DEPLOY_PROBE();
wait_for_user = true;
do { do {
if (G29_lcd_clicked()) { if (!wait_for_user) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated."); SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
lcd_quick_feedback(); lcd_quick_feedback();
while (G29_lcd_clicked()) idle(); ubl_has_control_of_lcd_panel = false;
UBL_has_control_of_LCD_Panel = 0;
STOW_PROBE(); STOW_PROBE();
restore_UBL_active_state_and_leave(); restore_ubl_active_state_and_leave();
return; return;
} }
location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 1, NULL); // the '1' says we want the location to be relative to the probe location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 1, NULL); // the '1' says we want the location to be relative to the probe
if (location.x_index>=0 && location.y_index>=0) { if (location.x_index >= 0 && location.y_index >= 0) {
xProbe = blm.map_x_index_to_bed_location(location.x_index); xProbe = ubl.map_x_index_to_bed_location(location.x_index);
yProbe = blm.map_y_index_to_bed_location(location.y_index); yProbe = ubl.map_y_index_to_bed_location(location.y_index);
if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) { if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
UBL_has_control_of_LCD_Panel = 0; ubl_has_control_of_lcd_panel = false;
goto LEAVE; goto LEAVE;
} }
measured_z = probe_pt(xProbe, yProbe, stow_probe, G29_Verbose_Level); measured_z = probe_pt(xProbe, yProbe, stow_probe, g29_verbose_level);
z_values[location.x_index][location.y_index] = measured_z + Z_PROBE_OFFSET_FROM_EXTRUDER; z_values[location.x_index][location.y_index] = measured_z + Z_PROBE_OFFSET_FROM_EXTRUDER;
} }
if (do_UBL_MESH_Map) blm.display_map(1); if (do_ubl_mesh_map) ubl.display_map(1);
} while (location.x_index >= 0 && location.y_index >= 0); } while (location.x_index >= 0 && location.y_index >= 0);
LEAVE: LEAVE:
wait_for_user = false;
STOW_PROBE(); STOW_PROBE();
restore_UBL_active_state_and_leave(); restore_ubl_active_state_and_leave();
X_Pos = constrain( X_Pos-X_PROBE_OFFSET_FROM_EXTRUDER, X_MIN_POS, X_MAX_POS); x_pos = constrain(x_pos - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS);
Y_Pos = constrain( Y_Pos-Y_PROBE_OFFSET_FROM_EXTRUDER, Y_MIN_POS, Y_MAX_POS); y_pos = constrain(y_pos - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS);
do_blocking_move_to_xy(X_Pos, Y_Pos); do_blocking_move_to_xy(x_pos, y_pos);
} }
struct vector tilt_mesh_based_on_3pts(float pt1, float pt2, float pt3) { vector tilt_mesh_based_on_3pts(float pt1, float pt2, float pt3) {
struct vector v1, v2, normal; vector v1, v2, normal;
float c, d, t; float c, d, t;
int i, j; int i, j;
@ -799,11 +776,16 @@
// printf("[%f,%f,%f] ", normal.dx, normal.dy, normal.dz); // printf("[%f,%f,%f] ", normal.dx, normal.dy, normal.dz);
normal.dx /= normal.dz; // This code does two things. This vector is normal to the tilted plane. /**
normal.dy /= normal.dz; // However, we don't know its direction. We need it to point up. So if * This code does two things. This vector is normal to the tilted plane.
normal.dz /= normal.dz; // Z is negative, we need to invert the sign of all components of the vector * However, we don't know its direction. We need it to point up. So if
// We also need Z to be unity because we are going to be treating this triangle * Z is negative, we need to invert the sign of all components of the vector
// as the sin() and cos() of the bed's tilt * We also need Z to be unity because we are going to be treating this triangle
* as the sin() and cos() of the bed's tilt
*/
normal.dx /= normal.dz;
normal.dy /= normal.dz;
normal.dz /= normal.dz;
// //
// All of 3 of these points should give us the same d constant // All of 3 of these points should give us the same d constant
@ -812,25 +794,25 @@
d = t + normal.dz * pt1; d = t + normal.dz * pt1;
c = d - t; c = d - t;
SERIAL_ECHOPGM("d from 1st point: "); SERIAL_ECHOPGM("d from 1st point: ");
SERIAL_PROTOCOL_F(d, 6); SERIAL_ECHO_F(d, 6);
SERIAL_ECHOPGM(" c: "); SERIAL_ECHOPGM(" c: ");
SERIAL_PROTOCOL_F(c, 6); SERIAL_ECHO_F(c, 6);
SERIAL_EOL; SERIAL_EOL;
t = normal.dx * ubl_3_point_2_X + normal.dy * ubl_3_point_2_Y; t = normal.dx * ubl_3_point_2_X + normal.dy * ubl_3_point_2_Y;
d = t + normal.dz * pt2; d = t + normal.dz * pt2;
c = d - t; c = d - t;
SERIAL_ECHOPGM("d from 2nd point: "); SERIAL_ECHOPGM("d from 2nd point: ");
SERIAL_PROTOCOL_F(d, 6); SERIAL_ECHO_F(d, 6);
SERIAL_ECHOPGM(" c: "); SERIAL_ECHOPGM(" c: ");
SERIAL_PROTOCOL_F(c, 6); SERIAL_ECHO_F(c, 6);
SERIAL_EOL; SERIAL_EOL;
t = normal.dx * ubl_3_point_3_X + normal.dy * ubl_3_point_3_Y; t = normal.dx * ubl_3_point_3_X + normal.dy * ubl_3_point_3_Y;
d = t + normal.dz * pt3; d = t + normal.dz * pt3;
c = d - t; c = d - t;
SERIAL_ECHOPGM("d from 3rd point: "); SERIAL_ECHOPGM("d from 3rd point: ");
SERIAL_PROTOCOL_F(d, 6); SERIAL_ECHO_F(d, 6);
SERIAL_ECHOPGM(" c: "); SERIAL_ECHOPGM(" c: ");
SERIAL_PROTOCOL_F(c, 6); SERIAL_ECHO_F(c, 6);
SERIAL_EOL; SERIAL_EOL;
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
@ -843,77 +825,68 @@
} }
float use_encoder_wheel_to_measure_point() { float use_encoder_wheel_to_measure_point() {
UBL_has_control_of_LCD_Panel++; wait_for_user = true;
while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! while (wait_for_user) { // we need the loop to move the nozzle based on the encoder wheel here!
idle(); idle();
if (G29_encoderDiff != 0) { if (ubl_encoderDiff) {
float new_z; do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl_encoderDiff));
// We define a new variable so we can know ahead of time where we are trying to go. ubl_encoderDiff = 0;
// The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
// is complete. (So the dial feels responsive to user)
new_z = current_position[Z_AXIS] + 0.01 * float(G29_encoderDiff);
G29_encoderDiff = 0;
do_blocking_move_to_z(new_z);
} }
} }
while (G29_lcd_clicked()) idle(); // debounce and wait
UBL_has_control_of_LCD_Panel--;
return current_position[Z_AXIS]; return current_position[Z_AXIS];
} }
float measure_business_card_thickness(float Height_Value) { float measure_business_card_thickness(float height_value) {
float Z1, Z2;
UBL_has_control_of_LCD_Panel++; ubl_has_control_of_lcd_panel++;
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
do_blocking_move_to_z(Height_Value); do_blocking_move_to_z(height_value);
do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0); do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
//, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0); //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
Z1 = use_encoder_wheel_to_measure_point(); const float Z1 = use_encoder_wheel_to_measure_point();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
UBL_has_control_of_LCD_Panel = 0; ubl_has_control_of_lcd_panel = false;
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
Z2 = use_encoder_wheel_to_measure_point(); const float Z2 = use_encoder_wheel_to_measure_point();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
if (G29_Verbose_Level > 1) { if (g29_verbose_level > 1) {
SERIAL_ECHOPGM("Business Card is: "); SERIAL_PROTOCOLPGM("Business Card is: ");
SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6); SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6);
SERIAL_PROTOCOLLNPGM("mm thick."); SERIAL_PROTOCOLLNPGM("mm thick.");
} }
restore_UBL_active_state_and_leave(); restore_ubl_active_state_and_leave();
return abs(Z1 - Z2); return abs(Z1 - Z2);
} }
void manually_probe_remaining_mesh(float X_Pos, float Y_Pos, float z_clearance, float card_thickness, bool do_UBL_MESH_Map) { void manually_probe_remaining_mesh(float x_pos, float y_pos, float z_clearance, float card_thickness, bool do_ubl_mesh_map) {
mesh_index_pair location; mesh_index_pair location;
float last_x, last_y, dx, dy, float last_x, last_y, dx, dy,
xProbe, yProbe; xProbe, yProbe;
unsigned long cnt;
UBL_has_control_of_LCD_Panel++; ubl_has_control_of_lcd_panel++;
last_x = last_y = -9999.99; last_x = last_y = -9999.99;
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
do_blocking_move_to_z(z_clearance); do_blocking_move_to_z(z_clearance);
do_blocking_move_to_xy(X_Pos, Y_Pos); do_blocking_move_to_xy(x_pos, y_pos);
do { do {
if (do_UBL_MESH_Map) blm.display_map(1); if (do_ubl_mesh_map) ubl.display_map(1);
location = find_closest_mesh_point_of_type(INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL); // The '0' says we want to use the nozzle's position
