|
|
|
@ -29,345 +29,311 @@
|
|
|
|
|
|
|
|
|
|
#include "../../inc/MarlinConfig.h"
|
|
|
|
|
|
|
|
|
|
// If not using the USB port as serial port
|
|
|
|
|
#if SERIAL_PORT >= 0
|
|
|
|
|
#include "MarlinSerial_Due.h"
|
|
|
|
|
#include "InterruptVectors_Due.h"
|
|
|
|
|
#include "../../Marlin.h"
|
|
|
|
|
|
|
|
|
|
#include "MarlinSerial_Due.h"
|
|
|
|
|
#include "InterruptVectors_Due.h"
|
|
|
|
|
#include "../../Marlin.h"
|
|
|
|
|
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0 };
|
|
|
|
|
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
|
|
|
|
|
template<typename Cfg> bool MarlinSerial<Cfg>::_written = false;
|
|
|
|
|
template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
|
|
|
|
|
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0;
|
|
|
|
|
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0;
|
|
|
|
|
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0;
|
|
|
|
|
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;
|
|
|
|
|
|
|
|
|
|
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0 };
|
|
|
|
|
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
|
|
|
|
|
template<typename Cfg> bool MarlinSerial<Cfg>::_written = false;
|
|
|
|
|
template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
|
|
|
|
|
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0;
|
|
|
|
|
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0;
|
|
|
|
|
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0;
|
|
|
|
|
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;
|
|
|
|
|
// A SW memory barrier, to ensure GCC does not overoptimize loops
|
|
|
|
|
#define sw_barrier() asm volatile("": : :"memory");
|
|
|
|
|
|
|
|
|
|
// A SW memory barrier, to ensure GCC does not overoptimize loops
|
|
|
|
|
#define sw_barrier() asm volatile("": : :"memory");
|
|
|
|
|
#include "../../feature/emergency_parser.h"
|
|
|
|
|
|
|
|
|
|
#include "../../feature/emergency_parser.h"
|
|
|
|
|
// (called with RX interrupts disabled)
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {
|
|
|
|
|
|
|
|
|
|
// (called with RX interrupts disabled)
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {
|
|
|
|
|
static EmergencyParser::State emergency_state; // = EP_RESET
|
|
|
|
|
|
|
|
|
|
static EmergencyParser::State emergency_state; // = EP_RESET
|
|
|
|
|
// Get the tail - Nothing can alter its value while we are at this ISR
|
|
|
|
|
const ring_buffer_pos_t t = rx_buffer.tail;
|
|
|
|
|
|
|
|
|
|
// Get the tail - Nothing can alter its value while we are at this ISR
|
|
|
|
|
const ring_buffer_pos_t t = rx_buffer.tail;
|
|
|
|
|
// Get the head pointer
|
|
|
|
|
ring_buffer_pos_t h = rx_buffer.head;
|
|
|
|
|
|
|
|
|
|
// Get the head pointer
|
|
|
|
|
ring_buffer_pos_t h = rx_buffer.head;
|
|
|
|
|
// Get the next element
|
|
|
|
|
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// Get the next element
|
|
|
|
|
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
// Read the character from the USART
|
|
|
|
|
uint8_t c = HWUART->UART_RHR;
|
|
|
|
|
|
|
|
|
|
// Read the character from the USART
|
|
|
|
|
uint8_t c = HWUART->UART_RHR;
|
|
|
|
|
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
|
|
|
|
|
|
|
|
|
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
|
|
|
|
// If the character is to be stored at the index just before the tail
|
|
|
|
|
// (such that the head would advance to the current tail), the RX FIFO is
|
|
|
|
|
// full, so don't write the character or advance the head.
|
|
|
|
|
if (i != t) {
|
|
|
|
|
rx_buffer.buffer[h] = c;
|
|
|
|
|
h = i;
|
|
|
|
|
}
|
|
|
|
|
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
|
|
|
|
--rx_dropped_bytes;
|
|
|
|
|
|
|
|
|
|
// If the character is to be stored at the index just before the tail
|
|
|
|
|
// (such that the head would advance to the current tail), the RX FIFO is
|
|
|
|
|
// full, so don't write the character or advance the head.
|
|
|
|
|
if (i != t) {
|
|
|
|
|
rx_buffer.buffer[h] = c;
|
|
|
|
|
h = i;
|
|
|
|
|
}
|
|
|
|
|
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
|
|
|
|
--rx_dropped_bytes;
|
|
|
|
|
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
// Calculate count of bytes stored into the RX buffer
|
|
|
|
|
|
|
|
|
|
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
// Calculate count of bytes stored into the RX buffer
|
|
|
|
|
// Keep track of the maximum count of enqueued bytes
|
|
|
|
|
if (Cfg::MAX_RX_QUEUED) NOLESS(rx_max_enqueued, rx_count);
|
|
|
|
|
|
|
|
|
|
// Keep track of the maximum count of enqueued bytes
|
|
|
|
|
if (Cfg::MAX_RX_QUEUED) NOLESS(rx_max_enqueued, rx_count);
|
|
|
|
|
if (Cfg::XONOFF) {
|
|
|
|
|
// If the last char that was sent was an XON
|
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
|
|
|
|
|
|
|
|
|
|
if (Cfg::XONOFF) {
|
|
|
|
|
// If the last char that was sent was an XON
|
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
|
|
|
|
|
// Bytes stored into the RX buffer
|
|
|
|
|
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// Bytes stored into the RX buffer
|
|
|
|
|
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
// If over 12.5% of RX buffer capacity, send XOFF before running out of
|
|
|
|
|
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
|
|
|
|
|
// and stop sending bytes. This translates to 13mS propagation time.
