Generalize kinematics function names

This commit is contained in:
Scott Lahteine 2016-07-21 15:46:22 -07:00
parent 9c4ad7d7ef
commit d5e2d523c7
4 changed files with 34 additions and 39 deletions

View file

@ -315,7 +315,7 @@ float code_value_temp_diff();
extern float delta_diagonal_rod_trim_tower_1; extern float delta_diagonal_rod_trim_tower_1;
extern float delta_diagonal_rod_trim_tower_2; extern float delta_diagonal_rod_trim_tower_2;
extern float delta_diagonal_rod_trim_tower_3; extern float delta_diagonal_rod_trim_tower_3;
void calculate_delta(float cartesian[3]); void inverse_kinematics(float cartesian[3]);
void recalc_delta_settings(float radius, float diagonal_rod); void recalc_delta_settings(float radius, float diagonal_rod);
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
extern int delta_grid_spacing[2]; extern int delta_grid_spacing[2];
@ -323,8 +323,8 @@ float code_value_temp_diff();
#endif #endif
#elif ENABLED(SCARA) #elif ENABLED(SCARA)
extern float axis_scaling[3]; // Build size scaling extern float axis_scaling[3]; // Build size scaling
void calculate_delta(float cartesian[3]); void inverse_kinematics(float cartesian[3]);
void calculate_SCARA_forward_Transform(float f_scara[3]); void forward_kinematics_SCARA(float f_scara[3]);
#endif #endif
#if ENABLED(Z_DUAL_ENDSTOPS) #if ENABLED(Z_DUAL_ENDSTOPS)