// It doesn't matter if the probe can not reach the // It doesn't matter if the probe can not reach the
// NAN location. This is a manual probe. // NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue; if (location.x_index < 0 && location.y_index < 0) continue;
xProbe = blm.map_x_index_to_bed_location(location.x_index); xProbe = ubl.map_x_index_to_bed_location(location.x_index);
yProbe = blm.map_y_index_to_bed_location(location.y_index); yProbe = ubl.map_y_index_to_bed_location(location.y_index);
if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) { if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
UBL_has_control_of_LCD_Panel = 0; ubl_has_control_of_lcd_panel = false;
goto LEAVE; goto LEAVE;
} }
@ -929,124 +902,120 @@
last_y = yProbe; last_y = yProbe;
do_blocking_move_to_xy(xProbe, yProbe); do_blocking_move_to_xy(xProbe, yProbe);
while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! wait_for_user = true;
while (wait_for_user) { // we need the loop to move the nozzle based on the encoder wheel here!
idle(); idle();
if (G29_encoderDiff) { if (ubl_encoderDiff) {
float new_z; do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0);
// We define a new variable so we can know ahead of time where we are trying to go. ubl_encoderDiff = 0;
// The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
// is complete. (So the dial feels responsive to user)
new_z = current_position[Z_AXIS] + float(G29_encoderDiff) / 100.0;
G29_encoderDiff = 0;
do_blocking_move_to_z(new_z);
} }
} }
cnt = millis(); const millis_t nxt = millis() + 1500L;
while (G29_lcd_clicked()) { // debounce and watch for abort while (ubl_lcd_clicked()) { // debounce and watch for abort
idle(); idle();
if (millis() - cnt > 1500L) { if (ELAPSED(millis(), nxt)) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated."); SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_quick_feedback(); lcd_quick_feedback();
while (G29_lcd_clicked()) idle(); while (ubl_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0; ubl_has_control_of_lcd_panel = false;
restore_UBL_active_state_and_leave(); restore_ubl_active_state_and_leave();
return; return;
} }
} }
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
if (G29_Verbose_Level > 2) { if (g29_verbose_level > 2) {
SERIAL_PROTOCOL("Mesh Point Measured at: "); SERIAL_PROTOCOL("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
SERIAL_EOL; SERIAL_EOL;
} }
} while (location.x_index >= 0 && location.y_index >= 0); } while (location.x_index >= 0 && location.y_index >= 0);
if (do_UBL_MESH_Map) blm.display_map(1); if (do_ubl_mesh_map) ubl.display_map(1);
LEAVE: LEAVE:
restore_UBL_active_state_and_leave(); restore_ubl_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(X_Pos, Y_Pos); do_blocking_move_to_xy(x_pos, y_pos);
} }
bool G29_Parameter_Parsing() { bool g29_parameter_parsing() {
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatus("Doing G29 UBL !", true); lcd_setstatus("Doing G29 UBL !", true);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
X_Pos = current_position[X_AXIS]; x_pos = current_position[X_AXIS];
Y_Pos = current_position[Y_AXIS]; y_pos = current_position[Y_AXIS];
X_Flag = Y_Flag = Repeat_Flag = UBL_OK; x_flag = y_flag = repeat_flag = false;
Constant = 0.0; constant = 0.0;
Repetition_Cnt = 1; repetition_cnt = 1;
if ((X_Flag = code_seen('X'))) { if ((x_flag = code_seen('X'))) {
X_Pos = code_value_float(); x_pos = code_value_float();
if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) { if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n"); SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
return UBL_ERR; return UBL_ERR;
} }
} }
if ((Y_Flag = code_seen('Y'))) { if ((y_flag = code_seen('Y'))) {
Y_Pos = code_value_float(); y_pos = code_value_float();
if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) { if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
return UBL_ERR; return UBL_ERR;
} }
} }
if (X_Flag != Y_Flag) { if (x_flag != y_flag) {
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n"); SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
return UBL_ERR; return UBL_ERR;
} }
G29_Verbose_Level = 0; g29_verbose_level = 0;
if (code_seen('V')) { if (code_seen('V')) {
G29_Verbose_Level = code_value_int(); g29_verbose_level = code_value_int();
if (G29_Verbose_Level < 0 || G29_Verbose_Level > 4) { if (g29_verbose_level < 0 || g29_verbose_level > 4) {
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n"); SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
return UBL_ERR; return UBL_ERR;
} }
} }
if (code_seen('A')) { // Activate the Unified Bed Leveling System if (code_seen('A')) { // Activate the Unified Bed Leveling System
blm.state.active = 1; ubl.state.active = 1;
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n"); SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
blm.store_state(); ubl.store_state();
} }
if ((C_Flag = code_seen('C')) && code_has_value()) if ((c_flag = code_seen('C')) && code_has_value())
Constant = code_value_float(); constant = code_value_float();
if (code_seen('D')) { // Disable the Unified Bed Leveling System if (code_seen('D')) { // Disable the Unified Bed Leveling System
blm.state.active = 0; ubl.state.active = 0;
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n"); SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
blm.store_state(); ubl.store_state();
} }
if (code_seen('F')) { if (code_seen('F')) {
blm.state.G29_Correction_Fade_Height = 10.00; ubl.state.g29_correction_fade_height = 10.00;
if (code_has_value()) { if (code_has_value()) {
blm.state.G29_Correction_Fade_Height = code_value_float(); ubl.state.g29_correction_fade_height = code_value_float();
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; ubl.state.g29_fade_height_multiplier = 1.0 / ubl.state.g29_correction_fade_height;
} }
if (blm.state.G29_Correction_Fade_Height<0.0 || blm.state.G29_Correction_Fade_Height>100.0) { if (ubl.state.g29_correction_fade_height < 0.0 || ubl.state.g29_correction_fade_height > 100.0) {
SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausable.\n"); SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
blm.state.G29_Correction_Fade_Height = 10.00; ubl.state.g29_correction_fade_height = 10.00;
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; ubl.state.g29_fade_height_multiplier = 1.0 / ubl.state.g29_correction_fade_height;
return UBL_ERR; return UBL_ERR;
} }
} }
if ((Repeat_Flag = code_seen('R'))) { if ((repeat_flag = code_seen('R'))) {
Repetition_Cnt = code_has_value() ? code_value_int() : 9999; repetition_cnt = code_has_value() ? code_value_int() : 9999;
if (Repetition_Cnt < 1) { if (repetition_cnt < 1) {
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n"); SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
return UBL_ERR; return UBL_ERR;
} }
@ -1064,7 +1033,7 @@
SERIAL_PROTOCOL(str); SERIAL_PROTOCOL(str);
SERIAL_PROTOCOL_F(f, 8); SERIAL_PROTOCOL_F(f, 8);
SERIAL_PROTOCOL(" "); SERIAL_PROTOCOL(" ");
ptr = (char *)&f; ptr = (char*)&f;
for (uint8_t i = 0; i < 4; i++) { for (uint8_t i = 0; i < 4; i++) {
SERIAL_PROTOCOL(" "); SERIAL_PROTOCOL(" ");
prt_hex_byte(*ptr++); prt_hex_byte(*ptr++);
@ -1081,95 +1050,98 @@
SERIAL_EOL; SERIAL_EOL;
} }
static int UBL_state_at_invokation = 0, static int ubl_state_at_invocation = 0,
UBL_state_recursion_chk = 0; ubl_state_recursion_chk = 0;
void save_UBL_active_state_and_disable() { void save_ubl_active_state_and_disable() {
UBL_state_recursion_chk++; ubl_state_recursion_chk++;
if (UBL_state_recursion_chk != 1) { if (ubl_state_recursion_chk != 1) {
SERIAL_ECHOLNPGM("save_UBL_active_state_and_disabled() called multiple times in a row."); SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
lcd_setstatus("save_UBL_active() error", true); lcd_setstatus("save_UBL_active() error", true);
lcd_quick_feedback(); lcd_quick_feedback();
return; return;
} }
UBL_state_at_invokation = blm.state.active; ubl_state_at_invocation = ubl.state.active;
blm.state.active = 0; ubl.state.active = 0;
return; return;
} }
void restore_UBL_active_state_and_leave() { void restore_ubl_active_state_and_leave() {
if (--UBL_state_recursion_chk) { if (--ubl_state_recursion_chk) {
SERIAL_ECHOLNPGM("restore_UBL_active_state_and_leave() called too many times."); SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