|
|
|
|
|
if (rx_count >= (Cfg::RX_SIZE) / 8) {
|
|
|
|
|
|
|
|
|
|
// If over 12.5% of RX buffer capacity, send XOFF before running out of
|
|
|
|
|
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
|
|
|
|
|
// and stop sending bytes. This translates to 13mS propagation time.
|
|
|
|
|
if (rx_count >= (Cfg::RX_SIZE) / 8) {
|
|
|
|
|
// At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted.
|
|
|
|
|
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
|
|
|
|
|
// to be in the middle of trying to disable the RX interrupt in the main program, eventually the
|
|
|
|
|
// enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure
|
|
|
|
|
// the sending of the XOFF char is to send it HERE AND NOW.
|
|
|
|
|
|
|
|
|
|
// At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted.
|
|
|
|
|
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
|
|
|
|
|
// to be in the middle of trying to disable the RX interrupt in the main program, eventually the
|
|
|
|
|
// enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure
|
|
|
|
|
// the sending of the XOFF char is to send it HERE AND NOW.
|
|
|
|
|
// About to send the XOFF char
|
|
|
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
|
|
|
|
|
// About to send the XOFF char
|
|
|
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
// Wait until the TX register becomes empty and send it - Here there could be a problem
|
|
|
|
|
// - While waiting for the TX register to empty, the RX register could receive a new
|
|
|
|
|
// character. This must also handle that situation!
|
|
|
|
|
uint32_t status;
|
|
|
|
|
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {
|
|
|
|
|
|
|
|
|
|
// Wait until the TX register becomes empty and send it - Here there could be a problem
|
|
|
|
|
// - While waiting for the TX register to empty, the RX register could receive a new
|
|
|
|
|
// character. This must also handle that situation!
|
|
|
|
|
uint32_t status;
|
|
|
|
|
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {
|
|
|
|
|
if (status & UART_SR_RXRDY) {
|
|
|
|
|
// We received a char while waiting for the TX buffer to be empty - Receive and process it!
|
|
|
|
|
|
|
|
|
|
if (status & UART_SR_RXRDY) {
|
|
|
|
|
// We received a char while waiting for the TX buffer to be empty - Receive and process it!
|
|
|
|
|
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
// Read the character from the USART
|
|
|
|
|
c = HWUART->UART_RHR;
|
|
|
|
|
|
|
|
|
|
// Read the character from the USART
|
|
|
|
|
c = HWUART->UART_RHR;
|
|
|
|
|
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
|
|
|
|
|
|
|
|
|
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
|
|
|
|
|
|
|
|
|
// If the character is to be stored at the index just before the tail
|
|
|
|
|
// (such that the head would advance to the current tail), the FIFO is
|
|
|
|
|
// full, so don't write the character or advance the head.
|
|
|
|
|
if (i != t) {
|
|
|
|
|
rx_buffer.buffer[h] = c;
|
|
|
|
|
h = i;
|
|
|
|
|
}
|
|
|
|
|
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
|
|
|
|
--rx_dropped_bytes;
|
|
|
|
|
// If the character is to be stored at the index just before the tail
|
|
|
|
|
// (such that the head would advance to the current tail), the FIFO is
|
|
|
|
|
// full, so don't write the character or advance the head.
|
|
|
|
|
if (i != t) {
|
|
|
|
|
rx_buffer.buffer[h] = c;
|
|
|
|
|
h = i;
|
|
|
|
|
}
|
|
|
|
|
sw_barrier();
|
|
|
|
|
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
|
|
|
|
--rx_dropped_bytes;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
HWUART->UART_THR = XOFF_CHAR;
|
|
|
|
|
|
|
|
|
|
// At this point there could be a race condition between the write() function
|
|
|
|
|
// and this sending of the XOFF char. This interrupt could happen between the
|
|
|
|
|
// wait to be empty TX buffer loop and the actual write of the character. Since
|
|
|
|
|
// the TX buffer is full because it's sending the XOFF char, the only way to be
|
|
|
|
|
// sure the write() function will succeed is to wait for the XOFF char to be
|
|
|
|
|
// completely sent. Since an extra character could be received during the wait
|
|
|
|
|
// it must also be handled!
|
|
|
|
|
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {
|
|
|
|
|
|
|
|
|
|
if (status & UART_SR_RXRDY) {
|
|
|
|
|
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
|
|
|
|
|
|
|
|
|
|
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// Read the character from the USART
|
|
|
|
|
c = HWUART->UART_RHR;
|
|
|
|
|
|
|
|
|
|
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
|
|
|
|
|
|
|
|
|
// If the character is to be stored at the index just before the tail
|
|
|
|
|
// (such that the head would advance to the current tail), the FIFO is
|
|
|
|
|
// full, so don't write the character or advance the head.