View file

@ -613,7 +613,7 @@ static void report_current_position();
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
#endif #endif
calculate_delta(current_position); inverse_kinematics(current_position);
planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
} }
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta() #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
@ -1528,7 +1528,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
* Works out real Homeposition angles using inverse kinematics, * Works out real Homeposition angles using inverse kinematics,
* and calculates homing offset using forward kinematics * and calculates homing offset using forward kinematics
*/ */
calculate_delta(homeposition); inverse_kinematics(homeposition);
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
@ -1540,7 +1540,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
calculate_SCARA_forward_Transform(delta); forward_kinematics_SCARA(delta);
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]); // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
@ -1658,7 +1658,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination); if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
#endif #endif
refresh_cmd_timeout(); refresh_cmd_timeout();
calculate_delta(destination); inverse_kinematics(destination);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
set_current_to_destination(); set_current_to_destination();
} }
@ -5886,7 +5886,7 @@ inline void gcode_M303() {
//gcode_get_destination(); // For X Y Z E F //gcode_get_destination(); // For X Y Z E F
delta[X_AXIS] = delta_x; delta[X_AXIS] = delta_x;
delta[Y_AXIS] = delta_y; delta[Y_AXIS] = delta_y;
calculate_SCARA_forward_Transform(delta); forward_kinematics_SCARA(delta);
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS]; destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS]; destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
prepare_move_to_destination(); prepare_move_to_destination();
@ -6275,7 +6275,7 @@ inline void gcode_M503() {
// Define runplan for move axes // Define runplan for move axes
#if ENABLED(DELTA) #if ENABLED(DELTA)
#define RUNPLAN(RATE_MM_S) calculate_delta(destination); \ #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
#else #else
#define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S)); #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
@ -6397,7 +6397,7 @@ inline void gcode_M503() {
#if ENABLED(DELTA) #if ENABLED(DELTA)
// Move XYZ to starting position, then E // Move XYZ to starting position, then E
calculate_delta(lastpos); inverse_kinematics(lastpos);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
#else #else
@ -7737,7 +7737,7 @@ void clamp_to_software_endstops(float target[3]) {
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3); delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
} }
void calculate_delta(float cartesian[3]) { void inverse_kinematics(float cartesian[3]) {
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
- sq(delta_tower1_x - cartesian[X_AXIS]) - sq(delta_tower1_x - cartesian[X_AXIS])
@ -7764,14 +7764,14 @@ void clamp_to_software_endstops(float target[3]) {
float delta_safe_distance_from_top() { float delta_safe_distance_from_top() {
float cartesian[3] = { 0 }; float cartesian[3] = { 0 };
calculate_delta(cartesian); inverse_kinematics(cartesian);
float distance = delta[TOWER_3]; float distance = delta[TOWER_3];
cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS; cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
calculate_delta(cartesian); inverse_kinematics(cartesian);
return abs(distance - delta[TOWER_3]); return abs(distance - delta[TOWER_3]);
} }
void forwardKinematics(float z1, float z2, float z3) { void forward_kinematics_DELTA(float z1, float z2, float z3) {
//As discussed in Wikipedia "Trilateration" //As discussed in Wikipedia "Trilateration"
//we are establishing a new coordinate //we are establishing a new coordinate
//system in the plane of the three carriage points. //system in the plane of the three carriage points.
@ -7840,12 +7840,12 @@ void clamp_to_software_endstops(float target[3]) {
cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew; cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
}; };
void forwardKinematics(float point[3]) { void forward_kinematics_DELTA(float point[3]) {
forwardKinematics(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]); forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]);
} }
void set_cartesian_from_steppers() { void set_cartesian_from_steppers() {
forwardKinematics(stepper.get_axis_position_mm(X_AXIS), forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Y_AXIS),
stepper.get_axis_position_mm(Z_AXIS)); stepper.get_axis_position_mm(Z_AXIS));
} }
@ -7973,7 +7973,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
#if ENABLED(DELTA) || ENABLED(SCARA) #if ENABLED(DELTA) || ENABLED(SCARA)
inline bool prepare_delta_move_to(float target[NUM_AXIS]) { inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
float difference[NUM_AXIS]; float difference[NUM_AXIS];
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i]; for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
@ -7996,14 +7996,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
for (int8_t i = 0; i < NUM_AXIS; i++) for (int8_t i = 0; i < NUM_AXIS; i++)
target[i] = current_position[i] + difference[i] * fraction; target[i] = current_position[i] + difference[i] * fraction;
calculate_delta(target); inverse_kinematics(target);
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
if (!bed_leveling_in_progress) adjust_delta(target); if (!bed_leveling_in_progress) adjust_delta(target);
#endif #endif
//DEBUG_POS("prepare_delta_move_to", target); //DEBUG_POS("prepare_kinematic_move_to", target);
//DEBUG_POS("prepare_delta_move_to", delta); //DEBUG_POS("prepare_kinematic_move_to", delta);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
} }
@ -8012,10 +8012,6 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
#endif // DELTA || SCARA #endif // DELTA || SCARA
#if ENABLED(SCARA)
inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
#endif
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
inline bool prepare_move_to_destination_dualx() { inline bool prepare_move_to_destination_dualx() {
@ -8114,10 +8110,8 @@ void prepare_move_to_destination() {
prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]); prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
#endif #endif
#if ENABLED(SCARA) #if ENABLED(DELTA) || ENABLED(SCARA)
if (!prepare_scara_move_to(destination)) return; if (!prepare_kinematic_move_to(destination)) return;
#elif ENABLED(DELTA)
if (!prepare_delta_move_to(destination)) return;
#else #else
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
if (!prepare_move_to_destination_dualx()) return; if (!prepare_move_to_destination_dualx()) return;
@ -8253,7 +8247,7 @@ void prepare_move_to_destination() {
clamp_to_software_endstops(arc_target); clamp_to_software_endstops(arc_target);
#if ENABLED(DELTA) || ENABLED(SCARA) #if ENABLED(DELTA) || ENABLED(SCARA)
calculate_delta(arc_target); inverse_kinematics(arc_target);
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(arc_target); adjust_delta(arc_target);
#endif #endif
@ -8265,7 +8259,7 @@ void prepare_move_to_destination() {
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
#if ENABLED(DELTA) || ENABLED(SCARA) #if ENABLED(DELTA) || ENABLED(SCARA)
calculate_delta(target); inverse_kinematics(target);
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(target); adjust_delta(target);
#endif #endif
@ -8333,7 +8327,7 @@ void prepare_move_to_destination() {
#if ENABLED(SCARA) #if ENABLED(SCARA)
void calculate_SCARA_forward_Transform(float f_scara[3]) { void forward_kinematics_SCARA(float f_scara[3]) {
// Perform forward kinematics, and place results in delta[3] // Perform forward kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
@ -8359,10 +8353,11 @@ void prepare_move_to_destination() {
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
} }
void calculate_delta(float cartesian[3]) { void inverse_kinematics(float cartesian[3]) {
//reverse kinematics. // Inverse kinematics.
// Perform reversed kinematics, and place results in delta[3] // Perform SCARA IK and place results in delta[3].
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 // The maths and first version were done by QHARLEY.
// Integrated, tweaked by Joachim Cerny in June 2014.
float SCARA_pos[2]; float SCARA_pos[2];
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;

View file

@ -189,7 +189,7 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
clamp_to_software_endstops(bez_target); clamp_to_software_endstops(bez_target);
#if ENABLED(DELTA) || ENABLED(SCARA) #if ENABLED(DELTA) || ENABLED(SCARA)
calculate_delta(bez_target); inverse_kinematics(bez_target);
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(bez_target); adjust_delta(bez_target);
#endif #endif

View file

@ -564,7 +564,7 @@ void kill_screen(const char* lcd_msg) {
inline void line_to_current(AxisEnum axis) { inline void line_to_current(AxisEnum axis) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
calculate_delta(current_position); inverse_kinematics(current_position);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
#else // !DELTA #else // !DELTA
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
@ -1301,7 +1301,7 @@ void kill_screen(const char* lcd_msg) {
inline void manage_manual_move() { inline void manage_manual_move() {
if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) { if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
calculate_delta(current_position); inverse_kinematics(current_position);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
#else #else
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);