lcd_setstatus("restore_UBL_active() error", true); lcd_setstatus("restore_UBL_active() error", true);
lcd_quick_feedback(); lcd_quick_feedback();
return; return;
} }
blm.state.active = UBL_state_at_invokation; ubl.state.active = ubl_state_at_invocation;
}
void g29_print_line(bool longer=false) {
SERIAL_PROTOCOLPGM(" -------------------------------------");
if (longer) SERIAL_PROTOCOLPGM("-------------------");
SERIAL_PROTOCOLLNPGM(" <----<<<");
} }
/** /**
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
* good to have the extra information. Soon... we prune this to just a few items * good to have the extra information. Soon... we prune this to just a few items
*/ */
void G29_What_Command() { void g29_what_command() {
int k, i; int k = E2END - ubl_eeprom_start;
k = E2END - Unified_Bed_Leveling_EEPROM_start; statistics_flag++;
Statistics_Flag++;
SERIAL_PROTOCOLPGM("Version #4: 10/30/2016 branch \n"); SERIAL_PROTOCOLLNPGM("Version #4: 10/30/2016 branch");
SERIAL_PROTOCOLPGM("Unified Bed Leveling System "); SERIAL_PROTOCOLPGM("Unified Bed Leveling System ");
if (blm.state.active) if (ubl.state.active)
SERIAL_PROTOCOLPGM("Active."); SERIAL_PROTOCOLPGM("Active.");
else else
SERIAL_PROTOCOLPGM("Inactive."); SERIAL_PROTOCOLPGM("Inactive.");
SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me g29_print_line(); // These are just to help me find this info buried in the clutter
if (blm.state.EEPROM_storage_slot == 0xFFFF) { if (ubl.state.eeprom_storage_slot == 0xFFFF) {
SERIAL_PROTOCOLPGM("No Mesh Loaded."); SERIAL_PROTOCOLPGM("No Mesh Loaded.");
SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me g29_print_line(); // These are just to help me find this info buried in the clutter
// find this info buried in the clutter
} }
else { else {
SERIAL_PROTOCOLPGM("Mesh: "); SERIAL_PROTOCOLPGM("Mesh: ");
prt_hex_word(blm.state.EEPROM_storage_slot); prt_hex_word(ubl.state.eeprom_storage_slot);
SERIAL_PROTOCOLPGM(" Loaded. "); SERIAL_PROTOCOLPGM(" Loaded. ");
SERIAL_PROTOCOLLNPGM(" -------------------------------------------------------- <----<<<"); // These arrows are just to help me g29_print_line(true); // These are just to help me find this info buried in the clutter
// find this info buried in the clutter
} }
SERIAL_ECHOPAIR("\nG29_Correction_Fade_Height : ", blm.state.G29_Correction_Fade_Height ); SERIAL_PROTOCOLPAIR("\ng29_correction_fade_height : ", ubl.state.g29_correction_fade_height );
SERIAL_PROTOCOLPGM(" ------------------------------------- <----<<< \n"); // These arrows are just to help me g29_print_line(); // These are just to help me find this info buried in the clutter
// find this info buried in the clutter
idle(); idle();
SERIAL_ECHOPGM("z_offset: "); SERIAL_PROTOCOLPGM("z_offset: ");
SERIAL_PROTOCOL_F(blm.state.z_offset, 6); SERIAL_PROTOCOL_F(ubl.state.z_offset, 6);
SERIAL_PROTOCOLLNPGM(" ------------------------------------------------------------ <----<<<"); g29_print_line(true); // These are just to help me find this info buried in the clutter
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
SERIAL_PROTOCOL_F( blm.map_x_index_to_bed_location(i), 1); SERIAL_PROTOCOL_F( ubl.map_x_index_to_bed_location(i), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
} }
SERIAL_EOL; SERIAL_EOL;
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
SERIAL_PROTOCOL_F( blm.map_y_index_to_bed_location(i), 1); SERIAL_PROTOCOL_F( ubl.map_y_index_to_bed_location(i), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
} }
SERIAL_EOL; SERIAL_EOL;
#if HAS_KILL #if HAS_KILL
SERIAL_ECHOPAIR("Kill pin on :", KILL_PIN); SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
SERIAL_ECHOLNPAIR(" state:", READ(KILL_PIN)); SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
#endif #endif
SERIAL_ECHOLNPAIR("UBL_state_at_invokation :", UBL_state_at_invokation); SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
SERIAL_ECHOLNPAIR("UBL_state_recursion_chk :", UBL_state_recursion_chk); SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
SERIAL_EOL; SERIAL_EOL;
SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x"); SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x");
prt_hex_word(Unified_Bed_Leveling_EEPROM_start); prt_hex_word(ubl_eeprom_start);
SERIAL_EOL; SERIAL_EOL;
idle(); idle();
@ -1178,7 +1150,7 @@
SERIAL_EOL; SERIAL_EOL;
idle(); idle();
SERIAL_PROTOCOLLNPAIR("sizeof(blm) : ", (int)sizeof(blm)); SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
SERIAL_EOL; SERIAL_EOL;
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
SERIAL_EOL; SERIAL_EOL;
@ -1190,45 +1162,45 @@
SERIAL_PROTOCOLPGM("EEPROM can hold 0x"); SERIAL_PROTOCOLPGM("EEPROM can hold 0x");
prt_hex_word(k / sizeof(z_values)); prt_hex_word(k / sizeof(z_values));
SERIAL_PROTOCOLPGM(" meshes. \n"); SERIAL_PROTOCOLLNPGM(" meshes.");
SERIAL_PROTOCOLPGM("sizeof(stat) :"); SERIAL_PROTOCOLPGM("sizeof(stat) :");
prt_hex_word(sizeof(blm.state)); prt_hex_word(sizeof(ubl.state));
SERIAL_EOL; SERIAL_EOL;
idle(); idle();
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS); SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS); SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
SERIAL_ECHOPGM("\nMESH_X_DIST "); SERIAL_PROTOCOLPGM("\nMESH_X_DIST ");
SERIAL_PROTOCOL_F(MESH_X_DIST, 6); SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
SERIAL_ECHOPGM("\nMESH_Y_DIST "); SERIAL_PROTOCOLPGM("\nMESH_Y_DIST ");
SERIAL_PROTOCOL_F(MESH_Y_DIST, 6); SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
SERIAL_EOL; SERIAL_EOL;
idle(); idle();
SERIAL_ECHOPAIR("\nsizeof(block_t): ", (int)sizeof(block_t)); SERIAL_PROTOCOLPAIR("\nsizeof(block_t): ", (int)sizeof(block_t));
SERIAL_ECHOPAIR("\nsizeof(planner.block_buffer): ", (int)sizeof(planner.block_buffer)); SERIAL_PROTOCOLPAIR("\nsizeof(planner.block_buffer): ", (int)sizeof(planner.block_buffer));
SERIAL_ECHOPAIR("\nsizeof(char): ", (int)sizeof(char)); SERIAL_PROTOCOLPAIR("\nsizeof(char): ", (int)sizeof(char));
SERIAL_ECHOPAIR(" sizeof(unsigned char): ", (int)sizeof(unsigned char)); SERIAL_PROTOCOLPAIR(" sizeof(unsigned char): ", (int)sizeof(unsigned char));
SERIAL_ECHOPAIR("\nsizeof(int): ", (int)sizeof(int)); SERIAL_PROTOCOLPAIR("\nsizeof(int): ", (int)sizeof(int));
SERIAL_ECHOPAIR(" sizeof(unsigned int): ", (int)sizeof(unsigned int)); SERIAL_PROTOCOLPAIR(" sizeof(unsigned int): ", (int)sizeof(unsigned int));
SERIAL_ECHOPAIR("\nsizeof(long): ", (int)sizeof(long)); SERIAL_PROTOCOLPAIR("\nsizeof(long): ", (int)sizeof(long));
SERIAL_ECHOPAIR(" sizeof(unsigned long int): ", (int)sizeof(unsigned long int)); SERIAL_PROTOCOLPAIR(" sizeof(unsigned long int): ", (int)sizeof(unsigned long int));
SERIAL_ECHOPAIR("\nsizeof(float): ", (int)sizeof(float)); SERIAL_PROTOCOLPAIR("\nsizeof(float): ", (int)sizeof(float));
SERIAL_ECHOPAIR(" sizeof(double): ", (int)sizeof(double)); SERIAL_PROTOCOLPAIR(" sizeof(double): ", (int)sizeof(double));
SERIAL_ECHOPAIR("\nsizeof(void *): ", (int)sizeof(void *)); SERIAL_PROTOCOLPAIR("\nsizeof(void *): ", (int)sizeof(void *));
struct pf { void *p_f(); } ptr_func; struct pf { void *p_f(); } ptr_func;
SERIAL_ECHOPAIR(" sizeof(struct pf): ", (int)sizeof(pf)); SERIAL_PROTOCOLPAIR(" sizeof(struct pf): ", (int)sizeof(pf));
SERIAL_ECHOPAIR(" sizeof(void *()): ", (int)sizeof(ptr_func)); SERIAL_PROTOCOLPAIR(" sizeof(void *()): ", (int)sizeof(ptr_func));
SERIAL_EOL; SERIAL_EOL;
idle(); idle();
if (!blm.sanity_check()) if (!ubl.sanity_check())
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed."); SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
} }
@ -1236,17 +1208,17 @@
* When we are fully debugged, the EEPROM dump command will get deleted also. But * When we are fully debugged, the EEPROM dump command will get deleted also. But
* right now, it is good to have the extra information. Soon... we prune this. * right now, it is good to have the extra information. Soon... we prune this.
*/ */
void G29_EEPROM_Dump() { void g29_eeprom_dump() {
unsigned char cccc; unsigned char cccc;
int i, j, kkkk; uint16_t kkkk;
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("EEPROM Dump:\n"); SERIAL_ECHOLNPGM("EEPROM Dump:");
for (i = 0; i < E2END + 1; i += 16) { for (uint16_t i = 0; i < E2END + 1; i += 16) {
if (i & 0x3 == 0) idle(); if (i & 0x3 == 0) idle();
prt_hex_word(i); prt_hex_word(i);
SERIAL_ECHOPGM(": "); SERIAL_ECHOPGM(": ");
for (j = 0; j < 16; j++) { for (uint16_t j = 0; j < 16; j++) {