|
|
|
|
|
if (i != t) {
|
|
|
|
|
rx_buffer.buffer[h] = c;
|
|
|
|
|
h = i;
|
|
|
|
|
}
|
|
|
|
|
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
|
|
|
|
--rx_dropped_bytes;
|
|
|
|
|
}
|
|
|
|
|
sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// At this point everything is ready. The write() function won't
|
|
|
|
|
// have any issues writing to the UART TX register if it needs to!
|
|
|
|
|
sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
HWUART->UART_THR = XOFF_CHAR;
|
|
|
|
|
|
|
|
|
|
// At this point there could be a race condition between the write() function
|
|
|
|
|
// and this sending of the XOFF char. This interrupt could happen between the
|
|
|
|
|
// wait to be empty TX buffer loop and the actual write of the character. Since
|
|
|
|
|
// the TX buffer is full because it's sending the XOFF char, the only way to be
|
|
|
|
|
// sure the write() function will succeed is to wait for the XOFF char to be
|
|
|
|
|
// completely sent. Since an extra character could be received during the wait
|
|
|
|
|
// it must also be handled!
|
|
|
|
|
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {
|
|
|
|
|
|
|
|
|
|
if (status & UART_SR_RXRDY) {
|
|
|
|
|
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
|
|
|
|
|
|
|
|
|
|
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// Read the character from the USART
|
|
|
|
|
c = HWUART->UART_RHR;
|
|
|
|
|
|
|
|
|
|
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
|
|
|
|
|
|
|
|
|
|
// If the character is to be stored at the index just before the tail
|
|
|
|
|
// (such that the head would advance to the current tail), the FIFO is
|
|
|
|
|
// full, so don't write the character or advance the head.
|
|
|
|
|
if (i != t) {
|
|
|
|
|
rx_buffer.buffer[h] = c;
|
|
|
|
|
h = i;
|
|
|
|
|
}
|
|
|
|
|
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
|
|
|
|
|
--rx_dropped_bytes;
|
|
|
|
|
}
|
|
|
|
|
sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// At this point everything is ready. The write() function won't
|
|
|
|
|
// have any issues writing to the UART TX register if it needs to!
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Store the new head value
|
|
|
|
|
rx_buffer.head = h;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
FORCE_INLINE void MarlinSerial<Cfg>::_tx_thr_empty_irq(void) {
|
|
|
|
|
if (Cfg::TX_SIZE > 0) {
|
|
|
|
|
// Read positions
|
|
|
|
|
uint8_t t = tx_buffer.tail;
|
|
|
|
|
const uint8_t h = tx_buffer.head;
|
|
|
|
|
// Store the new head value
|
|
|
|
|
rx_buffer.head = h;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (Cfg::XONOFF) {
|
|
|
|
|
// If an XON char is pending to be sent, do it now
|
|
|
|
|
if (xon_xoff_state == XON_CHAR) {
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
FORCE_INLINE void MarlinSerial<Cfg>::_tx_thr_empty_irq(void) {
|
|
|
|
|
if (Cfg::TX_SIZE > 0) {
|
|
|
|
|
// Read positions
|
|
|
|
|
uint8_t t = tx_buffer.tail;
|
|
|
|
|
const uint8_t h = tx_buffer.head;
|
|
|
|
|
|
|
|
|
|
// Send the character
|
|
|
|
|
HWUART->UART_THR = XON_CHAR;
|
|
|
|
|
if (Cfg::XONOFF) {
|
|
|
|
|
// If an XON char is pending to be sent, do it now
|
|
|
|
|
if (xon_xoff_state == XON_CHAR) {
|
|
|
|
|
|
|
|
|
|
// Remember we sent it.
|
|
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
// Send the character
|
|
|
|
|
HWUART->UART_THR = XON_CHAR;
|
|
|
|
|
|
|
|
|
|
// If nothing else to transmit, just disable TX interrupts.
|
|
|
|
|
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
|
|
|
|
|
// Remember we sent it.
|
|
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// If nothing else to transmit, just disable TX interrupts.
|
|
|
|
|
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
|
|
|
|
|
|
|
|
|
|
// If nothing to transmit, just disable TX interrupts. This could
|
|
|
|
|
// happen as the result of the non atomicity of the disabling of RX
|
|
|
|
|
// interrupts that could end reenabling TX interrupts as a side effect.
|
|
|
|
|
if (h == t) {
|
|
|
|
|
HWUART->UART_IDR = UART_IDR_TXRDY;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// There is something to TX, Send the next byte
|
|
|
|
|
const uint8_t c = tx_buffer.buffer[t];
|
|
|
|
|
t = (t + 1) & (Cfg::TX_SIZE - 1);
|
|
|
|
|
HWUART->UART_THR = c;
|
|
|
|
|
tx_buffer.tail = t;
|
|
|
|
|
|
|
|
|
|
// Disable interrupts if there is nothing to transmit following this byte
|
|
|
|
|
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::UART_ISR(void) {
|
|
|
|
|
const uint32_t status = HWUART->UART_SR;
|
|
|
|
|
|
|
|
|
|
// Data received?
|
|
|
|
|
if (status & UART_SR_RXRDY) store_rxd_char();
|
|
|
|
|
|
|
|
|
|
if (Cfg::TX_SIZE > 0) {
|
|
|
|
|
// Something to send, and TX interrupts are enabled (meaning something to send)?
|
|
|
|
|
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Acknowledge errors
|
|
|
|
|
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) {
|
|
|
|
|
if (Cfg::DROPPED_RX && (status & UART_SR_OVRE) && !++rx_dropped_bytes) --rx_dropped_bytes;
|
|
|
|
|
if (Cfg::RX_OVERRUNS && (status & UART_SR_OVRE) && !++rx_buffer_overruns) --rx_buffer_overruns;
|
|
|
|
|
if (Cfg::RX_FRAMING_ERRORS && (status & UART_SR_FRAME) && !++rx_framing_errors) --rx_framing_errors;
|
|
|
|
|
|
|
|
|
|
// TODO: error reporting outside ISR
|
|
|
|
|
HWUART->UART_CR = UART_CR_RSTSTA;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Public Methods
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::begin(const long baud_setting) {
|
|
|
|
|
|
|
|
|
|
// Disable UART interrupt in NVIC
|
|
|
|
|
NVIC_DisableIRQ( HWUART_IRQ );
|
|
|
|
|
|
|
|
|
|
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
|
|
|
|
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
|
|
|
|
__DSB();
|
|
|
|
|
__ISB();
|
|
|
|
|
|
|
|
|
|
// Disable clock
|
|
|
|
|
pmc_disable_periph_clk( HWUART_IRQ_ID );
|
|
|
|
|
|
|
|
|
|
// Configure PMC
|
|
|
|
|
pmc_enable_periph_clk( HWUART_IRQ_ID );
|
|
|
|
|
|
|
|
|
|
// Disable PDC channel
|
|
|
|
|
HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS;
|
|
|
|
|
|
|
|
|
|
// Reset and disable receiver and transmitter
|
|
|
|
|
HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS;
|
|
|
|
|
|
|
|
|
|
// Configure mode: 8bit, No parity, 1 bit stop
|
|
|
|
|
HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO;
|
|
|
|
|
|
|
|
|
|
// Configure baudrate (asynchronous, no oversampling)
|
|
|
|
|
HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4));
|
|
|
|
|
|
|
|
|
|
// Configure interrupts
|
|
|
|
|
HWUART->UART_IDR = 0xFFFFFFFF;
|
|
|
|
|
HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME;
|
|
|
|
|
|
|
|
|
|
// Install interrupt handler
|
|
|
|
|
install_isr(HWUART_IRQ, UART_ISR);
|
|
|
|
|
|
|
|
|
|
// Configure priority. We need a very high priority to avoid losing characters
|
|
|
|
|
// and we need to be able to preempt the Stepper ISR and everything else!
|
|
|
|
|
// (this could probably be fixed by using DMA with the Serial port)
|
|
|
|
|
NVIC_SetPriority(HWUART_IRQ, 1);
|
|
|
|
|
|
|
|
|
|
// Enable UART interrupt in NVIC
|
|
|
|
|
NVIC_EnableIRQ(HWUART_IRQ);
|
|
|
|
|
|
|
|
|
|
// Enable receiver and transmitter
|
|
|
|
|
HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
|
|
|
|
|
|
|
|
|
|
if (Cfg::TX_SIZE > 0) _written = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::end() {
|
|
|
|
|
// Disable UART interrupt in NVIC
|
|
|
|
|
NVIC_DisableIRQ( HWUART_IRQ );
|
|
|
|
|
|
|
|
|
|
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
|
|
|
|
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
|
|
|
|
__DSB();
|
|
|
|
|
__ISB();
|
|
|
|
|
|
|
|
|
|
pmc_disable_periph_clk( HWUART_IRQ_ID );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
int MarlinSerial<Cfg>::peek(void) {
|
|
|
|
|
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
int MarlinSerial<Cfg>::read(void) {
|
|
|
|
|
|
|
|
|
|
const ring_buffer_pos_t h = rx_buffer.head;
|
|
|
|
|
ring_buffer_pos_t t = rx_buffer.tail;
|
|
|
|
|
|
|
|
|
|
if (h == t) return -1;
|
|
|
|
|
|
|
|
|
|
int v = rx_buffer.buffer[t];
|
|
|
|
|
t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// Advance tail
|
|
|
|
|
rx_buffer.tail = t;
|
|
|
|
|
|
|
|
|
|
if (Cfg::XONOFF) {
|
|
|
|
|
// If the XOFF char was sent, or about to be sent...
|
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
|
|
|
// Get count of bytes in the RX buffer
|
|
|
|
|
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
// When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes
|
|
|
|
|
if (rx_count < (Cfg::RX_SIZE) / 10) {
|
|
|
|
|
if (Cfg::TX_SIZE > 0) {
|
|
|
|
|
// Signal we want an XON character to be sent.
|
|
|
|
|
xon_xoff_state = XON_CHAR;
|
|
|
|
|
// Enable TX isr.
|
|
|
|
|
HWUART->UART_IER = UART_IER_TXRDY;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// If not using TX interrupts, we must send the XON char now
|
|
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
|
|
|
|
|
HWUART->UART_THR = XON_CHAR;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// If nothing to transmit, just disable TX interrupts. This could
|
|
|
|
|
// happen as the result of the non atomicity of the disabling of RX
|
|
|
|
|
// interrupts that could end reenabling TX interrupts as a side effect.