kkkk = i + j; kkkk = i + j;
eeprom_read_block(&cccc, (void *)kkkk, 1); eeprom_read_block(&cccc, (void *)kkkk, 1);
prt_hex_byte(cccc); prt_hex_byte(cccc);
@ -1262,41 +1234,40 @@
* When we are fully debugged, this may go away. But there are some valid * When we are fully debugged, this may go away. But there are some valid
* use cases for the users. So we can wait and see what to do with it. * use cases for the users. So we can wait and see what to do with it.
*/ */
void G29_Kompare_Current_Mesh_to_Stored_Mesh() { void g29_compare_current_mesh_to_stored_mesh() {
float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
int i, j, k;
if (!code_has_value()) { if (!code_has_value()) {
SERIAL_PROTOCOLLNPGM("?Mesh # required.\n"); SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
return; return;
} }
Storage_Slot = code_value_int(); storage_slot = code_value_int();
k = E2END - sizeof(blm.state); uint16_t k = E2END - sizeof(ubl.state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(tmp_z_values); j = (k - ubl_eeprom_start) / sizeof(tmp_z_values);
if (Storage_Slot < 0 || Storage_Slot > j || Unified_Bed_Leveling_EEPROM_start <= 0) { if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return; return;
} }
j = k - (Storage_Slot + 1) * sizeof(tmp_z_values); j = k - (storage_slot + 1) * sizeof(tmp_z_values);
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
SERIAL_ECHOPAIR("Subtracting Mesh ", Storage_Slot); SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing
prt_hex_word(j); // the address in the EEPROM where the Mesh is stored. prt_hex_word(j); // the address in the EEPROM where the Mesh is stored.
SERIAL_EOL; SERIAL_EOL;
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
z_values[i][j] = z_values[i][j] - tmp_z_values[i][j]; z_values[x][y] = z_values[x][y] - tmp_z_values[x][y];
} }
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type type, float X, float Y, bool probe_as_reference, unsigned int bits[16]) { mesh_index_pair find_closest_mesh_point_of_type(MeshPointType type, float X, float Y, bool probe_as_reference, unsigned int bits[16]) {
int i, j; int i, j;
float f, px, py, mx, my, dx, dy, closest = 99999.99; float f, px, py, mx, my, dx, dy, closest = 99999.99,
float current_x, current_y, distance; current_x, current_y, distance;
mesh_index_pair return_val; mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1; return_val.x_index = return_val.y_index = -1;
@ -1321,8 +1292,8 @@
// We only get here if we found a Mesh Point of the specified type // We only get here if we found a Mesh Point of the specified type
mx = blm.map_x_index_to_bed_location(i); // Check if we can probe this mesh location mx = ubl.map_x_index_to_bed_location(i); // Check if we can probe this mesh location
my = blm.map_y_index_to_bed_location(j); my = ubl.map_y_index_to_bed_location(j);
// If we are using the probe as the reference there are some locations we can't get to. // If we are using the probe as the reference there are some locations we can't get to.
// We prune these out of the list and ignore them until the next Phase where we do the // We prune these out of the list and ignore them until the next Phase where we do the
@ -1352,13 +1323,13 @@
return return_val; return return_val;
} }
void fine_tune_mesh(float X_Pos, float Y_Pos, float Height_Value, bool do_UBL_MESH_Map) { void fine_tune_mesh(float x_pos, float y_pos, bool do_ubl_mesh_map) {
mesh_index_pair location; mesh_index_pair location;
float xProbe, yProbe, new_z; float xProbe, yProbe;
uint16_t i, not_done[16]; uint16_t i, not_done[16];
long round_off; int32_t round_off;
save_UBL_active_state_and_disable(); save_ubl_active_state_and_disable();
memset(not_done, 0xFF, sizeof(not_done)); memset(not_done, 0xFF, sizeof(not_done));
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
@ -1366,11 +1337,11 @@
#endif #endif
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(X_Pos, Y_Pos); do_blocking_move_to_xy(x_pos, y_pos);
do { do {
if (do_UBL_MESH_Map) blm.display_map(1); if (do_ubl_mesh_map) ubl.display_map(1);
location = find_closest_mesh_point_of_type( SET_IN_BITMAP, X_Pos, Y_Pos, 0, not_done); // The '0' says we want to use the nozzle's position location = find_closest_mesh_point_of_type( SET_IN_BITMAP, x_pos, y_pos, 0, not_done); // The '0' says we want to use the nozzle's position
// It doesn't matter if the probe can not reach this // It doesn't matter if the probe can not reach this
// location. This is a manual edit of the Mesh Point. // location. This is a manual edit of the Mesh Point.
if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points. if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
@ -1378,21 +1349,21 @@
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop // different location the next time through the loop
xProbe = blm.map_x_index_to_bed_location(location.x_index); xProbe = ubl.map_x_index_to_bed_location(location.x_index);
yProbe = blm.map_y_index_to_bed_location(location.y_index); yProbe = ubl.map_y_index_to_bed_location(location.y_index);
if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check. if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now, SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now,
UBL_has_control_of_LCD_Panel = 0; // Let's do the check. ubl_has_control_of_lcd_panel = false; // Let's do the check.
goto FINE_TUNE_EXIT; goto FINE_TUNE_EXIT;
} }
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
do_blocking_move_to_xy(xProbe, yProbe); do_blocking_move_to_xy(xProbe, yProbe);
new_z = z_values[location.x_index][location.y_index] + 0.001; float new_z = z_values[location.x_index][location.y_index] + 0.001;
round_off = (int32_t)(new_z * 1000.0 + 2.5); // we chop off the last digits just to be clean. We are rounding to the round_off = (int32_t)(new_z * 1000.0 + 2.5); // we chop off the last digits just to be clean. We are rounding to the
round_off -= (round_off % 5L); // closest 0 or 5 at the 3rd decimal place. round_off -= (round_off % 5L); // closest 0 or 5 at the 3rd decimal place.
new_z = ((float)(round_off)) / 1000.0; new_z = float(round_off) / 1000.0;
//SERIAL_ECHOPGM("Mesh Point Currently At: "); //SERIAL_ECHOPGM("Mesh Point Currently At: ");
//SERIAL_PROTOCOL_F(new_z, 6); //SERIAL_PROTOCOL_F(new_z, 6);
@ -1400,18 +1371,21 @@
lcd_implementation_clear(); lcd_implementation_clear();
lcd_mesh_edit_setup(new_z); lcd_mesh_edit_setup(new_z);
UBL_has_control_of_LCD_Panel++;
wait_for_user = true;
do { do {
new_z = lcd_mesh_edit(); new_z = lcd_mesh_edit();
idle(); idle();
} while (!G29_lcd_clicked()); } while (wait_for_user);
UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( )
// or here.
millis_t nxt = millis() + 1500UL;
lcd_return_to_status(); lcd_return_to_status();
while (G29_lcd_clicked()) { // debounce and watch for abort
ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
// or here.
const millis_t nxt = millis() + 1500UL;
while (ubl_lcd_clicked()) { // debounce and watch for abort
idle(); idle();
if (ELAPSED(millis(), nxt)) { if (ELAPSED(millis(), nxt)) {
lcd_return_to_status(); lcd_return_to_status();
@ -1419,30 +1393,30 @@
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_setstatus("Mesh Editing Stopped", true); lcd_setstatus("Mesh Editing Stopped", true);
while (G29_lcd_clicked()) idle(); while (ubl_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0; ubl_has_control_of_lcd_panel = false;
goto FINE_TUNE_EXIT; goto FINE_TUNE_EXIT;
} }
} }
//UBL_has_control_of_LCD_Panel = 0;
delay(20); // We don't want any switch noise. delay(20); // We don't want any switch noise.
z_values[location.x_index][location.y_index] = new_z; z_values[location.x_index][location.y_index] = new_z;
lcd_implementation_clear(); lcd_implementation_clear();
} while (location.x_index >= 0 && location.y_index >= 0 && --Repetition_Cnt); } while (location.x_index >= 0 && location.y_index >= 0 && --repetition_cnt);
FINE_TUNE_EXIT: FINE_TUNE_EXIT:
if (do_UBL_MESH_Map) blm.display_map(1); ubl_has_control_of_lcd_panel = false;
restore_UBL_active_state_and_leave();
if (do_ubl_mesh_map) ubl.display_map(1);
restore_ubl_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(X_Pos, Y_Pos); do_blocking_move_to_xy(x_pos, y_pos);
UBL_has_control_of_LCD_Panel = 0;
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
lcd_setstatus("Done Editing Mesh", true); lcd_setstatus("Done Editing Mesh", true);