|
|
|
|
|
if (h == t) {
|
|
|
|
|
HWUART->UART_IDR = UART_IDR_TXRDY;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return v;
|
|
|
|
|
// There is something to TX, Send the next byte
|
|
|
|
|
const uint8_t c = tx_buffer.buffer[t];
|
|
|
|
|
t = (t + 1) & (Cfg::TX_SIZE - 1);
|
|
|
|
|
HWUART->UART_THR = c;
|
|
|
|
|
tx_buffer.tail = t;
|
|
|
|
|
|
|
|
|
|
// Disable interrupts if there is nothing to transmit following this byte
|
|
|
|
|
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::UART_ISR(void) {
|
|
|
|
|
const uint32_t status = HWUART->UART_SR;
|
|
|
|
|
|
|
|
|
|
// Data received?
|
|
|
|
|
if (status & UART_SR_RXRDY) store_rxd_char();
|
|
|
|
|
|
|
|
|
|
if (Cfg::TX_SIZE > 0) {
|
|
|
|
|
// Something to send, and TX interrupts are enabled (meaning something to send)?
|
|
|
|
|
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available(void) {
|
|
|
|
|
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
|
|
|
|
|
return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
|
|
|
|
|
// Acknowledge errors
|
|
|
|
|
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) {
|
|
|
|
|
if (Cfg::DROPPED_RX && (status & UART_SR_OVRE) && !++rx_dropped_bytes) --rx_dropped_bytes;
|
|
|
|
|
if (Cfg::RX_OVERRUNS && (status & UART_SR_OVRE) && !++rx_buffer_overruns) --rx_buffer_overruns;
|
|
|
|
|
if (Cfg::RX_FRAMING_ERRORS && (status & UART_SR_FRAME) && !++rx_framing_errors) --rx_framing_errors;
|
|
|
|
|
|
|
|
|
|
// TODO: error reporting outside ISR
|
|
|
|
|
HWUART->UART_CR = UART_CR_RSTSTA;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::flush(void) {
|
|
|
|
|
rx_buffer.tail = rx_buffer.head;
|
|
|
|
|
// Public Methods
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::begin(const long baud_setting) {
|
|
|
|
|
|
|
|
|
|
if (Cfg::XONOFF) {
|
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
|
|
|
// Disable UART interrupt in NVIC
|
|
|
|
|
NVIC_DisableIRQ( HWUART_IRQ );
|
|
|
|
|
|
|
|
|
|
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
|
|
|
|
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
|
|
|
|
__DSB();
|
|
|
|
|
__ISB();
|
|
|
|
|
|
|
|
|
|
// Disable clock
|
|
|
|
|
pmc_disable_periph_clk( HWUART_IRQ_ID );
|
|
|
|
|
|
|
|
|
|
// Configure PMC
|
|
|
|
|
pmc_enable_periph_clk( HWUART_IRQ_ID );
|
|
|
|
|
|
|
|
|
|
// Disable PDC channel
|
|
|
|
|
HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS;
|
|
|
|
|
|
|
|
|
|
// Reset and disable receiver and transmitter
|
|
|
|
|
HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS;
|
|
|
|
|
|
|
|
|
|
// Configure mode: 8bit, No parity, 1 bit stop
|
|
|
|
|
HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO;
|
|
|
|
|
|
|
|
|
|
// Configure baudrate (asynchronous, no oversampling)
|
|
|
|
|
HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4));
|
|
|
|
|
|
|
|
|
|
// Configure interrupts
|
|
|
|
|
HWUART->UART_IDR = 0xFFFFFFFF;
|
|
|
|
|
HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME;
|
|
|
|
|
|
|
|
|
|
// Install interrupt handler
|
|
|
|
|
install_isr(HWUART_IRQ, UART_ISR);
|
|
|
|
|
|
|
|
|
|
// Configure priority. We need a very high priority to avoid losing characters
|
|
|
|
|
// and we need to be able to preempt the Stepper ISR and everything else!
|
|
|
|
|
// (this could probably be fixed by using DMA with the Serial port)
|
|
|
|
|
NVIC_SetPriority(HWUART_IRQ, 1);
|
|
|
|
|
|
|
|
|
|
// Enable UART interrupt in NVIC
|
|
|
|
|
NVIC_EnableIRQ(HWUART_IRQ);
|
|
|
|
|
|
|
|
|
|
// Enable receiver and transmitter
|
|
|
|
|
HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
|
|
|
|
|
|
|
|
|
|
if (Cfg::TX_SIZE > 0) _written = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::end() {
|
|
|
|
|
// Disable UART interrupt in NVIC
|
|
|
|
|
NVIC_DisableIRQ( HWUART_IRQ );
|
|
|
|
|
|
|
|
|
|
// We NEED memory barriers to ensure Interrupts are actually disabled!
|
|
|
|
|
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
|
|
|
|
|
__DSB();
|
|
|
|
|
__ISB();
|
|
|
|
|
|
|
|
|
|
pmc_disable_periph_clk( HWUART_IRQ_ID );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
int MarlinSerial<Cfg>::peek(void) {
|
|
|
|
|
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
int MarlinSerial<Cfg>::read(void) {
|
|
|
|
|
|
|
|
|
|
const ring_buffer_pos_t h = rx_buffer.head;
|
|
|
|
|
ring_buffer_pos_t t = rx_buffer.tail;
|
|
|
|
|
|
|
|
|
|
if (h == t) return -1;
|
|
|
|
|
|
|
|
|
|
int v = rx_buffer.buffer[t];
|
|
|
|
|
t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// Advance tail
|
|
|
|
|
rx_buffer.tail = t;
|
|
|
|
|
|
|
|
|
|
if (Cfg::XONOFF) {
|
|
|
|
|
// If the XOFF char was sent, or about to be sent...
|
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
|
|
|
// Get count of bytes in the RX buffer
|
|
|
|
|
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
|
|
|
|
|
// When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes
|
|
|
|
|
if (rx_count < (Cfg::RX_SIZE) / 10) {
|
|
|
|
|
if (Cfg::TX_SIZE > 0) {
|
|
|
|
|
// Signal we want an XON character to be sent.
|
|
|
|
|
xon_xoff_state = XON_CHAR;
|
|
|
|
@ -384,257 +350,301 @@
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::write(const uint8_t c) {
|
|
|
|
|
_written = true;
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (Cfg::TX_SIZE == 0) {
|
|
|
|
|
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available(void) {
|
|
|
|
|
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
|
|
|
|
|
return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::flush(void) {
|
|
|
|
|
rx_buffer.tail = rx_buffer.head;
|
|
|
|
|
|
|
|
|
|
if (Cfg::XONOFF) {
|
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
|
|
|
if (Cfg::TX_SIZE > 0) {
|
|
|
|
|
// Signal we want an XON character to be sent.
|
|
|
|
|
xon_xoff_state = XON_CHAR;
|
|
|
|
|
// Enable TX isr.
|
|
|
|
|
HWUART->UART_IER = UART_IER_TXRDY;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// If not using TX interrupts, we must send the XON char now
|
|
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
|
|
|
|
|
HWUART->UART_THR = XON_CHAR;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::write(const uint8_t c) {
|
|
|
|
|
_written = true;
|
|
|
|
|
|
|
|
|
|
if (Cfg::TX_SIZE == 0) {
|
|
|
|
|
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
|
|
|
|
|
HWUART->UART_THR = c;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
|
|
// If the TX interrupts are disabled and the data register
|
|
|
|
|
// is empty, just write the byte to the data register and
|
|
|
|
|
// be done. This shortcut helps significantly improve the
|
|
|
|
|
// effective datarate at high (>500kbit/s) bitrates, where
|
|
|
|
|
// interrupt overhead becomes a slowdown.
|
|
|
|
|
// Yes, there is a race condition between the sending of the
|
|
|
|
|
// XOFF char at the RX isr, but it is properly handled there
|
|
|
|
|
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
|
|
|
|
|
HWUART->UART_THR = c;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// If global interrupts are disabled (as the result of being called from an ISR)...
|
|
|
|
|
if (!ISRS_ENABLED()) {
|
|
|
|
|
|
|
|
|
|
// Make room by polling if it is possible to transmit, and do so!
|
|
|
|
|
while (i == tx_buffer.tail) {
|
|
|
|
|
// If we can transmit another byte, do it.
|
|
|
|
|
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
|
|
|
|
|
// Make sure compiler rereads tx_buffer.tail
|
|
|
|
|
sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
|
|
|
|
|
// If the TX interrupts are disabled and the data register
|
|
|
|
|
// is empty, just write the byte to the data register and
|
|
|
|
|
// be done. This shortcut helps significantly improve the
|
|
|
|
|
// effective datarate at high (>500kbit/s) bitrates, where
|
|
|
|
|
// interrupt overhead becomes a slowdown.
|
|
|
|
|
// Yes, there is a race condition between the sending of the
|
|
|
|
|
// XOFF char at the RX isr, but it is properly handled there
|
|
|
|
|
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
|
|
|
|
|
HWUART->UART_THR = c;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// If global interrupts are disabled (as the result of being called from an ISR)...
|
|
|
|
|
if (!ISRS_ENABLED()) {
|
|
|
|
|
|
|
|
|
|
// Make room by polling if it is possible to transmit, and do so!
|
|
|
|
|
while (i == tx_buffer.tail) {
|
|
|
|
|
// If we can transmit another byte, do it.
|
|
|
|
|
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
|
|
|
|
|
// Make sure compiler rereads tx_buffer.tail
|
|
|
|
|
sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// Interrupts are enabled, just wait until there is space
|
|
|
|
|
while (i == tx_buffer.tail) sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Store new char. head is always safe to move
|
|
|
|
|
tx_buffer.buffer[tx_buffer.head] = c;
|
|
|
|
|
tx_buffer.head = i;
|
|
|
|
|
|
|
|
|
|
// Enable TX isr - Non atomic, but it will eventually enable TX isr
|
|
|
|
|
HWUART->UART_IER = UART_IER_TXRDY;
|
|
|
|
|
// Interrupts are enabled, just wait until there is space
|
|
|
|
|
while (i == tx_buffer.tail) sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Store new char. head is always safe to move
|
|
|
|
|
tx_buffer.buffer[tx_buffer.head] = c;
|
|
|
|
|
tx_buffer.head = i;
|
|
|
|
|
|
|
|
|
|
// Enable TX isr - Non atomic, but it will eventually enable TX isr
|
|
|
|
|
HWUART->UART_IER = UART_IER_TXRDY;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::flushTX(void) {
|
|
|
|
|
// TX
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::flushTX(void) {
|
|
|
|
|
// TX
|
|
|
|
|
|
|
|
|
|
if (Cfg::TX_SIZE == 0) {
|
|
|
|
|
// No bytes written, no need to flush. This special case is needed since there's
|
|
|
|
|
// no way to force the TXC (transmit complete) bit to 1 during initialization.