View file

@ -19,116 +19,118 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
* *
*/ */
#include "Marlin.h" #include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
#include "Marlin.h"
#include "UBL.h" #include "UBL.h"
#include "planner.h" #include "planner.h"
#include <avr/io.h> #include <avr/io.h>
#include <math.h> #include <math.h>
extern void set_current_to_destination(); extern void set_current_to_destination();
extern bool G26_Debug_flag; extern void debug_current_and_destination(char *title);
void debug_current_and_destination(char *title);
void wait_for_button_press(); void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
void UBL_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) { int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi,
current_xi, current_yi,
dxi, dyi, xi_cnt, yi_cnt;
float x_start, y_start,
x, y, z1, z2, z0 /*, z_optimized */,
next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1,
on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start,
dx, dy, adx, ady, m, c;
int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi; /**
int left_flag, down_flag; * Much of the nozzle movement will be within the same cell. So we will do as little computation
int current_xi, current_yi; * as possible to determine if this is the case. If this move is within the same cell, we will
int dxi, dyi, xi_cnt, yi_cnt; * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
bool use_X_dist, inf_normalized_flag, inf_m_flag; */
float x_start, y_start;
float x, y, z1, z2, z0 /*, z_optimized */;
float next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1;
float on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start;
float dx, dy, adx, ady, m, c;
//
// Much of the nozzle movement will be within the same cell. So we will do as little computation
// as possible to determine if this is the case. If this move is within the same cell, we will
// just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
//
x_start = current_position[X_AXIS]; x_start = current_position[X_AXIS];
y_start = current_position[Y_AXIS]; y_start = current_position[Y_AXIS];
z_start = current_position[Z_AXIS]; z_start = current_position[Z_AXIS];
e_start = current_position[E_AXIS]; e_start = current_position[E_AXIS];
cell_start_xi = blm.get_cell_index_x(x_start); cell_start_xi = ubl.get_cell_index_x(x_start);
cell_start_yi = blm.get_cell_index_y(y_start); cell_start_yi = ubl.get_cell_index_y(y_start);
cell_dest_xi = blm.get_cell_index_x(x_end); cell_dest_xi = ubl.get_cell_index_x(x_end);
cell_dest_yi = blm.get_cell_index_y(y_end); cell_dest_yi = ubl.get_cell_index_y(y_end);
if (G26_Debug_flag!=0) { if (g26_debug_flag) {
SERIAL_ECHOPGM(" UBL_line_to_destination(xe="); SERIAL_ECHOPGM(" ubl_line_to_destination(xe=");
SERIAL_ECHO(x_end); SERIAL_ECHO(x_end);
SERIAL_ECHOPGM(",ye="); SERIAL_ECHOPGM(", ye=");
SERIAL_ECHO(y_end); SERIAL_ECHO(y_end);
SERIAL_ECHOPGM(",ze="); SERIAL_ECHOPGM(", ze=");
SERIAL_ECHO(z_end); SERIAL_ECHO(z_end);
SERIAL_ECHOPGM(",ee="); SERIAL_ECHOPGM(", ee=");
SERIAL_ECHO(e_end); SERIAL_ECHO(e_end);
SERIAL_ECHOPGM(")\n"); SERIAL_ECHOPGM(")\n");
debug_current_and_destination( (char *) "Start of UBL_line_to_destination()"); debug_current_and_destination((char*)"Start of ubl_line_to_destination()");
} }
if ((cell_start_xi == cell_dest_xi) && (cell_start_yi == cell_dest_yi)) { // if the whole move is within the same cell, if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
// we don't need to break up the move /**
// * we don't need to break up the move
// If we are moving off the print bed, we are going to allow the move at this level. *
// But we detect it and isolate it. For now, we just pass along the request. * If we are moving off the print bed, we are going to allow the move at this level.
// * But we detect it and isolate it. For now, we just pass along the request.
*/
if (cell_dest_xi<0 || cell_dest_yi<0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) { if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
// Note: There is no Z Correction in this case. We are off the grid and don't know what // Note: There is no Z Correction in this case. We are off the grid and don't know what
// a reasonable correction would be. // a reasonable correction would be.
planner.buffer_line(x_end, y_end, z_end + blm.state.z_offset, e_end, feed_rate, extruder); planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder);
set_current_to_destination(); set_current_to_destination();
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "out of bounds in UBL_line_to_destination()"); if (g26_debug_flag)
} debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()");
return; return;
} }
// we can optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
// generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
// We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
// We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
// instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
// to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
FINAL_MOVE: FINAL_MOVE:
a0ma1diva2ma1 = (x_end - mesh_index_to_X_location[cell_dest_xi]) * (float) (1.0 / MESH_X_DIST);
z1 = z_values[cell_dest_xi][cell_dest_yi] + /**
(z_values[cell_dest_xi + 1][cell_dest_yi] - z_values[cell_dest_xi][cell_dest_yi]) * a0ma1diva2ma1; * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
* generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
* We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
* We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
* instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/
z2 = z_values[cell_dest_xi][cell_dest_yi+1] + a0ma1diva2ma1 = (x_end - mesh_index_to_x_location[cell_dest_xi]) * 0.1 * (MESH_X_DIST);
(z_values[cell_dest_xi+1][cell_dest_yi+1] - z_values[cell_dest_xi][cell_dest_yi+1]) * a0ma1diva2ma1;
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we z1 = z_values[cell_dest_xi ][cell_dest_yi ] + a0ma1diva2ma1 *
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]);
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + a0ma1diva2ma1 *
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
a0ma1diva2ma1 = (y_end - mesh_index_to_Y_location[cell_dest_yi]) * (float) (1.0 / MESH_Y_DIST); a0ma1diva2ma1 = (y_end - mesh_index_to_y_location[cell_dest_yi]) * 0.1 * (MESH_Y_DIST);
z0 = z1 + (z2 - z1) * a0ma1diva2ma1; z0 = z1 + (z2 - z1) * a0ma1diva2ma1;
// debug code to use non-optimized get_z_correction() and to do a sanity check /**
// that the correct value is being passed to planner.buffer_line() * Debug code to use non-optimized get_z_correction() and to do a sanity check
// * that the correct value is being passed to planner.buffer_line()
*/
/* /*
z_optimized = z0; z_optimized = z0;
z0 = blm.get_z_correction( x_end, y_end); z0 = ubl.get_z_correction( x_end, y_end);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination( (char *) "FINAL_MOVE: z_correction()"); debug_current_and_destination((char*)"FINAL_MOVE: z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" x_end=", x_end); SERIAL_ECHOPAIR(" x_end=", x_end);
SERIAL_ECHOPAIR(" y_end=", y_end); SERIAL_ECHOPAIR(" y_end=", y_end);
SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z0=", z0);
@ -136,48 +138,50 @@
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0)); SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
SERIAL_EOL; SERIAL_EOL;
} }
*/ //*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN /**
z0 = 0.0; // in z_values[][] and propagate through the * If part of the Mesh is undefined, it will show up as NAN
// calculations. If our correction is NAN, we throw it out * in z_values[][] and propagate through the
// because part of the Mesh is undefined and we don't have the * calculations. If our correction is NAN, we throw it out
// information we need to complete the height correction. * because part of the Mesh is undefined and we don't have the
} * information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder);
if (g26_debug_flag)
debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
planner.buffer_line(x_end, y_end, z_end + z0 + blm.state.z_offset, e_end, feed_rate, extruder);
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "FINAL_MOVE in UBL_line_to_destination()");
}
set_current_to_destination(); set_current_to_destination();
return; return;
} }
// /**
// If we get here, we are processing a move that crosses at least one Mesh Line. We will check * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
// for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
// of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
// computation and in fact most lines are of this nature. We will check for that in the following * computation and in fact most lines are of this nature. We will check for that in the following
// blocks of code: * blocks of code:
*/
left_flag = 0;
down_flag = 0;
inf_m_flag = false;
inf_normalized_flag = false;
dx = x_end - x_start; dx = x_end - x_start;
dy = y_end - y_start; dy = y_end - y_start;
if (dx<0.0) { // figure out which way we need to move to get to the next cell const int left_flag = dx < 0.0 ? 1 : 0,
down_flag = dy < 0.0 ? 1 : 0;
if (left_flag) { // figure out which way we need to move to get to the next cell
dxi = -1; dxi = -1;
adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative. adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative.
} }
else { // We may as well generate the appropriate values for adx and ady right now else { // We may as well generate the appropriate values for adx and ady right now
dxi = 1; // to save setting up the abs() function call and actually doing the call. dxi = 1; // to save setting up the abs() function call and actually doing the call.
adx = dx; adx = dx;
} }
if (dy<0.0) { if (dy < 0.0) {
dyi = -1; dyi = -1;
ady = -dy; // absolute value of dy ady = -dy; // absolute value of dy
} }
@ -186,75 +190,68 @@
ady = dy; ady = dy;
} }
if (dx<0.0) left_flag = 1;
if (dy<0.0) down_flag = 1;
if (cell_start_xi == cell_dest_xi) dxi = 0; if (cell_start_xi == cell_dest_xi) dxi = 0;
if (cell_start_yi == cell_dest_yi) dyi = 0; if (cell_start_yi == cell_dest_yi) dyi = 0;
// /**
// Compute the scaling factor for the extruder for each partial move. * Compute the scaling factor for the extruder for each partial move.
// We need to watch out for zero length moves because it will cause us to * We need to watch out for zero length moves because it will cause us to
// have an infinate scaling factor. We are stuck doing a floating point * have an infinate scaling factor. We are stuck doing a floating point
// divide to get our scaling factor, but after that, we just multiply by this * divide to get our scaling factor, but after that, we just multiply by this
// number. We also pick our scaling factor based on whether the X or Y * number. We also pick our scaling factor based on whether the X or Y
// component is larger. We use the biggest of the two to preserve precision. * component is larger. We use the biggest of the two to preserve precision.
// */
if ( adx > ady ) {
use_X_dist = true; const bool use_x_dist = adx > ady;
on_axis_distance = x_end-x_start;
} on_axis_distance = use_x_dist ? x_end - x_start : y_end - y_start;
else {
use_X_dist = false;
on_axis_distance = y_end-y_start;
}
e_position = e_end - e_start; e_position = e_end - e_start;
e_normalized_dist = e_position / on_axis_distance; e_normalized_dist = e_position / on_axis_distance;
z_position = z_end - z_start; z_position = z_end - z_start;
z_normalized_dist = z_position / on_axis_distance; z_normalized_dist = z_position / on_axis_distance;
if (e_normalized_dist==INFINITY || e_normalized_dist==-INFINITY) { const bool inf_normalized_flag = e_normalized_dist == INFINITY || e_normalized_dist == -INFINITY;
inf_normalized_flag = true;
}
current_xi = cell_start_xi; current_xi = cell_start_xi;
current_yi = cell_start_yi; current_yi = cell_start_yi;
m = dy / dx; m = dy / dx;
c = y_start - m*x_start; c = y_start - m * x_start;
if (m == INFINITY || m == -INFINITY) { const bool inf_m_flag = (m == INFINITY || m == -INFINITY);
inf_m_flag = true;
} /**
// * This block handles vertical lines. These are lines that stay within the same
// This block handles vertical lines. These are lines that stay within the same * X Cell column. They do not need to be perfectly vertical. They just can
// X Cell column. They do not need to be perfectly vertical. They just can * not cross into another X Cell column.
// not cross into another X Cell column. */
//
if (dxi == 0) { // Check for a vertical line if (dxi == 0) { // Check for a vertical line
current_yi += down_flag; // Line is heading down, we just want to go to the bottom current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) { while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi; current_yi += dyi;
next_mesh_line_y = mesh_index_to_Y_location[current_yi]; next_mesh_line_y = mesh_index_to_y_location[current_yi];
if (inf_m_flag) {
x = x_start; // if the slope of the line is infinite, we won't do the calculations
}
// we know the next X is the same so we can recover and continue!
else {
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
}
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi); /**
* inf_m_flag? the slope of the line is infinite, we won't do the calculations
* else, we know the next X is the same so we can recover and continue!
* Calculate X at the next Y mesh line
*/
x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m;
// z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line() /**
// * Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
/* /*
z_optimized = z0; z_optimized = z0;
z0 = blm.get_z_correction( x, next_mesh_line_y); z0 = ubl.get_z_correction( x, next_mesh_line_y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination( (char *) "VERTICAL z_correction()"); debug_current_and_destination((char*)"VERTICAL z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" x=", x); SERIAL_ECHOPAIR(" x=", x);
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y); SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z0=", z0);
@ -262,25 +259,30 @@
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n"); SERIAL_ECHO("\n");
} }
*/ //*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN /**
z0 = 0.0; // in z_values[][] and propagate through the * If part of the Mesh is undefined, it will show up as NAN
// calculations. If our correction is NAN, we throw it out * in z_values[][] and propagate through the
// because part of the Mesh is undefined and we don't have the * calculations. If our correction is NAN, we throw it out
// information we need to complete the height correction. * because part of the Mesh is undefined and we don't have the
} * information we need to complete the height correction.
y = mesh_index_to_Y_location[current_yi]; */
if (isnan(z0)) z0 = 0.0;
// Without this check, it is possible for the algorythm to generate a zero length move in the case y = mesh_index_to_y_location[current_yi];
// where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
// happens, it might be best to remove the check and always 'schedule' the move because /**
// the planner.buffer_line() routine will filter it if that happens. * Without this check, it is possible for the algorithm to generate a zero length move in the case
if ( y!=y_start) { * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
if ( inf_normalized_flag == false ) { * happens, it might be best to remove the check and always 'schedule' the move because
on_axis_distance = y - y_start; // we don't need to check if the extruder position * the planner.buffer_line() routine will filter it if that happens.
*/
if (y != y_start) {
if (!inf_normalized_flag) {
on_axis_distance = y - y_start; // we don't need to check if the extruder position
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
z_position = z_start + on_axis_distance * z_normalized_dist; z_position = z_start + on_axis_distance * z_normalized_dist;
} }
@ -289,49 +291,52 @@
z_position = z_start; z_position = z_start;
} }
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED "); } //else printf("FIRST MOVE PRUNED ");
} }
if (g26_debug_flag)
debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()");
// //
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
// //
if (G26_Debug_flag!=0) { if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
debug_current_and_destination( (char *) "vertical move done in UBL_line_to_destination()");
}
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
goto FINAL_MOVE; goto FINAL_MOVE;
}
set_current_to_destination(); set_current_to_destination();
return; return;
} }
// /**
// This block handles horizontal lines. These are lines that stay within the same *
// Y Cell row. They do not need to be perfectly horizontal. They just can * This block handles horizontal lines. These are lines that stay within the same
// not cross into another Y Cell row. * Y Cell row. They do not need to be perfectly horizontal. They just can
// * not cross into another Y Cell row.
*
*/
if (dyi == 0) { // Check for a horiziontal line if (dyi == 0) { // Check for a horizontal line
current_xi += left_flag; // Line is heading left, we just want to go to the left current_xi += left_flag; // Line is heading left, we just want to go to the left
// edge of this cell for the first move. // edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) { while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi; current_xi += dxi;
next_mesh_line_x = mesh_index_to_X_location[current_xi]; next_mesh_line_x = mesh_index_to_x_location[current_xi];
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
// /**
// debug code to use non-optimized get_z_correction() and to do a sanity check * Debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line() * that the correct value is being passed to planner.buffer_line()
// */
/* /*
z_optimized = z0; z_optimized = z0;
z0 = blm.get_z_correction( next_mesh_line_x, y); z0 = ubl.get_z_correction( next_mesh_line_x, y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination( (char *) "HORIZONTAL z_correction()"); debug_current_and_destination((char*)"HORIZONTAL z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x); SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y); SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z0=", z0);
@ -339,25 +344,30 @@
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n"); SERIAL_ECHO("\n");
} }
*/ //*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN /**
z0 = 0.0; // in z_values[][] and propagate through the * If part of the Mesh is undefined, it will show up as NAN
// calculations. If our correction is NAN, we throw it out * in z_values[][] and propagate through the
// because part of the Mesh is undefined and we don't have the * calculations. If our correction is NAN, we throw it out
// information we need to complete the height correction. * because part of the Mesh is undefined and we don't have the
} * information we need to complete the height correction.
x = mesh_index_to_X_location[current_xi]; */
if (isnan(z0)) z0 = 0.0;
// Without this check, it is possible for the algorythm to generate a zero length move in the case x = mesh_index_to_x_location[current_xi];
// where the line is heading left and it is starting right on a Mesh Line boundary. For how often
// that happens, it might be best to remove the check and always 'schedule' the move because /**
// the planner.buffer_line() routine will filter it if that happens. * Without this check, it is possible for the algorithm to generate a zero length move in the case
if ( x!=x_start) { * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
if ( inf_normalized_flag == false ) { * that happens, it might be best to remove the check and always 'schedule' the move because
on_axis_distance = x - x_start; // we don't need to check if the extruder position * the planner.buffer_line() routine will filter it if that happens.
*/
if (x != x_start) {
if (!inf_normalized_flag) {
on_axis_distance = x - x_start; // we don't need to check if the extruder position
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = z_start + on_axis_distance * z_normalized_dist; z_position = z_start + on_axis_distance * z_normalized_dist;
} }
@ -366,74 +376,63 @@
z_position = z_start; z_position = z_start;
} }
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED "); } //else printf("FIRST MOVE PRUNED ");
} }
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "horizontal move done in UBL_line_to_destination()"); if (g26_debug_flag)
} debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
goto FINAL_MOVE; goto FINAL_MOVE;
}
set_current_to_destination(); set_current_to_destination();
return; return;
} }
// /**
// *
// * This block handles the generic case of a line crossing both X and Y Mesh lines.
// *
// This block handles the generic case of a line crossing both X and Y */
// Mesh lines.
//
//
//
//
xi_cnt = cell_start_xi - cell_dest_xi; xi_cnt = cell_start_xi - cell_dest_xi;
if ( xi_cnt < 0 ) { if (xi_cnt < 0) xi_cnt = -xi_cnt;
xi_cnt = -xi_cnt;
}
yi_cnt = cell_start_yi - cell_dest_yi; yi_cnt = cell_start_yi - cell_dest_yi;
if ( yi_cnt < 0 ) { if (yi_cnt < 0) yi_cnt = -yi_cnt;
yi_cnt = -yi_cnt;
}
current_xi += left_flag; current_xi += left_flag;
current_yi += down_flag; current_yi += down_flag;
while ( xi_cnt>0 || yi_cnt>0 ) { while (xi_cnt > 0 || yi_cnt > 0) {
next_mesh_line_x = mesh_index_to_X_location[current_xi + dxi]; next_mesh_line_x = mesh_index_to_x_location[current_xi + dxi];
next_mesh_line_y = mesh_index_to_Y_location[current_yi + dyi]; next_mesh_line_y = mesh_index_to_y_location[current_yi + dyi];
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
x = (next_mesh_line_y-c) / m; // Calculate X at the next Y mesh line (we don't have to worry x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
// about m being equal to 0.0 If this was the case, we would have // about m being equal to 0.0 If this was the case, we would have
// detected this as a vertical line move up above and we wouldn't // detected this as a vertical line move up above and we wouldn't
// be down here doing a generic type of move. // be down here doing a generic type of move.
if ((left_flag && (x>next_mesh_line_x)) || (!left_flag && (x<next_mesh_line_x))) { // Check if we hit the Y line first if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
// //
// Yes! Crossing a Y Mesh Line next // Yes! Crossing a Y Mesh Line next
// //
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi-left_flag, current_yi+dyi); z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi);
//
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
/* /*
z_optimized = z0; z_optimized = z0;
z0 = ubl.get_z_correction( x, next_mesh_line_y);
z0 = blm.get_z_correction( x, next_mesh_line_y); if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { debug_current_and_destination((char*)"General_1: z_correction()");
debug_current_and_destination( (char *) "General_1: z_correction()"); if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); {
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); {
SERIAL_ECHOPAIR(" x=", x); SERIAL_ECHOPAIR(" x=", x);
} }
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y); SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
@ -442,23 +441,21 @@
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n"); SERIAL_ECHO("\n");
} }
*/ //*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); z0 *= ubl.fade_scaling_factor_for_z(z_end);
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
if ( inf_normalized_flag == false ) { /**
if ( use_X_dist ) { * If part of the Mesh is undefined, it will show up as NAN
on_axis_distance = x - x_start; * in z_values[][] and propagate through the
} * calculations. If our correction is NAN, we throw it out
else { * because part of the Mesh is undefined and we don't have the
on_axis_distance = next_mesh_line_y - y_start; * information we need to complete the height correction.
} */
if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start;
e_position = e_start + on_axis_distance * e_normalized_dist; e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist; z_position = z_start + on_axis_distance * z_normalized_dist;
} }
@ -466,7 +463,7 @@
e_position = e_start; e_position = e_start;
z_position = z_start; z_position = z_start;
} }
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
current_yi += dyi; current_yi += dyi;
yi_cnt--; yi_cnt--;
} }
@ -474,20 +471,19 @@
// //
// Yes! Crossing a X Mesh Line next // Yes! Crossing a X Mesh Line next
// //
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi+dxi, current_yi-down_flag); z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag);
/**
// * Debug code to use non-optimized get_z_correction() and to do a sanity check
// debug code to use non-optimized get_z_correction() and to do a sanity check * that the correct value is being passed to planner.buffer_line()
// that the correct value is being passed to planner.buffer_line() */
//
/* /*
z_optimized = z0; z_optimized = z0;
z0 = blm.get_z_correction( next_mesh_line_x, y); z0 = ubl.get_z_correction( next_mesh_line_x, y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) { if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination( (char *) "General_2: z_correction()"); debug_current_and_destination((char*)"General_2: z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN "); if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x); SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y); SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z0=", z0);
@ -495,23 +491,21 @@
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0)); SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n"); SERIAL_ECHO("\n");
} }
*/ //*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end ); z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN /**
z0 = 0.0; // in z_values[][] and propagate through the * If part of the Mesh is undefined, it will show up as NAN
// calculations. If our correction is NAN, we throw it out * in z_values[][] and propagate through the
// because part of the Mesh is undefined and we don't have the * calculations. If our correction is NAN, we throw it out
// information we need to complete the height correction. * because part of the Mesh is undefined and we don't have the
} * information we need to complete the height correction.
if ( inf_normalized_flag == false ) { */
if ( use_X_dist ) { if (isnan(z0)) z0 = 0.0;
on_axis_distance = next_mesh_line_x - x_start;
} if (!inf_normalized_flag) {
else { on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start;
on_axis_distance = y - y_start;
}
e_position = e_start + on_axis_distance * e_normalized_dist; e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist; z_position = z_start + on_axis_distance * z_normalized_dist;
} }
@ -520,34 +514,19 @@
z_position = z_start; z_position = z_start;
} }
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder); planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
current_xi += dxi; current_xi += dxi;
xi_cnt--; xi_cnt--;
} }
} }
if (G26_Debug_flag) {
debug_current_and_destination( (char *) "generic move done in UBL_line_to_destination()"); if (g26_debug_flag)
} debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
if (current_position[0] != x_end || current_position[1] != y_end) {
if (current_position[0] != x_end || current_position[1] != y_end)
goto FINAL_MOVE; goto FINAL_MOVE;
}
set_current_to_destination(); set_current_to_destination();
return;
}
void wait_for_button_press() {
// if ( !been_to_2_6 )
//return; // bob - I think this should be commented out
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
SET_OUTPUT(64);
while (READ(66) & 0x01) idle();
delay(50);
while (!(READ(66) & 0x01)) idle();
delay(50);
} }
#endif #endif