|
|
|
|
|
if (!_written) return;
|
|
|
|
|
if (Cfg::TX_SIZE == 0) {
|
|
|
|
|
// No bytes written, no need to flush. This special case is needed since there's
|
|
|
|
|
// no way to force the TXC (transmit complete) bit to 1 during initialization.
|
|
|
|
|
if (!_written) return;
|
|
|
|
|
|
|
|
|
|
// Wait until everything was transmitted
|
|
|
|
|
while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
|
|
|
|
|
|
|
|
|
|
// At this point nothing is queued anymore (DRIE is disabled) and
|
|
|
|
|
// the hardware finished transmission (TXC is set).
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// If we have never written a byte, no need to flush. This special
|
|
|
|
|
// case is needed since there is no way to force the TXC (transmit
|
|
|
|
|
// complete) bit to 1 during initialization
|
|
|
|
|
if (!_written) return;
|
|
|
|
|
|
|
|
|
|
// If global interrupts are disabled (as the result of being called from an ISR)...
|
|
|
|
|
if (!ISRS_ENABLED()) {
|
|
|
|
|
|
|
|
|
|
// Wait until everything was transmitted - We must do polling, as interrupts are disabled
|
|
|
|
|
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) {
|
|
|
|
|
// If there is more space, send an extra character
|
|
|
|
|
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
|
|
|
|
|
sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// Wait until everything was transmitted
|
|
|
|
|
while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
|
|
|
|
|
|
|
|
|
|
// At this point nothing is queued anymore (DRIE is disabled) and
|
|
|
|
|
// the hardware finished transmission (TXC is set).
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// If we have never written a byte, no need to flush. This special
|
|
|
|
|
// case is needed since there is no way to force the TXC (transmit
|
|
|
|
|
// complete) bit to 1 during initialization
|
|
|
|
|
if (!_written) return;
|
|
|
|
|
|
|
|
|
|
// If global interrupts are disabled (as the result of being called from an ISR)...
|
|
|
|
|
if (!ISRS_ENABLED()) {
|
|
|
|
|
|
|
|
|
|
// Wait until everything was transmitted - We must do polling, as interrupts are disabled
|
|
|
|
|
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) {
|
|
|
|
|
// If there is more space, send an extra character
|
|
|
|
|
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
|
|
|
|
|
sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// Wait until everything was transmitted
|
|
|
|
|
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// At this point nothing is queued anymore (DRIE is disabled) and
|
|
|
|
|
// the hardware finished transmission (TXC is set).
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Imports from print.h
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(char c, int base) {
|
|
|
|
|
print((long)c, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(unsigned char b, int base) {
|
|
|
|
|
print((unsigned long)b, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(int n, int base) {
|
|
|
|
|
print((long)n, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(unsigned int n, int base) {
|
|
|
|
|
print((unsigned long)n, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(long n, int base) {
|
|
|
|
|
if (base == 0) write(n);
|
|
|
|
|
else if (base == 10) {
|
|
|
|
|
if (n < 0) { print('-'); n = -n; }
|
|
|
|
|
printNumber(n, 10);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
printNumber(n, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(unsigned long n, int base) {
|
|
|
|
|
if (base == 0) write(n);
|
|
|
|
|
else printNumber(n, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(double n, int digits) {
|
|
|
|
|
printFloat(n, digits);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(void) {
|
|
|
|
|
print('\r');
|
|
|
|
|
print('\n');
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(const String& s) {
|
|
|
|
|
print(s);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(const char c[]) {
|
|
|
|
|
print(c);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(char c, int base) {
|
|
|
|
|
print(c, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(unsigned char b, int base) {
|
|
|
|
|
print(b, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(int n, int base) {
|
|
|
|
|
print(n, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(unsigned int n, int base) {
|
|
|
|
|
print(n, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(long n, int base) {
|
|
|
|
|
print(n, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(unsigned long n, int base) {
|
|
|
|
|
print(n, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(double n, int digits) {
|
|
|
|
|
print(n, digits);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Private Methods
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::printNumber(unsigned long n, uint8_t base) {
|
|
|
|
|
if (n) {
|
|
|
|
|
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
|
|
|
|
int8_t i = 0;
|
|
|
|
|
while (n) {
|
|
|
|
|
buf[i++] = n % base;
|
|
|
|
|
n /= base;
|
|
|
|
|
}
|
|
|
|
|
while (i--)
|
|
|
|
|
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
print('0');
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::printFloat(double number, uint8_t digits) {
|
|
|
|
|
// Handle negative numbers
|
|
|
|
|
if (number < 0.0) {
|
|
|
|
|
print('-');
|
|
|
|
|
number = -number;
|
|
|
|
|
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Round correctly so that print(1.999, 2) prints as "2.00"
|
|
|
|
|
double rounding = 0.5;
|
|
|
|
|
for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1;
|
|
|
|
|
number += rounding;
|
|
|
|
|
// At this point nothing is queued anymore (DRIE is disabled) and
|
|
|
|
|
// the hardware finished transmission (TXC is set).
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Extract the integer part of the number and print it
|
|
|
|
|
unsigned long int_part = (unsigned long)number;
|
|
|
|
|
double remainder = number - (double)int_part;
|
|
|
|
|
print(int_part);
|
|
|
|
|
/**
|
|
|
|
|
* Imports from print.h
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// Print the decimal point, but only if there are digits beyond
|
|
|
|
|
if (digits) {
|
|
|
|
|
print('.');
|
|
|
|
|
// Extract digits from the remainder one at a time
|
|
|
|
|
while (digits--) {
|
|
|
|
|
remainder *= 10.0;
|
|
|
|
|
int toPrint = int(remainder);
|
|
|
|
|
print(toPrint);
|
|
|
|
|
remainder -= toPrint;
|
|
|
|
|
}
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(char c, int base) {
|
|
|
|
|
print((long)c, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(unsigned char b, int base) {
|
|
|
|
|
print((unsigned long)b, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(int n, int base) {
|
|
|
|
|
print((long)n, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(unsigned int n, int base) {
|
|
|
|
|
print((unsigned long)n, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(long n, int base) {
|
|
|
|
|
if (base == 0) write(n);
|
|
|
|
|
else if (base == 10) {
|
|
|
|
|
if (n < 0) { print('-'); n = -n; }
|
|
|
|
|
printNumber(n, 10);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
printNumber(n, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(unsigned long n, int base) {
|
|
|
|
|
if (base == 0) write(n);
|
|
|
|
|
else printNumber(n, base);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::print(double n, int digits) {
|
|
|
|
|
printFloat(n, digits);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(void) {
|
|
|
|
|
print('\r');
|
|
|
|
|
print('\n');
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(const String& s) {
|
|
|
|
|
print(s);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(const char c[]) {
|
|
|
|
|
print(c);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(char c, int base) {
|
|
|
|
|
print(c, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(unsigned char b, int base) {
|
|
|
|
|
print(b, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(int n, int base) {
|
|
|
|
|
print(n, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(unsigned int n, int base) {
|
|
|
|
|
print(n, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(long n, int base) {
|
|
|
|
|
print(n, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(unsigned long n, int base) {
|
|
|
|
|
print(n, base);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::println(double n, int digits) {
|
|
|
|
|
print(n, digits);
|
|
|
|
|
println();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Private Methods
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::printNumber(unsigned long n, uint8_t base) {
|
|
|
|
|
if (n) {
|
|
|
|
|
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
|
|
|
|
int8_t i = 0;
|
|
|
|
|
while (n) {
|
|
|
|
|
buf[i++] = n % base;
|
|
|
|
|
n /= base;
|
|
|
|
|
}
|
|
|
|
|
while (i--)
|
|
|
|
|
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
print('0');
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename Cfg>
|
|
|
|
|
void MarlinSerial<Cfg>::printFloat(double number, uint8_t digits) {
|
|
|
|
|
// Handle negative numbers
|
|
|
|
|
if (number < 0.0) {
|
|
|
|
|
print('-');
|
|
|
|
|
number = -number;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Round correctly so that print(1.999, 2) prints as "2.00"
|
|
|
|
|
double rounding = 0.5;
|
|
|
|
|
for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1;
|
|
|
|
|
number += rounding;
|
|
|
|
|
|
|
|
|
|
// Extract the integer part of the number and print it
|
|
|
|
|
unsigned long int_part = (unsigned long)number;
|
|
|
|
|
double remainder = number - (double)int_part;
|
|
|
|
|
print(int_part);
|
|
|
|
|
|
|
|
|
|
// Print the decimal point, but only if there are digits beyond
|
|
|
|
|
if (digits) {
|
|
|
|
|
print('.');
|
|
|
|
|
// Extract digits from the remainder one at a time
|
|
|
|
|
while (digits--) {
|
|
|
|
|
remainder *= 10.0;
|
|
|
|
|
int toPrint = int(remainder);
|
|
|
|
|
print(toPrint);
|
|
|
|
|
remainder -= toPrint;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If not using the USB port as serial port
|
|
|
|
|
#if SERIAL_PORT >= 0
|
|
|
|
|
|
|
|
|
|
// Preinstantiate
|
|
|
|
|
template class MarlinSerial<MarlinSerialCfg>;
|
|
|
|
|
template class MarlinSerial<MarlinSerialCfg1>;
|
|
|
|
|
|
|
|
|
|
// Instantiate
|
|
|
|
|
MarlinSerial<MarlinSerialCfg> customizedSerial;
|
|
|
|
|
MarlinSerial<MarlinSerialCfg1> customizedSerial1;
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef SERIAL_PORT_2
|
|
|
|
|
|
|
|
|
|
// Preinstantiate
|
|
|
|
|
template class MarlinSerial<MarlinSerialCfg2>;
|
|
|
|
|
|
|
|
|
|
// Instantiate
|
|
|
|
|
MarlinSerial<MarlinSerialCfg2> customizedSerial2;
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|