View file

@ -152,7 +152,7 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
} // while readDir } // while readDir
} }
void CardReader::ls() { void CardReader::ls() {
lsAction = LS_SerialPrint; lsAction = LS_SerialPrint;
root.rewind(); root.rewind();
lsDive("", root); lsDive("", root);

View file

@ -250,7 +250,7 @@ void Config_Postprocess() {
/** /**
* M500 - Store Configuration * M500 - Store Configuration
*/ */
bool Config_StoreSettings() { bool Config_StoreSettings() {
float dummy = 0.0f; float dummy = 0.0f;
char ver[4] = "000"; char ver[4] = "000";
@ -540,9 +540,9 @@ void Config_Postprocess() {
} }
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
blm.store_state(); ubl.store_state();
if (blm.state.EEPROM_storage_slot >= 0) if (ubl.state.eeprom_storage_slot >= 0)
blm.store_mesh(blm.state.EEPROM_storage_slot); ubl.store_mesh(ubl.state.eeprom_storage_slot);
#endif #endif
return !eeprom_write_error; return !eeprom_write_error;
@ -846,39 +846,39 @@ void Config_Postprocess() {
} }
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
Unified_Bed_Leveling_EEPROM_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it ubl_eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
// can float up or down a little bit without // can float up or down a little bit without
// disrupting the Unified Bed Leveling data // disrupting the Unified Bed Leveling data
blm.load_state(); ubl.load_state();
SERIAL_ECHOPGM(" UBL "); SERIAL_ECHOPGM(" UBL ");
if (!blm.state.active) SERIAL_ECHO("not "); if (!ubl.state.active) SERIAL_ECHO("not ");
SERIAL_ECHOLNPGM("active!"); SERIAL_ECHOLNPGM("active!");
if (!blm.sanity_check()) { if (!ubl.sanity_check()) {
int tmp_mesh; // We want to preserve whether the UBL System is Active int tmp_mesh; // We want to preserve whether the UBL System is Active
bool tmp_active; // If it is, we want to preserve the Mesh that is being used. bool tmp_active; // If it is, we want to preserve the Mesh that is being used.
tmp_mesh = blm.state.EEPROM_storage_slot; tmp_mesh = ubl.state.eeprom_storage_slot;
tmp_active = blm.state.active; tmp_active = ubl.state.active;
SERIAL_ECHOLNPGM("\nInitializing Bed Leveling State to current firmware settings.\n"); SERIAL_ECHOLNPGM("\nInitializing Bed Leveling State to current firmware settings.\n");
blm.state = blm.pre_initialized; // Initialize with the pre_initialized data structure ubl.state = ubl.pre_initialized; // Initialize with the pre_initialized data structure
blm.state.EEPROM_storage_slot = tmp_mesh; // But then restore some data we don't want mangled ubl.state.eeprom_storage_slot = tmp_mesh; // But then restore some data we don't want mangled
blm.state.active = tmp_active; ubl.state.active = tmp_active;
} }
else { else {
SERIAL_PROTOCOLPGM("?Unable to enable Unified Bed Leveling.\n"); SERIAL_PROTOCOLPGM("?Unable to enable Unified Bed Leveling.\n");
blm.state = blm.pre_initialized; ubl.state = ubl.pre_initialized;
blm.reset(); ubl.reset();
blm.store_state(); ubl.store_state();
} }
if (blm.state.EEPROM_storage_slot >= 0) { if (ubl.state.eeprom_storage_slot >= 0) {
blm.load_mesh(blm.state.EEPROM_storage_slot); ubl.load_mesh(ubl.state.eeprom_storage_slot);
SERIAL_ECHOPAIR("Mesh ", blm.state.EEPROM_storage_slot); SERIAL_ECHOPAIR("Mesh ", ubl.state.eeprom_storage_slot);
SERIAL_ECHOLNPGM(" loaded from storage."); SERIAL_ECHOLNPGM(" loaded from storage.");
} }
else { else {
blm.reset(); ubl.reset();
SERIAL_ECHOPGM("UBL System reset() \n"); SERIAL_ECHOPGM("UBL System reset() \n");
} }
#endif #endif
@ -1183,19 +1183,19 @@ void Config_ResetDefault() {
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPGM("System is: "); SERIAL_ECHOPGM("System is: ");
if (blm.state.active) if (ubl.state.active)
SERIAL_ECHOLNPGM("Active\n"); SERIAL_ECHOLNPGM("Active\n");
else else
SERIAL_ECHOLNPGM("Deactive\n"); SERIAL_ECHOLNPGM("Deactive\n");
SERIAL_ECHOPAIR("Active Mesh Slot: ", blm.state.EEPROM_storage_slot); SERIAL_ECHOPAIR("Active Mesh Slot: ", ubl.state.eeprom_storage_slot);
SERIAL_EOL; SERIAL_EOL;
SERIAL_ECHOPGM("z_offset: "); SERIAL_ECHOPGM("z_offset: ");
SERIAL_ECHO_F(blm.state.z_offset, 6); SERIAL_ECHO_F(ubl.state.z_offset, 6);
SERIAL_EOL; SERIAL_EOL;
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((E2END - sizeof(blm.state) - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values))); SERIAL_ECHOPAIR("EEPROM can hold ", (int)((E2END - sizeof(ubl.state) - ubl_eeprom_start) / sizeof(z_values)));
SERIAL_ECHOLNPGM(" meshes. \n"); SERIAL_ECHOLNPGM(" meshes. \n");
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS); SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);

1
Marlin/enum.h Normal file → Executable file
View file

@ -75,6 +75,7 @@ enum DebugFlags {
DEBUG_DRYRUN = _BV(3), ///< Ignore temperature setting and E movement commands DEBUG_DRYRUN = _BV(3), ///< Ignore temperature setting and E movement commands
DEBUG_COMMUNICATION = _BV(4), ///< Not implemented DEBUG_COMMUNICATION = _BV(4), ///< Not implemented
DEBUG_LEVELING = _BV(5), ///< Print detailed output for homing and leveling DEBUG_LEVELING = _BV(5), ///< Print detailed output for homing and leveling
DEBUG_MESH_ADJUST = _BV(6), ///< UBL bed leveling
DEBUG_ALL = 0xFF DEBUG_ALL = 0xFF
}; };

View file

@ -748,41 +748,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -841,25 +848,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -876,7 +864,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -731,41 +731,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -824,25 +831,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -859,7 +847,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -731,41 +731,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -824,25 +831,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -859,7 +847,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -740,41 +740,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -833,25 +840,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -868,7 +856,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -742,41 +742,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -835,25 +842,6 @@
#define ABL_PROBE_PT_3_X ((X_MIN_POS + X_MAX_POS) / 2) #define ABL_PROBE_PT_3_X ((X_MIN_POS + X_MAX_POS) / 2)
#define ABL_PROBE_PT_3_Y Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER) #define ABL_PROBE_PT_3_Y Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -870,7 +858,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -777,41 +777,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -870,25 +877,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -905,7 +893,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -748,41 +748,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -841,25 +848,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -876,7 +864,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -748,41 +748,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -841,25 +848,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -876,7 +864,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -748,41 +748,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -841,25 +848,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -876,7 +864,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -747,41 +747,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -840,25 +847,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -875,7 +863,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -763,41 +763,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -856,25 +863,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -891,7 +879,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -769,41 +769,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -862,25 +869,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -897,7 +885,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -740,41 +740,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -833,25 +840,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -868,7 +856,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -748,41 +748,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -841,25 +848,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -876,7 +864,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -853,41 +853,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling. //#define AUTO_BED_LEVELING_3POINT // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling.
//#define AUTO_BED_LEVELING_LINEAR // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling. //#define AUTO_BED_LEVELING_LINEAR // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling.
#define AUTO_BED_LEVELING_BILINEAR // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling. #define AUTO_BED_LEVELING_BILINEAR // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling.
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -946,25 +953,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -981,7 +969,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -838,41 +838,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -932,25 +939,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -967,7 +955,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -841,41 +841,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -936,25 +943,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -971,7 +959,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -840,41 +840,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -935,25 +942,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -970,7 +958,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -851,41 +851,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -945,25 +952,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -980,7 +968,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -751,41 +751,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -844,25 +851,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -879,7 +867,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -744,41 +744,48 @@
// @section bedlevel // @section bedlevel
/** /**
* Select one form of Auto Bed Leveling below. * Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
* *
* If you're also using the Probe for Z Homing, it's * If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
* highly recommended to enable Z_SAFE_HOMING also!
* *
* - 3POINT * - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear) * Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points. * You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - LINEAR * - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed. * The result is a single tilted plane. Best for a flat bed.
* *
* - BILINEAR * - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid. * Probe several points in a grid.
* You specify the rectangle and the density of sample points. * You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds. * The result is a mesh, best for large or uneven beds.
* *
* - UBL Unified Bed Leveling * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system that combines features and benefits from previous * A comprehensive bed leveling system combining the features and benefits
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use * of other systems. UBL also includes integrated Mesh Generation, Mesh
* Mesh Generation, Mesh Validation and Mesh Editing system. * Validation and Mesh Editing systems. Currently, UBL is only checked out
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with * for Cartesian Printers. That said, it was primarily designed to correct
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel * poor quality Delta Printers. If you feel adventurous and have a Delta,
* adventurous and have a Delta, please post an issue if something doesn't work correctly. * please post an issue if something doesn't work correctly. Initially,
* Initially, you will need to reduce your declared bed size so you have a rectangular area to * you will need to set a reduced bed size so you have a rectangular area
* test on. * to test on.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/** /**
* Enable detailed logging of G28, G29, M48, etc. * Enable detailed logging of G28, G29, M48, etc.
@ -837,25 +844,6 @@
#define ABL_PROBE_PT_3_X 170 #define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20 #define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL) #elif ENABLED(AUTO_BED_LEVELING_UBL)
//=========================================================================== //===========================================================================
@ -872,7 +860,26 @@
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING #elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif
#endif // BED_LEVELING
/** /**
* Commands to execute at the end of G29 probing. * Commands to execute at the end of G29 probing.

View file

@ -700,7 +700,7 @@ static bool pwm_status(uint8_t pin) {
#if defined(TCCR3A) && defined(COM3A1) #if defined(TCCR3A) && defined(COM3A1)
PWM_CASE(3,A); PWM_CASE(3,A);
PWM_CASE(3,B); PWM_CASE(3,B);
#if defined(COM3C1) #ifdef COM3C1
PWM_CASE(3,C); PWM_CASE(3,C);
#endif #endif
#endif #endif
@ -829,14 +829,14 @@ static void pwm_details(uint8_t pin) {
else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3))) err_prob_interrupt(); else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3))) err_prob_interrupt();
else can_be_used(); else can_be_used();
break; break;
#if defined(COM3C1) #ifdef COM3C1
case TIMER3C: case TIMER3C:
TIMER_PREFIX(3,C,3); TIMER_PREFIX(3,C,3);
if (WGM_TEST2) err_is_counter(); if (WGM_TEST2) err_is_counter();
else if (TEST(TIMSK3, OCIE3C)) err_is_interrupt(); else if (TEST(TIMSK3, OCIE3C)) err_is_interrupt();
else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3))) err_prob_interrupt(); else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3))) err_prob_interrupt();
else can_be_used(); else can_be_used();
break; break;
#endif #endif
#endif #endif

View file

@ -26,7 +26,7 @@
#define BOARD_NAME "Melzi" #define BOARD_NAME "Melzi"
#if defined(__AVR_ATmega1284P__) #ifdef __AVR_ATmega1284P__
#define LARGE_FLASH true #define LARGE_FLASH true
#endif #endif

View file

@ -26,7 +26,7 @@
#define BOARD_NAME "Melzi ATmega1284" #define BOARD_NAME "Melzi ATmega1284"
#if defined(__AVR_ATmega1284P__) #ifdef __AVR_ATmega1284P__
#define LARGE_FLASH true #define LARGE_FLASH true
#endif #endif

View file

@ -34,7 +34,7 @@
#define BOARD_NAME "Sanguinololu 1.2" #define BOARD_NAME "Sanguinololu 1.2"
#if defined(__AVR_ATmega1284P__) #ifdef __AVR_ATmega1284P__
#define LARGE_FLASH true #define LARGE_FLASH true
#endif #endif

View file

@ -26,7 +26,7 @@
#define BOARD_NAME "STB V1.1" #define BOARD_NAME "STB V1.1"
#if defined(__AVR_ATmega1284P__) #ifdef __AVR_ATmega1284P__
#define LARGE_FLASH true #define LARGE_FLASH true
#endif #endif

View file

@ -455,7 +455,7 @@ void Planner::check_axes_activity() {
#if FAN_COUNT > 0 #if FAN_COUNT > 0
#if defined(FAN_MIN_PWM) #ifdef FAN_MIN_PWM
#define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0) #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
#else #else
#define CALC_FAN_SPEED(f) tail_fan_speed[f] #define CALC_FAN_SPEED(f) tail_fan_speed[f]

View file

@ -126,7 +126,7 @@ static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t
SIGNAL (TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); } SIGNAL (TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); }
#endif #endif
#else //!WIRING #else // WIRING
// Interrupt handlers for Wiring // Interrupt handlers for Wiring
#if ENABLED(_useTimer1) #if ENABLED(_useTimer1)
@ -136,7 +136,7 @@ static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t
void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); } void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
#endif #endif
#endif //!WIRING #endif // WIRING
static void initISR(timer16_Sequence_t timer) { static void initISR(timer16_Sequence_t timer) {

View file

@ -124,8 +124,8 @@ uint16_t max_display_update_time = 0;
int32_t lastEncoderMovementMillis; int32_t lastEncoderMovementMillis;
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
extern int UBL_has_control_of_LCD_Panel; extern bool ubl_has_control_of_lcd_panel;
extern int G29_encoderDiff; extern uint8_t ubl_encoderDiff;
#endif #endif
#if HAS_POWER_SWITCH #if HAS_POWER_SWITCH
@ -854,88 +854,72 @@ void kill_screen(const char* lcd_msg) {
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
float Mesh_Edit_Value, Mesh_Edit_Accumulator; // We round Mesh_Edit_Value to 2.5 decimal places. So we keep a float mesh_edit_value, mesh_edit_accumulator; // We round mesh_edit_value to 2.5 decimal places. So we keep a
// seperate value that doesn't lose precision. // seperate value that doesn't lose precision.
static int loop_cnt=0, last_seen_bits, UBL_encoderPosition=0; static int ubl_encoderPosition = 0;
static void _lcd_mesh_fine_tune( const char* msg) { static void _lcd_mesh_fine_tune(const char* msg) {
static unsigned long last_click=0; static millis_t next_click = 0;
int last_digit, movement; int16_t last_digit, movement;
long int rounded; int32_t rounded;
defer_return_to_status = true; defer_return_to_status = true;
if (ubl_encoderDiff) {
// If moving the Encoder wheel very slowly, move by just 1 position
ubl_encoderPosition = ELAPSED(millis(), next_click)
? ubl_encoderDiff > 0 ? 1 : -1
: ubl_encoderDiff * 2;
if (G29_encoderDiff) { // If moving the Encoder wheel very slowly, we just go ubl_encoderDiff = 0;
if ( (millis() - last_click) > 200L) { // up or down by 1 position next_click = millis() + 200L;
if ( G29_encoderDiff > 0 )
UBL_encoderPosition = 1;
else {
UBL_encoderPosition = -1;
}
} else
UBL_encoderPosition = G29_encoderDiff * 2;
G29_encoderDiff = 0; mesh_edit_accumulator += float((int32_t)ubl_encoderPosition) * .005 / 2.0;
last_click = millis(); mesh_edit_value = mesh_edit_accumulator;
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
Mesh_Edit_Accumulator += ( (float) (UBL_encoderPosition)) * .005 / 2.0 ; rounded = (int32_t)(mesh_edit_value * 1000.0);
Mesh_Edit_Value = Mesh_Edit_Accumulator;
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
rounded = (long int) (Mesh_Edit_Value * 1000.0);
last_digit = rounded % 5L; //10L; last_digit = rounded % 5L; //10L;
rounded = rounded - last_digit; rounded -= last_digit;
last_digit = rounded % 5L; //10L; last_digit = rounded % 5L; //10L;
Mesh_Edit_Value = ((float) rounded) / 1000.0; mesh_edit_value = float(rounded) / 1000.0;
} }
if (lcdDrawUpdate) { if (lcdDrawUpdate)
lcd_implementation_drawedit(msg, ftostr43sign( (float) Mesh_Edit_Value )); lcd_implementation_drawedit(msg, ftostr43sign(mesh_edit_value));
}
} }
void _lcd_mesh_edit() { void _lcd_mesh_edit() {
_lcd_mesh_fine_tune( PSTR("Mesh Editor: ")); _lcd_mesh_fine_tune(PSTR("Mesh Editor: "));
defer_return_to_status = true; defer_return_to_status = true;
} }
float lcd_mesh_edit() { float lcd_mesh_edit() {
lcd_goto_screen(_lcd_mesh_edit); lcd_goto_screen(_lcd_mesh_edit);
_lcd_mesh_fine_tune( PSTR("Mesh Editor: ")); return mesh_edit_value;
defer_return_to_status = true;
return Mesh_Edit_Value;
} }
void lcd_mesh_edit_setup(float initial) {
void lcd_mesh_edit_setup(float inital) { mesh_edit_value = mesh_edit_accumulator = initial;
Mesh_Edit_Value = inital;
Mesh_Edit_Accumulator = inital;
lcd_goto_screen(_lcd_mesh_edit); lcd_goto_screen(_lcd_mesh_edit);
defer_return_to_status = true;
return ;
} }
void _lcd_z_offset_edit() { void _lcd_z_offset_edit() {
_lcd_mesh_fine_tune( PSTR("Z-Offset: ")); _lcd_mesh_fine_tune(PSTR("Z-Offset: "));
defer_return_to_status = true;
} }
float lcd_z_offset_edit() { float lcd_z_offset_edit() {
lcd_goto_screen(_lcd_z_offset_edit); lcd_goto_screen(_lcd_z_offset_edit);
defer_return_to_status = true; return mesh_edit_value;
return Mesh_Edit_Value;
} }
void lcd_z_offset_edit_setup(float inital) { void lcd_z_offset_edit_setup(float initial) {
Mesh_Edit_Value = inital; mesh_edit_value = mesh_edit_accumulator = initial;
Mesh_Edit_Accumulator = inital;
lcd_goto_screen(_lcd_z_offset_edit); lcd_goto_screen(_lcd_z_offset_edit);
defer_return_to_status = true;
return ;
} }
#endif // AUTO_BED_LEVELING_UBL #endif // AUTO_BED_LEVELING_UBL
@ -3232,7 +3216,7 @@ void lcd_update() {
lcd_buttons_update(); lcd_buttons_update();
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
const bool UBL_CONDITION = !UBL_has_control_of_LCD_Panel; const bool UBL_CONDITION = !ubl_has_control_of_lcd_panel;
#else #else
constexpr bool UBL_CONDITION = true; constexpr bool UBL_CONDITION = true;
#endif #endif
@ -3648,8 +3632,8 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
case encrot3: ENCODER_SPIN(encrot2, encrot0); break; case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
} }
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
if (UBL_has_control_of_LCD_Panel) { if (ubl_has_control_of_lcd_panel) {
G29_encoderDiff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor ubl_encoderDiff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
// wheel has not turned. // wheel has not turned.
} }
@ -3665,6 +3649,7 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
void chirp_at_user() { void chirp_at_user() {
#if ENABLED(LCD_USE_I2C_BUZZER) #if ENABLED(LCD_USE_I2C_BUZZER)
lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
@ -3673,7 +3658,7 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#endif #endif
} }
bool G29_lcd_clicked() { return LCD_CLICKED; } bool ubl_lcd_clicked() { return LCD_CLICKED; }
#endif #endif

View file

@ -164,4 +164,11 @@
#endif // ULTRA_LCD #endif // ULTRA_LCD
#if ENABLED(AUTO_BED_LEVELING_UBL)
void lcd_mesh_edit_setup(float initial);
float lcd_mesh_edit();
void lcd_z_offset_edit_setup(float);
float lcd_z_offset_edit();
#endif
#endif // ULTRALCD_H #endif // ULTRALCD_H

View file

@ -161,7 +161,7 @@ extern volatile uint8_t buttons; //an extended version of the last checked butt
#include <LCD.h> #include <LCD.h>
#include <LiquidCrystal_SR.h> #include <LiquidCrystal_SR.h>
#define LCD_CLASS LiquidCrystal_SR #define LCD_CLASS LiquidCrystal_SR
#if defined(SR_STROBE_PIN) #if PIN_EXISTS(SR_STROBE)
LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN, SR_STROBE_PIN); LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN, SR_STROBE_PIN);
#else #else
LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN); LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN);