Merge remote-tracking branch 'remotes/upstream/Development' into Development
Conflicts: Marlin/Marlin_main.cpp Marlin/stepper.cpp
This commit is contained in:
commit
d813090d90
29 changed files with 3962 additions and 3287 deletions
|
@ -101,3 +101,25 @@
|
|||
* M908 - Control digital trimpot directly.
|
||||
* M928 - Start SD logging (M928 filename.g) - ended by M29
|
||||
* M999 - Restart after being stopped by error
|
||||
|
||||
# Comments
|
||||
|
||||
Comments start at a `;` (semicolon) and end with the end of the line:
|
||||
|
||||
N3 T0*57 ; This is a comment
|
||||
N4 G92 E0*67
|
||||
; So is this
|
||||
N5 G28*22
|
||||
|
||||
(example taken from the [RepRap wiki](http://reprap.org/wiki/Gcode#Comments))
|
||||
|
||||
If you need to use a literal `;` somewhere (for example within `M117`), you can escape semicolons with a `\`
|
||||
(backslash):
|
||||
|
||||
M117 Hello \;)
|
||||
|
||||
`\` can also be used to escape `\` itself, if you need a literal `\` in front of a `;`:
|
||||
|
||||
M117 backslash: \\;and a comment
|
||||
|
||||
Please note that hosts should strip any comments before sending GCODE to the printer in order to save bandwidth.
|
|
@ -295,9 +295,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
|
|||
//============================= Mechanical Settings =========================
|
||||
//===========================================================================
|
||||
|
||||
// Uncomment the following line to enable CoreXY kinematics
|
||||
// Uncomment this option to enable CoreXY kinematics
|
||||
// #define COREXY
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
// #define CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
// coarse Endstop Settings
|
||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
|
@ -382,40 +385,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// There are 2 different ways to pick the X and Y locations to probe:
|
||||
|
||||
// - "grid" mode
|
||||
// Probe every point in a rectangular grid
|
||||
// You must specify the rectangle, and the density of sample points
|
||||
// This mode is preferred because there are more measurements.
|
||||
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
|
||||
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You must specify the X & Y coordinates of all 3 points
|
||||
// There are 2 different ways to specify probing locations
|
||||
//
|
||||
// - "grid" mode
|
||||
// Probe several points in a rectangular grid.
|
||||
// You specify the rectangle and the density of sample points.
|
||||
// This mode is preferred because there are more measurements.
|
||||
//
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You specify the XY coordinates of all 3 points.
|
||||
|
||||
// Enable this to sample the bed in a grid (least squares solution)
|
||||
// Note: this feature generates 10KB extra code size
|
||||
#define AUTO_BED_LEVELING_GRID
|
||||
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
|
||||
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
|
||||
// and least squares solution is calculated
|
||||
// Note: this feature occupies 10'206 byte
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// set the rectangle in which to probe
|
||||
// The edges of the rectangle in which to probe
|
||||
#define LEFT_PROBE_BED_POSITION 15
|
||||
#define RIGHT_PROBE_BED_POSITION 170
|
||||
#define BACK_PROBE_BED_POSITION 180
|
||||
#define FRONT_PROBE_BED_POSITION 20
|
||||
#define BACK_PROBE_BED_POSITION 170
|
||||
|
||||
// set the number of grid points per dimension
|
||||
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
|
||||
// Set the number of grid points per dimension
|
||||
// You probably don't need more than 3 (squared=9)
|
||||
#define AUTO_BED_LEVELING_GRID_POINTS 2
|
||||
|
||||
|
||||
#else // not AUTO_BED_LEVELING_GRID
|
||||
// with no grid, just probe 3 arbitrary points. A simple cross-product
|
||||
// is used to esimate the plane of the print bed
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
// Arbitrary points to probe. A simple cross-product
|
||||
// is used to estimate the plane of the bed.
|
||||
#define ABL_PROBE_PT_1_X 15
|
||||
#define ABL_PROBE_PT_1_Y 180
|
||||
#define ABL_PROBE_PT_2_X 15
|
||||
|
@ -426,11 +427,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
|
||||
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// X and Y offsets must be integers
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
|
||||
|
||||
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
|
||||
// Be sure you have this distance over your Z_MAX_POS in case
|
||||
|
@ -467,29 +468,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID // Check if Probe_Offset * Grid Points is greater than Probing Range
|
||||
#if X_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
#if (-(X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
|
||||
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#else
|
||||
#if ((X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
|
||||
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#endif
|
||||
#if Y_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
#if (-(Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
|
||||
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#else
|
||||
#if ((Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
|
||||
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
|
|
@ -23,41 +23,41 @@
|
|||
#include "pins.h"
|
||||
|
||||
#ifndef AT90USB
|
||||
#define HardwareSerial_h // trick to disable the standard HWserial
|
||||
#define HardwareSerial_h // trick to disable the standard HWserial
|
||||
#endif
|
||||
|
||||
#if (ARDUINO >= 100)
|
||||
# include "Arduino.h"
|
||||
#include "Arduino.h"
|
||||
#else
|
||||
# include "WProgram.h"
|
||||
#include "WProgram.h"
|
||||
#endif
|
||||
|
||||
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
|
||||
#ifndef analogInputToDigitalPin
|
||||
# define analogInputToDigitalPin(p) ((p) + 0xA0)
|
||||
#define analogInputToDigitalPin(p) ((p) + 0xA0)
|
||||
#endif
|
||||
|
||||
#ifdef AT90USB
|
||||
#include "HardwareSerial.h"
|
||||
#include "HardwareSerial.h"
|
||||
#endif
|
||||
|
||||
#include "MarlinSerial.h"
|
||||
|
||||
#ifndef cbi
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#endif
|
||||
#ifndef sbi
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
#endif
|
||||
|
||||
#include "WString.h"
|
||||
|
||||
#ifdef AT90USB
|
||||
#ifdef BTENABLED
|
||||
#define MYSERIAL bt
|
||||
#else
|
||||
#define MYSERIAL Serial
|
||||
#endif // BTENABLED
|
||||
#ifdef BTENABLED
|
||||
#define MYSERIAL bt
|
||||
#else
|
||||
#define MYSERIAL Serial
|
||||
#endif // BTENABLED
|
||||
#else
|
||||
#define MYSERIAL MSerial
|
||||
#endif
|
||||
|
@ -86,7 +86,7 @@ extern const char echomagic[] PROGMEM;
|
|||
|
||||
#define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value)))
|
||||
|
||||
#define SERIAL_EOL SERIAL_ECHOLN("")
|
||||
#define SERIAL_EOL MYSERIAL.write('\n')
|
||||
|
||||
void serial_echopair_P(const char *s_P, float v);
|
||||
void serial_echopair_P(const char *s_P, double v);
|
||||
|
|
|
@ -30,12 +30,17 @@
|
|||
#include "Marlin.h"
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
#include "vector_3.h"
|
||||
#if Z_MIN_PIN == -1
|
||||
#error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
|
||||
#endif
|
||||
#include "vector_3.h"
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
#include "qr_solve.h"
|
||||
#endif
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
#define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
|
||||
|
||||
#include "ultralcd.h"
|
||||
#include "planner.h"
|
||||
#include "stepper.h"
|
||||
|
@ -124,6 +129,8 @@
|
|||
// M115 - Capabilities string
|
||||
// M117 - display message
|
||||
// M119 - Output Endstop status to serial port
|
||||
// M120 - Enable endstop detection
|
||||
// M121 - Disable endstop detection
|
||||
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
||||
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
||||
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
||||
|
@ -154,6 +161,8 @@
|
|||
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
|
||||
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
|
||||
// M304 - Set bed PID parameters P I and D
|
||||
// M380 - Activate solenoid on active extruder
|
||||
// M381 - Disable all solenoids
|
||||
// M400 - Finish all moves
|
||||
// M401 - Lower z-probe if present
|
||||
// M402 - Raise z-probe if present
|
||||
|
@ -201,9 +210,9 @@ int extruder_multiply[EXTRUDERS] = { 100
|
|||
, 100
|
||||
#if EXTRUDERS > 2
|
||||
, 100
|
||||
#if EXTRUDERS > 3
|
||||
, 100
|
||||
#endif
|
||||
#if EXTRUDERS > 3
|
||||
, 100
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
@ -285,8 +294,8 @@ int fanSpeed = 0;
|
|||
#if EXTRUDERS > 2
|
||||
, false
|
||||
#if EXTRUDERS > 3
|
||||
, false
|
||||
#endif
|
||||
, false
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
@ -296,8 +305,8 @@ int fanSpeed = 0;
|
|||
#if EXTRUDERS > 2
|
||||
, false
|
||||
#if EXTRUDERS > 3
|
||||
, false
|
||||
#endif
|
||||
, false
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
@ -317,7 +326,7 @@ int fanSpeed = 0;
|
|||
#ifdef PS_DEFAULT_OFF
|
||||
false
|
||||
#else
|
||||
true
|
||||
true
|
||||
#endif
|
||||
;
|
||||
#endif
|
||||
|
@ -529,32 +538,28 @@ void setup_homepin(void)
|
|||
void setup_photpin()
|
||||
{
|
||||
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
||||
SET_OUTPUT(PHOTOGRAPH_PIN);
|
||||
WRITE(PHOTOGRAPH_PIN, LOW);
|
||||
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
|
||||
#endif
|
||||
}
|
||||
|
||||
void setup_powerhold()
|
||||
{
|
||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||
SET_OUTPUT(SUICIDE_PIN);
|
||||
WRITE(SUICIDE_PIN, HIGH);
|
||||
OUT_WRITE(SUICIDE_PIN, HIGH);
|
||||
#endif
|
||||
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||
SET_OUTPUT(PS_ON_PIN);
|
||||
#if defined(PS_DEFAULT_OFF)
|
||||
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
||||
#if defined(PS_DEFAULT_OFF)
|
||||
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
||||
#else
|
||||
WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
||||
#endif
|
||||
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
void suicide()
|
||||
{
|
||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||
SET_OUTPUT(SUICIDE_PIN);
|
||||
WRITE(SUICIDE_PIN, LOW);
|
||||
OUT_WRITE(SUICIDE_PIN, LOW);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -586,9 +591,9 @@ void servo_init()
|
|||
}
|
||||
#endif
|
||||
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
||||
servos[servo_endstops[Z_AXIS]].detach();
|
||||
#if SERVO_LEVELING
|
||||
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
||||
servos[servo_endstops[Z_AXIS]].detach();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -645,7 +650,7 @@ void setup()
|
|||
|
||||
|
||||
lcd_init();
|
||||
_delay_ms(1000); // wait 1sec to display the splash screen
|
||||
_delay_ms(1000); // wait 1sec to display the splash screen
|
||||
|
||||
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
||||
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
||||
|
@ -727,103 +732,113 @@ void get_command()
|
|||
serial_char = MYSERIAL.read();
|
||||
if(serial_char == '\n' ||
|
||||
serial_char == '\r' ||
|
||||
(serial_char == ':' && comment_mode == false) ||
|
||||
serial_count >= (MAX_CMD_SIZE - 1) )
|
||||
{
|
||||
if(!serial_count) { //if empty line
|
||||
comment_mode = false; //for new command
|
||||
// end of line == end of comment
|
||||
comment_mode = false;
|
||||
|
||||
if(!serial_count) {
|
||||
// short cut for empty lines
|
||||
return;
|
||||
}
|
||||
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
||||
if(!comment_mode){
|
||||
comment_mode = false; //for new command
|
||||
fromsd[bufindw] = false;
|
||||
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
|
||||
|
||||
fromsd[bufindw] = false;
|
||||
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
|
||||
{
|
||||
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
||||
gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
|
||||
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
|
||||
SERIAL_ERRORLN(gcode_LastN);
|
||||
//Serial.println(gcode_N);
|
||||
FlushSerialRequestResend();
|
||||
serial_count = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
if(strchr(cmdbuffer[bufindw], '*') != NULL)
|
||||
{
|
||||
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
||||
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
|
||||
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
|
||||
SERIAL_ERRORLN(gcode_LastN);
|
||||
//Serial.println(gcode_N);
|
||||
FlushSerialRequestResend();
|
||||
serial_count = 0;
|
||||
return;
|
||||
}
|
||||
byte checksum = 0;
|
||||
byte count = 0;
|
||||
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
||||
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
||||
|
||||
if(strchr(cmdbuffer[bufindw], '*') != NULL)
|
||||
{
|
||||
byte checksum = 0;
|
||||
byte count = 0;
|
||||
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
||||
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
||||
|
||||
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
|
||||
SERIAL_ERRORLN(gcode_LastN);
|
||||
FlushSerialRequestResend();
|
||||
serial_count = 0;
|
||||
return;
|
||||
}
|
||||
//if no errors, continue parsing
|
||||
}
|
||||
else
|
||||
{
|
||||
if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
|
||||
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
|
||||
SERIAL_ERRORLN(gcode_LastN);
|
||||
FlushSerialRequestResend();
|
||||
serial_count = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
gcode_LastN = gcode_N;
|
||||
//if no errors, continue parsing
|
||||
}
|
||||
else // if we don't receive 'N' but still see '*'
|
||||
else
|
||||
{
|
||||
if((strchr(cmdbuffer[bufindw], '*') != NULL))
|
||||
{
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
|
||||
SERIAL_ERRORLN(gcode_LastN);
|
||||
serial_count = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
|
||||
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
||||
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
|
||||
case 0:
|
||||
case 1:
|
||||
case 2:
|
||||
case 3:
|
||||
if (Stopped == true) {
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
||||
LCD_MESSAGEPGM(MSG_STOPPED);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
|
||||
SERIAL_ERRORLN(gcode_LastN);
|
||||
FlushSerialRequestResend();
|
||||
serial_count = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
//If command was e-stop process now
|
||||
if(strcmp(cmdbuffer[bufindw], "M112") == 0)
|
||||
kill();
|
||||
|
||||
bufindw = (bufindw + 1)%BUFSIZE;
|
||||
buflen += 1;
|
||||
gcode_LastN = gcode_N;
|
||||
//if no errors, continue parsing
|
||||
}
|
||||
else // if we don't receive 'N' but still see '*'
|
||||
{
|
||||
if((strchr(cmdbuffer[bufindw], '*') != NULL))
|
||||
{
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
|
||||
SERIAL_ERRORLN(gcode_LastN);
|
||||
serial_count = 0;
|
||||
return;
|
||||
}
|
||||
}
|
||||
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
|
||||
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
||||
switch(strtol(strchr_pointer + 1, NULL, 10)){
|
||||
case 0:
|
||||
case 1:
|
||||
case 2:
|
||||
case 3:
|
||||
if (Stopped == true) {
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
||||
LCD_MESSAGEPGM(MSG_STOPPED);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//If command was e-stop process now
|
||||
if(strcmp(cmdbuffer[bufindw], "M112") == 0)
|
||||
kill();
|
||||
|
||||
bufindw = (bufindw + 1)%BUFSIZE;
|
||||
buflen += 1;
|
||||
|
||||
serial_count = 0; //clear buffer
|
||||
}
|
||||
else
|
||||
{
|
||||
if(serial_char == ';') comment_mode = true;
|
||||
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
||||
else if(serial_char == '\\') { //Handle escapes
|
||||
|
||||
if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
|
||||
// if we have one more character, copy it over
|
||||
serial_char = MYSERIAL.read();
|
||||
cmdbuffer[bufindw][serial_count++] = serial_char;
|
||||
}
|
||||
|
||||
//otherwise do nothing
|
||||
}
|
||||
else { // its not a newline, carriage return or escape char
|
||||
if(serial_char == ';') comment_mode = true;
|
||||
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
||||
}
|
||||
}
|
||||
#ifdef SDSUPPORT
|
||||
|
@ -894,12 +909,12 @@ void get_command()
|
|||
|
||||
float code_value()
|
||||
{
|
||||
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
|
||||
return (strtod(strchr_pointer + 1, NULL));
|
||||
}
|
||||
|
||||
long code_value_long()
|
||||
{
|
||||
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
|
||||
return (strtol(strchr_pointer + 1, NULL, 10));
|
||||
}
|
||||
|
||||
bool code_seen(char code)
|
||||
|
@ -997,7 +1012,7 @@ static void axis_is_at_home(int axis) {
|
|||
{
|
||||
homeposition[i] = base_home_pos(i);
|
||||
}
|
||||
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
||||
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
||||
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
||||
// Works out real Homeposition angles using inverse kinematics,
|
||||
// and calculates homing offset using forward kinematics
|
||||
|
@ -1012,7 +1027,7 @@ static void axis_is_at_home(int axis) {
|
|||
}
|
||||
|
||||
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
|
||||
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
|
||||
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
|
||||
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
||||
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
||||
|
||||
|
@ -1169,66 +1184,70 @@ static void clean_up_after_endstop_move() {
|
|||
}
|
||||
|
||||
static void engage_z_probe() {
|
||||
// Engage Z Servo endstop if enabled
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
// Engage Z Servo endstop if enabled
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
if (servo_endstops[Z_AXIS] > -1) {
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
#if SERVO_LEVELING
|
||||
servos[servo_endstops[Z_AXIS]].attach(0);
|
||||
#endif
|
||||
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
#endif
|
||||
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
|
||||
#if SERVO_LEVELING
|
||||
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
||||
servos[servo_endstops[Z_AXIS]].detach();
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
static void retract_z_probe() {
|
||||
// Retract Z Servo endstop if enabled
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
// Retract Z Servo endstop if enabled
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
if (servo_endstops[Z_AXIS] > -1) {
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
#if SERVO_LEVELING
|
||||
servos[servo_endstops[Z_AXIS]].attach(0);
|
||||
#endif
|
||||
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
#endif
|
||||
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
|
||||
#if SERVO_LEVELING
|
||||
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
||||
servos[servo_endstops[Z_AXIS]].detach();
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
|
||||
|
||||
/// Probe bed height at position (x,y), returns the measured z value
|
||||
static float probe_pt(float x, float y, float z_before, int retract_action=0) {
|
||||
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
|
||||
// move to right place
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
||||
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
||||
|
||||
#ifndef Z_PROBE_SLED
|
||||
if ((retract_action==0) || (retract_action==1))
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
#endif // Z_PROBE_SLED
|
||||
#ifndef Z_PROBE_SLED
|
||||
if (retract_action & ProbeEngage) engage_z_probe();
|
||||
#endif
|
||||
|
||||
run_z_probe();
|
||||
float measured_z = current_position[Z_AXIS];
|
||||
#ifndef Z_PROBE_SLED
|
||||
if ((retract_action==0) || (retract_action==3))
|
||||
retract_z_probe();
|
||||
#endif // Z_PROBE_SLED
|
||||
|
||||
SERIAL_PROTOCOLPGM(MSG_BED);
|
||||
SERIAL_PROTOCOLPGM(" x: ");
|
||||
SERIAL_PROTOCOL(x);
|
||||
SERIAL_PROTOCOLPGM(" y: ");
|
||||
SERIAL_PROTOCOL(y);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL(measured_z);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
#ifndef Z_PROBE_SLED
|
||||
if (retract_action & ProbeRetract) retract_z_probe();
|
||||
#endif
|
||||
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM(MSG_BED);
|
||||
SERIAL_PROTOCOLPGM(" X: ");
|
||||
SERIAL_PROTOCOL(x + 0.0001);
|
||||
SERIAL_PROTOCOLPGM(" Y: ");
|
||||
SERIAL_PROTOCOL(y + 0.0001);
|
||||
SERIAL_PROTOCOLPGM(" Z: ");
|
||||
SERIAL_PROTOCOL(measured_z + 0.0001);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
return measured_z;
|
||||
}
|
||||
|
||||
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
static void homeaxis(int axis) {
|
||||
#define HOMEAXIS_DO(LETTER) \
|
||||
|
@ -1251,11 +1270,11 @@ static void homeaxis(int axis) {
|
|||
#ifndef Z_PROBE_SLED
|
||||
// Engage Servo endstop if enabled
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
#if SERVO_LEVELING
|
||||
if (axis==Z_AXIS) {
|
||||
engage_z_probe();
|
||||
}
|
||||
else
|
||||
else
|
||||
#endif
|
||||
if (servo_endstops[axis] > -1) {
|
||||
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
|
||||
|
@ -1302,7 +1321,7 @@ static void homeaxis(int axis) {
|
|||
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
|
||||
}
|
||||
#endif
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
#if SERVO_LEVELING
|
||||
#ifndef Z_PROBE_SLED
|
||||
if (axis==Z_AXIS) retract_z_probe();
|
||||
#endif
|
||||
|
@ -1376,6 +1395,11 @@ void refresh_cmd_timeout(void)
|
|||
#endif //FWRETRACT
|
||||
|
||||
#ifdef Z_PROBE_SLED
|
||||
|
||||
#ifndef SLED_DOCKING_OFFSET
|
||||
#define SLED_DOCKING_OFFSET 0
|
||||
#endif
|
||||
|
||||
//
|
||||
// Method to dock/undock a sled designed by Charles Bell.
|
||||
//
|
||||
|
@ -1411,157 +1435,159 @@ static void dock_sled(bool dock, int offset=0) {
|
|||
}
|
||||
#endif
|
||||
|
||||
void process_commands()
|
||||
{
|
||||
unsigned long codenum; //throw away variable
|
||||
char *starpos = NULL;
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
float x_tmp, y_tmp, z_tmp, real_z;
|
||||
#endif
|
||||
if(code_seen('G'))
|
||||
{
|
||||
switch((int)code_value())
|
||||
{
|
||||
case 0: // G0 -> G1
|
||||
case 1: // G1
|
||||
if(Stopped == false) {
|
||||
get_coordinates(); // For X Y Z E F
|
||||
#ifdef FWRETRACT
|
||||
if(autoretract_enabled)
|
||||
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
||||
float echange=destination[E_AXIS]-current_position[E_AXIS];
|
||||
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
|
||||
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
|
||||
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
|
||||
retract(!retracted);
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif //FWRETRACT
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
/**
|
||||
*
|
||||
* G-Code Handler functions
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* G0, G1: Coordinated movement of X Y Z E axes
|
||||
*/
|
||||
inline void gcode_G0_G1() {
|
||||
if (!Stopped) {
|
||||
get_coordinates(); // For X Y Z E F
|
||||
#ifdef FWRETRACT
|
||||
if (autoretract_enabled)
|
||||
if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
||||
float echange = destination[E_AXIS] - current_position[E_AXIS];
|
||||
// Is this move an attempt to retract or recover?
|
||||
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
|
||||
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
|
||||
plan_set_e_position(current_position[E_AXIS]); // AND from the planner
|
||||
retract(!retracted[active_extruder]);
|
||||
return;
|
||||
}
|
||||
}
|
||||
break;
|
||||
#ifndef SCARA //disable arc support
|
||||
case 2: // G2 - CW ARC
|
||||
if(Stopped == false) {
|
||||
get_arc_coordinates();
|
||||
prepare_arc_move(true);
|
||||
#endif //FWRETRACT
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* G2: Clockwise Arc
|
||||
* G3: Counterclockwise Arc
|
||||
*/
|
||||
inline void gcode_G2_G3(bool clockwise) {
|
||||
if (!Stopped) {
|
||||
get_arc_coordinates();
|
||||
prepare_arc_move(clockwise);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* G4: Dwell S<seconds> or P<milliseconds>
|
||||
*/
|
||||
inline void gcode_G4() {
|
||||
unsigned long codenum;
|
||||
|
||||
LCD_MESSAGEPGM(MSG_DWELL);
|
||||
|
||||
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
|
||||
if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
|
||||
|
||||
st_synchronize();
|
||||
previous_millis_cmd = millis();
|
||||
codenum += previous_millis_cmd; // keep track of when we started waiting
|
||||
while(millis() < codenum) {
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef FWRETRACT
|
||||
|
||||
/**
|
||||
* G10 - Retract filament according to settings of M207
|
||||
* G11 - Recover filament according to settings of M208
|
||||
*/
|
||||
inline void gcode_G10_G11(bool doRetract=false) {
|
||||
#if EXTRUDERS > 1
|
||||
if (doRetract) {
|
||||
retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
||||
}
|
||||
break;
|
||||
case 3: // G3 - CCW ARC
|
||||
if(Stopped == false) {
|
||||
get_arc_coordinates();
|
||||
prepare_arc_move(false);
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
case 4: // G4 dwell
|
||||
LCD_MESSAGEPGM(MSG_DWELL);
|
||||
codenum = 0;
|
||||
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
||||
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
||||
#endif
|
||||
retract(doRetract
|
||||
#if EXTRUDERS > 1
|
||||
, retracted_swap[active_extruder]
|
||||
#endif
|
||||
);
|
||||
}
|
||||
|
||||
st_synchronize();
|
||||
codenum += millis(); // keep track of when we started waiting
|
||||
previous_millis_cmd = millis();
|
||||
while(millis() < codenum) {
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
break;
|
||||
#ifdef FWRETRACT
|
||||
case 10: // G10 retract
|
||||
#if EXTRUDERS > 1
|
||||
retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
||||
retract(true,retracted_swap[active_extruder]);
|
||||
#else
|
||||
retract(true);
|
||||
#endif
|
||||
break;
|
||||
case 11: // G11 retract_recover
|
||||
#if EXTRUDERS > 1
|
||||
retract(false,retracted_swap[active_extruder]);
|
||||
#else
|
||||
retract(false);
|
||||
#endif
|
||||
break;
|
||||
#endif //FWRETRACT
|
||||
case 28: //G28 Home all Axis one at a time
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
||||
#endif //ENABLE_AUTO_BED_LEVELING
|
||||
#endif //FWRETRACT
|
||||
|
||||
saved_feedrate = feedrate;
|
||||
saved_feedmultiply = feedmultiply;
|
||||
feedmultiply = 100;
|
||||
previous_millis_cmd = millis();
|
||||
/**
|
||||
* G28: Home all axes, one at a time
|
||||
*/
|
||||
inline void gcode_G28() {
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
||||
#endif
|
||||
|
||||
enable_endstops(true);
|
||||
saved_feedrate = feedrate;
|
||||
saved_feedmultiply = feedmultiply;
|
||||
feedmultiply = 100;
|
||||
previous_millis_cmd = millis();
|
||||
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
destination[i] = current_position[i];
|
||||
}
|
||||
feedrate = 0.0;
|
||||
enable_endstops(true);
|
||||
|
||||
#ifdef DELTA
|
||||
// A delta can only safely home all axis at the same time
|
||||
// all axis have to home at the same time
|
||||
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
|
||||
|
||||
// Move all carriages up together until the first endstop is hit.
|
||||
current_position[X_AXIS] = 0;
|
||||
current_position[Y_AXIS] = 0;
|
||||
current_position[Z_AXIS] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
feedrate = 0.0;
|
||||
|
||||
destination[X_AXIS] = 3 * Z_MAX_LENGTH;
|
||||
destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
|
||||
destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
|
||||
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
#ifdef DELTA
|
||||
// A delta can only safely home all axis at the same time
|
||||
// all axis have to home at the same time
|
||||
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
current_position[Z_AXIS] = destination[Z_AXIS];
|
||||
// Move all carriages up together until the first endstop is hit.
|
||||
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
// take care of back off and rehome now we are all at the top
|
||||
HOMEAXIS(X);
|
||||
HOMEAXIS(Y);
|
||||
HOMEAXIS(Z);
|
||||
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
|
||||
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
|
||||
calculate_delta(current_position);
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
// Destination reached
|
||||
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
|
||||
|
||||
#else // NOT DELTA
|
||||
// take care of back off and rehome now we are all at the top
|
||||
HOMEAXIS(X);
|
||||
HOMEAXIS(Y);
|
||||
HOMEAXIS(Z);
|
||||
|
||||
home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
|
||||
calculate_delta(current_position);
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
||||
#else // NOT DELTA
|
||||
|
||||
home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
|
||||
|
||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
|
||||
HOMEAXIS(Z);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef QUICK_HOME
|
||||
if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
|
||||
{
|
||||
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
||||
#ifdef QUICK_HOME
|
||||
if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
|
||||
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
|
||||
|
||||
#ifndef DUAL_X_CARRIAGE
|
||||
int x_axis_home_dir = home_dir(X_AXIS);
|
||||
#else
|
||||
int x_axis_home_dir = x_home_dir(active_extruder);
|
||||
extruder_duplication_enabled = false;
|
||||
#endif
|
||||
#ifndef DUAL_X_CARRIAGE
|
||||
int x_axis_home_dir = home_dir(X_AXIS);
|
||||
#else
|
||||
int x_axis_home_dir = x_home_dir(active_extruder);
|
||||
extruder_duplication_enabled = false;
|
||||
#endif
|
||||
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
||||
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
|
||||
destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
||||
feedrate = homing_feedrate[X_AXIS];
|
||||
if(homing_feedrate[Y_AXIS]<feedrate)
|
||||
feedrate = homing_feedrate[Y_AXIS];
|
||||
if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
|
||||
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
|
||||
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
|
||||
} else {
|
||||
|
@ -1582,14 +1608,13 @@ void process_commands()
|
|||
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
#ifndef SCARA
|
||||
current_position[Z_AXIS] = destination[Z_AXIS];
|
||||
#endif
|
||||
#ifndef SCARA
|
||||
current_position[Z_AXIS] = destination[Z_AXIS];
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#endif //QUICK_HOME
|
||||
|
||||
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
|
||||
{
|
||||
if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
int tmp_extruder = active_extruder;
|
||||
extruder_duplication_enabled = false;
|
||||
|
@ -1605,2410 +1630,3168 @@ void process_commands()
|
|||
#else
|
||||
HOMEAXIS(X);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
|
||||
HOMEAXIS(Y);
|
||||
}
|
||||
if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
|
||||
|
||||
if(code_seen(axis_codes[X_AXIS]))
|
||||
{
|
||||
if(code_value_long() != 0) {
|
||||
#ifdef SCARA
|
||||
current_position[X_AXIS]=code_value();
|
||||
#else
|
||||
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if(code_seen(axis_codes[Y_AXIS])) {
|
||||
if(code_value_long() != 0) {
|
||||
#ifdef SCARA
|
||||
current_position[Y_AXIS]=code_value();
|
||||
#else
|
||||
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
||||
#ifndef Z_SAFE_HOMING
|
||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
||||
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
|
||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
if (code_seen(axis_codes[X_AXIS])) {
|
||||
if (code_value_long() != 0) {
|
||||
current_position[X_AXIS] = code_value()
|
||||
#ifndef SCARA
|
||||
+ add_homing[X_AXIS]
|
||||
#endif
|
||||
HOMEAXIS(Z);
|
||||
}
|
||||
#else // Z Safe mode activated.
|
||||
if(home_all_axis) {
|
||||
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
||||
feedrate = XY_TRAVEL_SPEED/60;
|
||||
current_position[Z_AXIS] = 0;
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
|
||||
current_position[Y_AXIS] = code_value()
|
||||
#ifndef SCARA
|
||||
+ add_homing[Y_AXIS]
|
||||
#endif
|
||||
;
|
||||
}
|
||||
|
||||
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
||||
|
||||
#ifndef Z_SAFE_HOMING
|
||||
|
||||
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
|
||||
#if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
|
||||
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
#endif
|
||||
HOMEAXIS(Z);
|
||||
}
|
||||
|
||||
HOMEAXIS(Z);
|
||||
}
|
||||
// Let's see if X and Y are homed and probe is inside bed area.
|
||||
if(code_seen(axis_codes[Z_AXIS])) {
|
||||
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
|
||||
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
|
||||
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
|
||||
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
|
||||
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
|
||||
#else // Z_SAFE_HOMING
|
||||
|
||||
if (home_all_axis) {
|
||||
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
||||
feedrate = XY_TRAVEL_SPEED / 60;
|
||||
current_position[Z_AXIS] = 0;
|
||||
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
|
||||
HOMEAXIS(Z);
|
||||
}
|
||||
|
||||
// Let's see if X and Y are homed and probe is inside bed area.
|
||||
if (code_seen(axis_codes[Z_AXIS])) {
|
||||
|
||||
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
|
||||
|
||||
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
|
||||
if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
|
||||
&& cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
|
||||
&& cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
|
||||
&& cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
|
||||
current_position[Z_AXIS] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
|
||||
plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
HOMEAXIS(Z);
|
||||
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
|
||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
if(code_seen(axis_codes[Z_AXIS])) {
|
||||
if(code_value_long() != 0) {
|
||||
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
|
||||
else {
|
||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
||||
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
||||
}
|
||||
#endif
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
#endif // else DELTA
|
||||
|
||||
#ifdef SCARA
|
||||
calculate_delta(current_position);
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
#endif // SCARA
|
||||
#endif // Z_SAFE_HOMING
|
||||
|
||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||
enable_endstops(false);
|
||||
#endif
|
||||
#endif // Z_HOME_DIR < 0
|
||||
|
||||
feedrate = saved_feedrate;
|
||||
feedmultiply = saved_feedmultiply;
|
||||
previous_millis_cmd = millis();
|
||||
endstops_hit_on_purpose();
|
||||
break;
|
||||
|
||||
if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
|
||||
current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
|
||||
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
|
||||
#endif
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
#endif // else DELTA
|
||||
|
||||
#ifdef SCARA
|
||||
calculate_delta(current_position);
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
#endif
|
||||
|
||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||
enable_endstops(false);
|
||||
#endif
|
||||
|
||||
feedrate = saved_feedrate;
|
||||
feedmultiply = saved_feedmultiply;
|
||||
previous_millis_cmd = millis();
|
||||
endstops_hit_on_purpose();
|
||||
}
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
||||
// Override probing area by providing [F]ront [B]ack [L]eft [R]ight Grid[P]oints values
|
||||
{
|
||||
#if Z_MIN_PIN == -1
|
||||
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
|
||||
|
||||
// Define the possible boundaries for probing based on set limits
|
||||
#define MIN_PROBE_X (max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
|
||||
#define MAX_PROBE_X (min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER))
|
||||
#define MIN_PROBE_Y (max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
|
||||
#define MAX_PROBE_Y (min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER))
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
#define MIN_PROBE_EDGE 20 // The probe square sides can be no smaller than this
|
||||
|
||||
// Make sure probing points are reachable
|
||||
|
||||
#if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
|
||||
#error The given LEFT_PROBE_BED_POSITION can't be reached by the probe.
|
||||
#elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
|
||||
#error The given RIGHT_PROBE_BED_POSITION can't be reached by the probe.
|
||||
#elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
|
||||
#error The given FRONT_PROBE_BED_POSITION can't be reached by the probe.
|
||||
#elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
|
||||
#error The given BACK_PROBE_BED_POSITION can't be reached by the probe.
|
||||
|
||||
// Check if Probe_Offset * Grid Points is greater than Probing Range
|
||||
|
||||
#elif abs(X_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION
|
||||
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#elif abs(Y_PROBE_OFFSET_FROM_EXTRUDER) * (AUTO_BED_LEVELING_GRID_POINTS-1) >= BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION
|
||||
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
#if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
|
||||
#error The given ABL_PROBE_PT_1_X can't be reached by the probe.
|
||||
#elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
|
||||
#error The given ABL_PROBE_PT_2_X can't be reached by the probe.
|
||||
#elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
|
||||
#error The given ABL_PROBE_PT_3_X can't be reached by the probe.
|
||||
#elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
|
||||
#error The given ABL_PROBE_PT_1_Y can't be reached by the probe.
|
||||
#elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
|
||||
#error The given ABL_PROBE_PT_2_Y can't be reached by the probe.
|
||||
#elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
|
||||
#error The given ABL_PROBE_PT_3_Y can't be reached by the probe.
|
||||
#endif
|
||||
|
||||
#endif // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
/**
|
||||
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
|
||||
* Will fail if the printer has not been homed with G28.
|
||||
*
|
||||
* Enhanced G29 Auto Bed Leveling Probe Routine
|
||||
*
|
||||
* Parameters With AUTO_BED_LEVELING_GRID:
|
||||
*
|
||||
* P Set the size of the grid that will be probed (P x P points).
|
||||
* Example: "G29 P4"
|
||||
*
|
||||
* V Set the verbose level (0-4). Example: "G29 V3"
|
||||
*
|
||||
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
||||
* This is useful for manual bed leveling and finding flaws in the bed (to
|
||||
* assist with part placement).
|
||||
*
|
||||
* F Set the Front limit of the probing grid
|
||||
* B Set the Back limit of the probing grid
|
||||
* L Set the Left limit of the probing grid
|
||||
* R Set the Right limit of the probing grid
|
||||
*
|
||||
* Global Parameters:
|
||||
*
|
||||
* E/e By default G29 engages / disengages the probe for each point.
|
||||
* Include "E" to engage and disengage the probe just once.
|
||||
* There's no extra effect if you have a fixed probe.
|
||||
* Usage: "G29 E" or "G29 e"
|
||||
*
|
||||
*/
|
||||
|
||||
// Use one of these defines to specify the origin
|
||||
// for a topographical map to be printed for your bed.
|
||||
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
|
||||
#define TOPO_ORIGIN OriginFrontLeft
|
||||
|
||||
inline void gcode_G29() {
|
||||
|
||||
// Prevent user from running a G29 without first homing in X and Y
|
||||
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||
return;
|
||||
}
|
||||
|
||||
int verbose_level = 1;
|
||||
float x_tmp, y_tmp, z_tmp, real_z;
|
||||
|
||||
if (code_seen('V') || code_seen('v')) {
|
||||
verbose_level = code_value_long();
|
||||
if (verbose_level < 0 || verbose_level > 4) {
|
||||
SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
bool enhanced_g29 = code_seen('E') || code_seen('e');
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
|
||||
|
||||
if (verbose_level > 0)
|
||||
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
|
||||
|
||||
int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
|
||||
if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
|
||||
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
|
||||
return;
|
||||
}
|
||||
|
||||
int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
|
||||
right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
|
||||
front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
|
||||
back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
|
||||
|
||||
bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
|
||||
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
|
||||
right_out_r = right_probe_bed_position > MAX_PROBE_X,
|
||||
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
||||
front_out_f = front_probe_bed_position < MIN_PROBE_Y,
|
||||
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
|
||||
back_out_b = back_probe_bed_position > MAX_PROBE_Y,
|
||||
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
|
||||
|
||||
if (left_out || right_out || front_out || back_out) {
|
||||
if (left_out) {
|
||||
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
|
||||
left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
|
||||
}
|
||||
if (right_out) {
|
||||
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
|
||||
right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
|
||||
}
|
||||
if (front_out) {
|
||||
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
|
||||
front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
|
||||
}
|
||||
if (back_out) {
|
||||
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
|
||||
back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
#ifdef Z_PROBE_SLED
|
||||
dock_sled(false); // engage (un-dock) the probe
|
||||
#endif
|
||||
|
||||
st_synchronize();
|
||||
|
||||
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
||||
//vector_3 corrected_position = plan_get_position_mm();
|
||||
//corrected_position.debug("position before G29");
|
||||
plan_bed_level_matrix.set_to_identity();
|
||||
vector_3 uncorrected_position = plan_get_position();
|
||||
//uncorrected_position.debug("position durring G29");
|
||||
current_position[X_AXIS] = uncorrected_position.x;
|
||||
current_position[Y_AXIS] = uncorrected_position.y;
|
||||
current_position[Z_AXIS] = uncorrected_position.z;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
setup_for_endstop_move();
|
||||
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// probe at the points of a lattice grid
|
||||
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
||||
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
||||
|
||||
// solve the plane equation ax + by + d = z
|
||||
// A is the matrix with rows [x y 1] for all the probed points
|
||||
// B is the vector of the Z positions
|
||||
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
||||
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
||||
|
||||
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
||||
|
||||
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
||||
eqnBVector[abl2], // "B" vector of Z points
|
||||
mean = 0.0;
|
||||
|
||||
int probePointCounter = 0;
|
||||
bool zig = true;
|
||||
|
||||
for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
|
||||
int xProbe, xInc;
|
||||
|
||||
if (zig)
|
||||
xProbe = left_probe_bed_position, xInc = xGridSpacing;
|
||||
else
|
||||
xProbe = right_probe_bed_position, xInc = -xGridSpacing;
|
||||
|
||||
// If topo_flag is set then don't zig-zag. Just scan in one direction.
|
||||
// This gets the probe points in more readable order.
|
||||
if (!topo_flag) zig = !zig;
|
||||
|
||||
for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
|
||||
// raise extruder
|
||||
float measured_z,
|
||||
z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
||||
|
||||
// Enhanced G29 - Do not retract servo between probes
|
||||
ProbeAction act;
|
||||
if (enhanced_g29) {
|
||||
if (yProbe == front_probe_bed_position && xCount == 0)
|
||||
act = ProbeEngage;
|
||||
else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
|
||||
act = ProbeRetract;
|
||||
else
|
||||
act = ProbeStay;
|
||||
}
|
||||
else
|
||||
act = ProbeEngageRetract;
|
||||
|
||||
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
|
||||
|
||||
mean += measured_z;
|
||||
|
||||
eqnBVector[probePointCounter] = measured_z;
|
||||
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
||||
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
||||
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
||||
|
||||
probePointCounter++;
|
||||
xProbe += xInc;
|
||||
|
||||
} //xProbe
|
||||
|
||||
} //yProbe
|
||||
|
||||
clean_up_after_endstop_move();
|
||||
|
||||
// solve lsq problem
|
||||
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
|
||||
|
||||
mean /= abl2;
|
||||
|
||||
if (verbose_level) {
|
||||
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
||||
SERIAL_PROTOCOL(plane_equation_coefficients[0] + 0.0001);
|
||||
SERIAL_PROTOCOLPGM(" b: ");
|
||||
SERIAL_PROTOCOL(plane_equation_coefficients[1] + 0.0001);
|
||||
SERIAL_PROTOCOLPGM(" d: ");
|
||||
SERIAL_PROTOCOLLN(plane_equation_coefficients[2] + 0.0001);
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
||||
SERIAL_PROTOCOL_F(mean, 6);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
|
||||
if (topo_flag) {
|
||||
|
||||
int xx, yy;
|
||||
|
||||
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
||||
#if TOPO_ORIGIN == OriginFrontLeft
|
||||
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
|
||||
#else
|
||||
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
|
||||
#endif
|
||||
{
|
||||
#if TOPO_ORIGIN == OriginBackRight
|
||||
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
|
||||
#else
|
||||
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
|
||||
#endif
|
||||
|
||||
// Prevent user from running a G29 without first homing in X and Y
|
||||
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
|
||||
{
|
||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||
break; // abort G29, since we don't know where we are
|
||||
}
|
||||
|
||||
#ifdef Z_PROBE_SLED
|
||||
dock_sled(false);
|
||||
#endif // Z_PROBE_SLED
|
||||
st_synchronize();
|
||||
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
||||
//vector_3 corrected_position = plan_get_position_mm();
|
||||
//corrected_position.debug("position before G29");
|
||||
plan_bed_level_matrix.set_to_identity();
|
||||
vector_3 uncorrected_position = plan_get_position();
|
||||
//uncorrected_position.debug("position durring G29");
|
||||
current_position[X_AXIS] = uncorrected_position.x;
|
||||
current_position[Y_AXIS] = uncorrected_position.y;
|
||||
current_position[Z_AXIS] = uncorrected_position.z;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
setup_for_endstop_move();
|
||||
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
// probe at the points of a lattice grid
|
||||
int left_probe_bed_position=LEFT_PROBE_BED_POSITION;
|
||||
int right_probe_bed_position=RIGHT_PROBE_BED_POSITION;
|
||||
int back_probe_bed_position=BACK_PROBE_BED_POSITION;
|
||||
int front_probe_bed_position=FRONT_PROBE_BED_POSITION;
|
||||
int auto_bed_leveling_grid_points=AUTO_BED_LEVELING_GRID_POINTS;
|
||||
if (code_seen('L')) left_probe_bed_position=(int)code_value();
|
||||
if (code_seen('R')) right_probe_bed_position=(int)code_value();
|
||||
if (code_seen('B')) back_probe_bed_position=(int)code_value();
|
||||
if (code_seen('F')) front_probe_bed_position=(int)code_value();
|
||||
if (code_seen('P')) auto_bed_leveling_grid_points=(int)code_value();
|
||||
|
||||
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
||||
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
||||
|
||||
|
||||
// solve the plane equation ax + by + d = z
|
||||
// A is the matrix with rows [x y 1] for all the probed points
|
||||
// B is the vector of the Z positions
|
||||
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
||||
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
||||
|
||||
// "A" matrix of the linear system of equations
|
||||
double eqnAMatrix[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points*3];
|
||||
|
||||
// "B" vector of Z points
|
||||
double eqnBVector[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points];
|
||||
|
||||
|
||||
|
||||
int probePointCounter = 0;
|
||||
bool zig = true;
|
||||
|
||||
for (int yProbe=front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing)
|
||||
|
||||
{
|
||||
int xProbe, xInc;
|
||||
if (zig)
|
||||
{
|
||||
xProbe = left_probe_bed_position;
|
||||
//xEnd = right_probe_bed_position;
|
||||
xInc = xGridSpacing;
|
||||
zig = false;
|
||||
} else // zag
|
||||
{
|
||||
xProbe = right_probe_bed_position;
|
||||
//xEnd = left_probe_bed_position;
|
||||
xInc = -xGridSpacing;
|
||||
zig = true;
|
||||
}
|
||||
int ind =
|
||||
#if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
|
||||
yy * auto_bed_leveling_grid_points + xx
|
||||
#elif TOPO_ORIGIN == OriginBackLeft
|
||||
xx * auto_bed_leveling_grid_points + yy
|
||||
#elif TOPO_ORIGIN == OriginFrontRight
|
||||
abl2 - xx * auto_bed_leveling_grid_points - yy - 1
|
||||
#endif
|
||||
;
|
||||
float diff = eqnBVector[ind] - mean;
|
||||
if (diff >= 0.0)
|
||||
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
||||
else
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
SERIAL_PROTOCOL_F(diff, 5);
|
||||
} // xx
|
||||
SERIAL_EOL;
|
||||
} // yy
|
||||
SERIAL_EOL;
|
||||
|
||||
for (int xCount=0; xCount < auto_bed_leveling_grid_points; xCount++)
|
||||
{
|
||||
float z_before;
|
||||
if (probePointCounter == 0)
|
||||
{
|
||||
// raise before probing
|
||||
z_before = Z_RAISE_BEFORE_PROBING;
|
||||
} else
|
||||
{
|
||||
// raise extruder
|
||||
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
||||
}
|
||||
|
||||
float measured_z;
|
||||
//Enhanced G29 - Do not retract servo between probes
|
||||
if (code_seen('E') || code_seen('e') )
|
||||
{
|
||||
if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
|
||||
{
|
||||
measured_z = probe_pt(xProbe, yProbe, z_before,1);
|
||||
} else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
|
||||
{
|
||||
measured_z = probe_pt(xProbe, yProbe, z_before,3);
|
||||
} else {
|
||||
measured_z = probe_pt(xProbe, yProbe, z_before,2);
|
||||
}
|
||||
} else {
|
||||
measured_z = probe_pt(xProbe, yProbe, z_before);
|
||||
}
|
||||
|
||||
eqnBVector[probePointCounter] = measured_z;
|
||||
|
||||
eqnAMatrix[probePointCounter + 0*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = xProbe;
|
||||
eqnAMatrix[probePointCounter + 1*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = yProbe;
|
||||
eqnAMatrix[probePointCounter + 2*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = 1;
|
||||
probePointCounter++;
|
||||
xProbe += xInc;
|
||||
}
|
||||
}
|
||||
clean_up_after_endstop_move();
|
||||
|
||||
// solve lsq problem
|
||||
double *plane_equation_coefficients = qr_solve(auto_bed_leveling_grid_points*auto_bed_leveling_grid_points, 3, eqnAMatrix, eqnBVector);
|
||||
|
||||
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
||||
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
|
||||
SERIAL_PROTOCOLPGM(" b: ");
|
||||
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
|
||||
SERIAL_PROTOCOLPGM(" d: ");
|
||||
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
|
||||
} //topo_flag
|
||||
|
||||
|
||||
set_bed_level_equation_lsq(plane_equation_coefficients);
|
||||
set_bed_level_equation_lsq(plane_equation_coefficients);
|
||||
free(plane_equation_coefficients);
|
||||
|
||||
free(plane_equation_coefficients);
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
#else // AUTO_BED_LEVELING_GRID not defined
|
||||
// Probe at 3 arbitrary points
|
||||
float z_at_pt_1, z_at_pt_2, z_at_pt_3;
|
||||
|
||||
// Probe at 3 arbitrary points
|
||||
// Enhanced G29
|
||||
if (enhanced_g29) {
|
||||
// Basic Enhanced G29
|
||||
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
|
||||
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
|
||||
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
|
||||
}
|
||||
else {
|
||||
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level);
|
||||
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
|
||||
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level);
|
||||
}
|
||||
clean_up_after_endstop_move();
|
||||
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
||||
|
||||
float z_at_pt_1, z_at_pt_2, z_at_pt_3;
|
||||
#endif // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
if (code_seen('E') || code_seen('e')) {
|
||||
// probe 1
|
||||
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
|
||||
// probe 2
|
||||
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
|
||||
// probe 3
|
||||
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
|
||||
}
|
||||
else {
|
||||
// probe 1
|
||||
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
|
||||
// probe 2
|
||||
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||
// probe 3
|
||||
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||
}
|
||||
clean_up_after_endstop_move();
|
||||
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
||||
st_synchronize();
|
||||
|
||||
if (verbose_level > 0)
|
||||
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
||||
|
||||
#endif // AUTO_BED_LEVELING_GRID
|
||||
st_synchronize();
|
||||
// Correct the Z height difference from z-probe position and hotend tip position.
|
||||
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
||||
// When the bed is uneven, this height must be corrected.
|
||||
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
||||
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
z_tmp = current_position[Z_AXIS];
|
||||
|
||||
// The following code correct the Z height difference from z-probe position and hotend tip position.
|
||||
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
||||
// When the bed is uneven, this height must be corrected.
|
||||
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
||||
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
z_tmp = current_position[Z_AXIS];
|
||||
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
||||
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
||||
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
#ifdef Z_PROBE_SLED
|
||||
dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
|
||||
#endif // Z_PROBE_SLED
|
||||
}
|
||||
#ifdef Z_PROBE_SLED
|
||||
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef Z_PROBE_SLED
|
||||
|
||||
inline void gcode_G30() {
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
st_synchronize();
|
||||
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
||||
setup_for_endstop_move();
|
||||
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
|
||||
run_z_probe();
|
||||
SERIAL_PROTOCOLPGM(MSG_BED);
|
||||
SERIAL_PROTOCOLPGM(" X: ");
|
||||
SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
|
||||
SERIAL_PROTOCOLPGM(" Y: ");
|
||||
SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
|
||||
SERIAL_PROTOCOLPGM(" Z: ");
|
||||
SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
|
||||
SERIAL_EOL;
|
||||
|
||||
clean_up_after_endstop_move();
|
||||
retract_z_probe(); // Retract Z Servo endstop if available
|
||||
}
|
||||
|
||||
#endif //!Z_PROBE_SLED
|
||||
|
||||
#endif //ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
/**
|
||||
* G92: Set current position to given X Y Z E
|
||||
*/
|
||||
inline void gcode_G92() {
|
||||
if (!code_seen(axis_codes[E_AXIS]))
|
||||
st_synchronize();
|
||||
|
||||
for (int i=0;i<NUM_AXIS;i++) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
if (i == E_AXIS) {
|
||||
current_position[i] = code_value();
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
}
|
||||
else {
|
||||
current_position[i] = code_value() +
|
||||
#ifdef SCARA
|
||||
((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
|
||||
#else
|
||||
add_homing[i]
|
||||
#endif
|
||||
;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef ULTIPANEL
|
||||
|
||||
/**
|
||||
* M0: // M0 - Unconditional stop - Wait for user button press on LCD
|
||||
* M1: // M1 - Conditional stop - Wait for user button press on LCD
|
||||
*/
|
||||
inline void gcode_M0_M1() {
|
||||
char *src = strchr_pointer + 2;
|
||||
|
||||
unsigned long codenum = 0;
|
||||
bool hasP = false, hasS = false;
|
||||
if (code_seen('P')) {
|
||||
codenum = code_value(); // milliseconds to wait
|
||||
hasP = codenum > 0;
|
||||
}
|
||||
if (code_seen('S')) {
|
||||
codenum = code_value() * 1000; // seconds to wait
|
||||
hasS = codenum > 0;
|
||||
}
|
||||
char* starpos = strchr(src, '*');
|
||||
if (starpos != NULL) *(starpos) = '\0';
|
||||
while (*src == ' ') ++src;
|
||||
if (!hasP && !hasS && *src != '\0')
|
||||
lcd_setstatus(src);
|
||||
else
|
||||
LCD_MESSAGEPGM(MSG_USERWAIT);
|
||||
|
||||
lcd_ignore_click();
|
||||
st_synchronize();
|
||||
previous_millis_cmd = millis();
|
||||
if (codenum > 0) {
|
||||
codenum += previous_millis_cmd; // keep track of when we started waiting
|
||||
while(millis() < codenum && !lcd_clicked()) {
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
lcd_ignore_click(false);
|
||||
}
|
||||
else {
|
||||
if (!lcd_detected()) return;
|
||||
while (!lcd_clicked()) {
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
}
|
||||
if (IS_SD_PRINTING)
|
||||
LCD_MESSAGEPGM(MSG_RESUMING);
|
||||
else
|
||||
LCD_MESSAGEPGM(WELCOME_MSG);
|
||||
}
|
||||
|
||||
#endif // ULTIPANEL
|
||||
|
||||
/**
|
||||
* M17: Enable power on all stepper motors
|
||||
*/
|
||||
inline void gcode_M17() {
|
||||
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
||||
enable_x();
|
||||
enable_y();
|
||||
enable_z();
|
||||
enable_e0();
|
||||
enable_e1();
|
||||
enable_e2();
|
||||
enable_e3();
|
||||
}
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
|
||||
/**
|
||||
* M20: List SD card to serial output
|
||||
*/
|
||||
inline void gcode_M20() {
|
||||
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
||||
card.ls();
|
||||
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
||||
}
|
||||
|
||||
/**
|
||||
* M21: Init SD Card
|
||||
*/
|
||||
inline void gcode_M21() {
|
||||
card.initsd();
|
||||
}
|
||||
|
||||
/**
|
||||
* M22: Release SD Card
|
||||
*/
|
||||
inline void gcode_M22() {
|
||||
card.release();
|
||||
}
|
||||
|
||||
/**
|
||||
* M23: Select a file
|
||||
*/
|
||||
inline void gcode_M23() {
|
||||
char* codepos = strchr_pointer + 4;
|
||||
char* starpos = strchr(codepos, '*');
|
||||
if (starpos) *starpos = '\0';
|
||||
card.openFile(codepos, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* M24: Start SD Print
|
||||
*/
|
||||
inline void gcode_M24() {
|
||||
card.startFileprint();
|
||||
starttime = millis();
|
||||
}
|
||||
|
||||
/**
|
||||
* M25: Pause SD Print
|
||||
*/
|
||||
inline void gcode_M25() {
|
||||
card.pauseSDPrint();
|
||||
}
|
||||
|
||||
/**
|
||||
* M26: Set SD Card file index
|
||||
*/
|
||||
inline void gcode_M26() {
|
||||
if (card.cardOK && code_seen('S'))
|
||||
card.setIndex(code_value_long());
|
||||
}
|
||||
|
||||
/**
|
||||
* M27: Get SD Card status
|
||||
*/
|
||||
inline void gcode_M27() {
|
||||
card.getStatus();
|
||||
}
|
||||
|
||||
/**
|
||||
* M28: Start SD Write
|
||||
*/
|
||||
inline void gcode_M28() {
|
||||
char* codepos = strchr_pointer + 4;
|
||||
char* starpos = strchr(strchr_pointer + 4, '*');
|
||||
if (starpos) {
|
||||
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
||||
strchr_pointer = strchr(npos, ' ') + 1;
|
||||
*(starpos) = '\0';
|
||||
}
|
||||
card.openFile(strchr_pointer + 4, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* M29: Stop SD Write
|
||||
* Processed in write to file routine above
|
||||
*/
|
||||
inline void gcode_M29() {
|
||||
// card.saving = false;
|
||||
}
|
||||
|
||||
/**
|
||||
* M30 <filename>: Delete SD Card file
|
||||
*/
|
||||
inline void gcode_M30() {
|
||||
if (card.cardOK) {
|
||||
card.closefile();
|
||||
char* starpos = strchr(strchr_pointer + 4, '*');
|
||||
if (starpos) {
|
||||
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
||||
strchr_pointer = strchr(npos, ' ') + 1;
|
||||
*(starpos) = '\0';
|
||||
}
|
||||
card.removeFile(strchr_pointer + 4);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* M31: Get the time since the start of SD Print (or last M109)
|
||||
*/
|
||||
inline void gcode_M31() {
|
||||
stoptime = millis();
|
||||
unsigned long t = (stoptime - starttime) / 1000;
|
||||
int min = t / 60, sec = t % 60;
|
||||
char time[30];
|
||||
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLN(time);
|
||||
lcd_setstatus(time);
|
||||
autotempShutdown();
|
||||
}
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
|
||||
/**
|
||||
* M32: Select file and start SD Print
|
||||
*/
|
||||
inline void gcode_M32() {
|
||||
if (card.sdprinting)
|
||||
st_synchronize();
|
||||
|
||||
char* codepos = strchr_pointer + 4;
|
||||
|
||||
char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
|
||||
if (! namestartpos)
|
||||
namestartpos = codepos; //default name position, 4 letters after the M
|
||||
else
|
||||
namestartpos++; //to skip the '!'
|
||||
|
||||
char* starpos = strchr(codepos, '*');
|
||||
if (starpos) *(starpos) = '\0';
|
||||
|
||||
bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
|
||||
|
||||
if (card.cardOK) {
|
||||
card.openFile(namestartpos, true, !call_procedure);
|
||||
|
||||
if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
|
||||
card.setIndex(code_value_long());
|
||||
|
||||
card.startFileprint();
|
||||
if (!call_procedure)
|
||||
starttime = millis(); //procedure calls count as normal print time.
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M928: Start SD Write
|
||||
*/
|
||||
inline void gcode_M928() {
|
||||
char* starpos = strchr(strchr_pointer + 5, '*');
|
||||
if (starpos) {
|
||||
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
||||
strchr_pointer = strchr(npos, ' ') + 1;
|
||||
*(starpos) = '\0';
|
||||
}
|
||||
card.openLogFile(strchr_pointer + 5);
|
||||
}
|
||||
|
||||
#endif // SDSUPPORT
|
||||
|
||||
/**
|
||||
* M42: Change pin status via GCode
|
||||
*/
|
||||
inline void gcode_M42() {
|
||||
if (code_seen('S')) {
|
||||
int pin_status = code_value(),
|
||||
pin_number = LED_PIN;
|
||||
|
||||
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
||||
pin_number = code_value();
|
||||
|
||||
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
|
||||
if (sensitive_pins[i] == pin_number) {
|
||||
pin_number = -1;
|
||||
break;
|
||||
#ifndef Z_PROBE_SLED
|
||||
case 30: // G30 Single Z Probe
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||
if (pin_number == FAN_PIN) fanSpeed = pin_status;
|
||||
#endif
|
||||
|
||||
if (pin_number > -1) {
|
||||
pinMode(pin_number, OUTPUT);
|
||||
digitalWrite(pin_number, pin_status);
|
||||
analogWrite(pin_number, pin_status);
|
||||
}
|
||||
} // code_seen('S')
|
||||
}
|
||||
|
||||
|
||||
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
|
||||
|
||||
#if Z_MIN_PIN == -1
|
||||
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
||||
#endif
|
||||
|
||||
/**
|
||||
* M48: Z-Probe repeatability measurement function.
|
||||
*
|
||||
* Usage:
|
||||
* M48 <n#> <X#> <Y#> <V#> <E> <L#>
|
||||
* n = Number of samples (4-50, default 10)
|
||||
* X = Sample X position
|
||||
* Y = Sample Y position
|
||||
* V = Verbose level (0-4, default=1)
|
||||
* E = Engage probe for each reading
|
||||
* L = Number of legs of movement before probe
|
||||
*
|
||||
* This function assumes the bed has been homed. Specificaly, that a G28 command
|
||||
* as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
||||
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
||||
* regenerated.
|
||||
*
|
||||
* The number of samples will default to 10 if not specified. You can use upper or lower case
|
||||
* letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
||||
* N for its communication protocol and will get horribly confused if you send it a capital N.
|
||||
*/
|
||||
inline void gcode_M48() {
|
||||
|
||||
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
|
||||
int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
|
||||
double X_current, Y_current, Z_current;
|
||||
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
||||
|
||||
if (code_seen('V') || code_seen('v')) {
|
||||
verbose_level = code_value();
|
||||
if (verbose_level < 0 || verbose_level > 4 ) {
|
||||
SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose_level > 0)
|
||||
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
|
||||
|
||||
if (code_seen('n')) {
|
||||
n_samples = code_value();
|
||||
if (n_samples < 4 || n_samples > 50) {
|
||||
SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
||||
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
||||
Z_current = st_get_position_mm(Z_AXIS);
|
||||
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
||||
ext_position = st_get_position_mm(E_AXIS);
|
||||
|
||||
if (code_seen('E') || code_seen('e'))
|
||||
engage_probe_for_each_reading++;
|
||||
|
||||
if (code_seen('X') || code_seen('x')) {
|
||||
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
|
||||
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (code_seen('Y') || code_seen('y')) {
|
||||
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
|
||||
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (code_seen('L') || code_seen('l')) {
|
||||
n_legs = code_value();
|
||||
if (n_legs == 1) n_legs = 2;
|
||||
if (n_legs < 0 || n_legs > 15) {
|
||||
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Do all the preliminary setup work. First raise the probe.
|
||||
//
|
||||
|
||||
st_synchronize();
|
||||
plan_bed_level_matrix.set_to_identity();
|
||||
plan_buffer_line(X_current, Y_current, Z_start_location,
|
||||
ext_position,
|
||||
homing_feedrate[Z_AXIS] / 60,
|
||||
active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
//
|
||||
// Now get everything to the specified probe point So we can safely do a probe to
|
||||
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
||||
// use that as a starting point for each probe.
|
||||
//
|
||||
if (verbose_level > 2)
|
||||
SERIAL_PROTOCOL("Positioning probe for the test.\n");
|
||||
|
||||
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
||||
ext_position,
|
||||
homing_feedrate[X_AXIS]/60,
|
||||
active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
||||
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
||||
|
||||
//
|
||||
// OK, do the inital probe to get us close to the bed.
|
||||
// Then retrace the right amount and use that in subsequent probes
|
||||
//
|
||||
|
||||
engage_z_probe();
|
||||
|
||||
setup_for_endstop_move();
|
||||
run_z_probe();
|
||||
|
||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
||||
|
||||
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
||||
ext_position,
|
||||
homing_feedrate[X_AXIS]/60,
|
||||
active_extruder);
|
||||
st_synchronize();
|
||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||
|
||||
if (engage_probe_for_each_reading) retract_z_probe();
|
||||
|
||||
for (n=0; n < n_samples; n++) {
|
||||
|
||||
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
||||
|
||||
if (n_legs) {
|
||||
double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
||||
int l;
|
||||
int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
||||
radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
|
||||
theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
|
||||
|
||||
//SERIAL_ECHOPAIR("starting radius: ",radius);
|
||||
//SERIAL_ECHOPAIR(" theta: ",theta);
|
||||
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
||||
//SERIAL_PROTOCOLLNPGM("");
|
||||
|
||||
float dir = rotational_direction ? 1 : -1;
|
||||
for (l = 0; l < n_legs - 1; l++) {
|
||||
theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
|
||||
|
||||
radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
|
||||
if (radius < 0.0) radius = -radius;
|
||||
|
||||
X_current = X_probe_location + cos(theta) * radius;
|
||||
Y_current = Y_probe_location + sin(theta) * radius;
|
||||
|
||||
// Make sure our X & Y are sane
|
||||
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
||||
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
||||
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_ECHOPAIR("x: ", X_current);
|
||||
SERIAL_ECHOPAIR("y: ", Y_current);
|
||||
SERIAL_PROTOCOLLNPGM("");
|
||||
}
|
||||
|
||||
do_blocking_move_to( X_current, Y_current, Z_current );
|
||||
}
|
||||
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
||||
}
|
||||
|
||||
if (engage_probe_for_each_reading) {
|
||||
engage_z_probe();
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
setup_for_endstop_move();
|
||||
run_z_probe();
|
||||
|
||||
sample_set[n] = current_position[Z_AXIS];
|
||||
|
||||
//
|
||||
// Get the current mean for the data points we have so far
|
||||
//
|
||||
sum = 0.0;
|
||||
for (j=0; j<=n; j++) sum += sample_set[j];
|
||||
mean = sum / (double (n+1));
|
||||
|
||||
//
|
||||
// Now, use that mean to calculate the standard deviation for the
|
||||
// data points we have so far
|
||||
//
|
||||
sum = 0.0;
|
||||
for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
|
||||
sigma = sqrt( sum / (double (n+1)) );
|
||||
|
||||
if (verbose_level > 1) {
|
||||
SERIAL_PROTOCOL(n+1);
|
||||
SERIAL_PROTOCOL(" of ");
|
||||
SERIAL_PROTOCOL(n_samples);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
||||
}
|
||||
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOL(" mean: ");
|
||||
SERIAL_PROTOCOL_F(mean,6);
|
||||
SERIAL_PROTOCOL(" sigma: ");
|
||||
SERIAL_PROTOCOL_F(sigma,6);
|
||||
}
|
||||
|
||||
if (verbose_level > 0) SERIAL_EOL;
|
||||
|
||||
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
|
||||
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
if (engage_probe_for_each_reading) {
|
||||
retract_z_probe();
|
||||
delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
retract_z_probe();
|
||||
delay(1000);
|
||||
|
||||
clean_up_after_endstop_move();
|
||||
|
||||
// enable_endstops(true);
|
||||
|
||||
if (verbose_level > 0) {
|
||||
SERIAL_PROTOCOLPGM("Mean: ");
|
||||
SERIAL_PROTOCOL_F(mean, 6);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
||||
SERIAL_PROTOCOL_F(sigma, 6);
|
||||
SERIAL_EOL; SERIAL_EOL;
|
||||
}
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
|
||||
|
||||
/**
|
||||
* M104: Set hot end temperature
|
||||
*/
|
||||
inline void gcode_M104() {
|
||||
if (setTargetedHotend(104)) return;
|
||||
|
||||
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
||||
#endif
|
||||
setWatch();
|
||||
}
|
||||
|
||||
/**
|
||||
* M105: Read hot end and bed temperature
|
||||
*/
|
||||
inline void gcode_M105() {
|
||||
if (setTargetedHotend(105)) return;
|
||||
|
||||
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
||||
SERIAL_PROTOCOLPGM("ok T:");
|
||||
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
||||
SERIAL_PROTOCOLPGM(" /");
|
||||
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(" B:");
|
||||
SERIAL_PROTOCOL_F(degBed(),1);
|
||||
SERIAL_PROTOCOLPGM(" /");
|
||||
SERIAL_PROTOCOL_F(degTargetBed(),1);
|
||||
#endif //TEMP_BED_PIN
|
||||
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
||||
SERIAL_PROTOCOLPGM(" T");
|
||||
SERIAL_PROTOCOL(cur_extruder);
|
||||
SERIAL_PROTOCOLPGM(":");
|
||||
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
||||
SERIAL_PROTOCOLPGM(" /");
|
||||
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
||||
}
|
||||
#else
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLPGM(" @:");
|
||||
#ifdef EXTRUDER_WATTS
|
||||
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
||||
SERIAL_PROTOCOLPGM("W");
|
||||
#else
|
||||
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLPGM(" B@:");
|
||||
#ifdef BED_WATTS
|
||||
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
||||
SERIAL_PROTOCOLPGM("W");
|
||||
#else
|
||||
SERIAL_PROTOCOL(getHeaterPower(-1));
|
||||
#endif
|
||||
|
||||
#ifdef SHOW_TEMP_ADC_VALUES
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(" ADC B:");
|
||||
SERIAL_PROTOCOL_F(degBed(),1);
|
||||
SERIAL_PROTOCOLPGM("C->");
|
||||
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
|
||||
#endif
|
||||
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
||||
SERIAL_PROTOCOLPGM(" T");
|
||||
SERIAL_PROTOCOL(cur_extruder);
|
||||
SERIAL_PROTOCOLPGM(":");
|
||||
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
||||
SERIAL_PROTOCOLPGM("C->");
|
||||
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
|
||||
}
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
|
||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||
|
||||
/**
|
||||
* M106: Set Fan Speed
|
||||
*/
|
||||
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
||||
|
||||
/**
|
||||
* M107: Fan Off
|
||||
*/
|
||||
inline void gcode_M107() { fanSpeed = 0; }
|
||||
|
||||
#endif //FAN_PIN
|
||||
|
||||
/**
|
||||
* M109: Wait for extruder(s) to reach temperature
|
||||
*/
|
||||
inline void gcode_M109() {
|
||||
if (setTargetedHotend(109)) return;
|
||||
|
||||
LCD_MESSAGEPGM(MSG_HEATING);
|
||||
|
||||
CooldownNoWait = code_seen('S');
|
||||
if (CooldownNoWait || code_seen('R')) {
|
||||
setTargetHotend(code_value(), tmp_extruder);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef AUTOTEMP
|
||||
autotemp_enabled = code_seen('F');
|
||||
if (autotemp_enabled) autotemp_factor = code_value();
|
||||
if (code_seen('S')) autotemp_min = code_value();
|
||||
if (code_seen('B')) autotemp_max = code_value();
|
||||
#endif
|
||||
|
||||
setWatch();
|
||||
|
||||
unsigned long timetemp = millis();
|
||||
|
||||
/* See if we are heating up or cooling down */
|
||||
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
||||
|
||||
cancel_heatup = false;
|
||||
|
||||
#ifdef TEMP_RESIDENCY_TIME
|
||||
long residencyStart = -1;
|
||||
/* continue to loop until we have reached the target temp
|
||||
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
||||
while((!cancel_heatup)&&((residencyStart == -1) ||
|
||||
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
|
||||
#else
|
||||
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
|
||||
#endif //TEMP_RESIDENCY_TIME
|
||||
|
||||
{ // while loop
|
||||
if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
|
||||
SERIAL_PROTOCOLPGM("T:");
|
||||
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
||||
SERIAL_PROTOCOLPGM(" E:");
|
||||
SERIAL_PROTOCOL((int)tmp_extruder);
|
||||
#ifdef TEMP_RESIDENCY_TIME
|
||||
SERIAL_PROTOCOLPGM(" W:");
|
||||
if (residencyStart > -1) {
|
||||
timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
||||
SERIAL_PROTOCOLLN( timetemp );
|
||||
}
|
||||
else {
|
||||
SERIAL_PROTOCOLLN( "?" );
|
||||
}
|
||||
#else
|
||||
SERIAL_PROTOCOLLN("");
|
||||
#endif
|
||||
timetemp = millis();
|
||||
}
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
#ifdef TEMP_RESIDENCY_TIME
|
||||
// start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
||||
// or when current temp falls outside the hysteresis after target temp was reached
|
||||
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
|
||||
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
|
||||
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
|
||||
{
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
st_synchronize();
|
||||
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
||||
setup_for_endstop_move();
|
||||
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
|
||||
run_z_probe();
|
||||
SERIAL_PROTOCOLPGM(MSG_BED);
|
||||
SERIAL_PROTOCOLPGM(" X: ");
|
||||
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Y: ");
|
||||
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Z: ");
|
||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
|
||||
clean_up_after_endstop_move();
|
||||
retract_z_probe(); // Retract Z Servo endstop if available
|
||||
residencyStart = millis();
|
||||
}
|
||||
#endif //TEMP_RESIDENCY_TIME
|
||||
}
|
||||
|
||||
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
||||
starttime = previous_millis_cmd = millis();
|
||||
}
|
||||
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
|
||||
/**
|
||||
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
||||
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
||||
*/
|
||||
inline void gcode_M190() {
|
||||
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
||||
CooldownNoWait = code_seen('S');
|
||||
if (CooldownNoWait || code_seen('R'))
|
||||
setTargetBed(code_value());
|
||||
|
||||
unsigned long timetemp = millis();
|
||||
|
||||
cancel_heatup = false;
|
||||
target_direction = isHeatingBed(); // true if heating, false if cooling
|
||||
|
||||
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
|
||||
unsigned long ms = millis();
|
||||
if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
|
||||
timetemp = ms;
|
||||
float tt = degHotend(active_extruder);
|
||||
SERIAL_PROTOCOLPGM("T:");
|
||||
SERIAL_PROTOCOL(tt);
|
||||
SERIAL_PROTOCOLPGM(" E:");
|
||||
SERIAL_PROTOCOL((int)active_extruder);
|
||||
SERIAL_PROTOCOLPGM(" B:");
|
||||
SERIAL_PROTOCOL_F(degBed(), 1);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
LCD_MESSAGEPGM(MSG_BED_DONE);
|
||||
previous_millis_cmd = millis();
|
||||
}
|
||||
|
||||
#endif // TEMP_BED_PIN > -1
|
||||
|
||||
/**
|
||||
* M112: Emergency Stop
|
||||
*/
|
||||
inline void gcode_M112() {
|
||||
kill();
|
||||
}
|
||||
|
||||
#ifdef BARICUDA
|
||||
|
||||
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
||||
/**
|
||||
* M126: Heater 1 valve open
|
||||
*/
|
||||
inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
||||
/**
|
||||
* M127: Heater 1 valve close
|
||||
*/
|
||||
inline void gcode_M127() { ValvePressure = 0; }
|
||||
#endif
|
||||
|
||||
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
||||
/**
|
||||
* M128: Heater 2 valve open
|
||||
*/
|
||||
inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
||||
/**
|
||||
* M129: Heater 2 valve close
|
||||
*/
|
||||
inline void gcode_M129() { EtoPPressure = 0; }
|
||||
#endif
|
||||
|
||||
#endif //BARICUDA
|
||||
|
||||
/**
|
||||
* M140: Set bed temperature
|
||||
*/
|
||||
inline void gcode_M140() {
|
||||
if (code_seen('S')) setTargetBed(code_value());
|
||||
}
|
||||
|
||||
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||
|
||||
/**
|
||||
* M80: Turn on Power Supply
|
||||
*/
|
||||
inline void gcode_M80() {
|
||||
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
|
||||
|
||||
// If you have a switch on suicide pin, this is useful
|
||||
// if you want to start another print with suicide feature after
|
||||
// a print without suicide...
|
||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||
OUT_WRITE(SUICIDE_PIN, HIGH);
|
||||
#endif
|
||||
|
||||
#ifdef ULTIPANEL
|
||||
powersupply = true;
|
||||
LCD_MESSAGEPGM(WELCOME_MSG);
|
||||
lcd_update();
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // PS_ON_PIN
|
||||
|
||||
/**
|
||||
* M81: Turn off Power Supply
|
||||
*/
|
||||
inline void gcode_M81() {
|
||||
disable_heater();
|
||||
st_synchronize();
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
disable_e3();
|
||||
finishAndDisableSteppers();
|
||||
fanSpeed = 0;
|
||||
delay(1000); // Wait 1 second before switching off
|
||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||
st_synchronize();
|
||||
suicide();
|
||||
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
||||
#endif
|
||||
#ifdef ULTIPANEL
|
||||
powersupply = false;
|
||||
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
|
||||
lcd_update();
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M82: Set E codes absolute (default)
|
||||
*/
|
||||
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
|
||||
|
||||
/**
|
||||
* M82: Set E codes relative while in Absolute Coordinates (G90) mode
|
||||
*/
|
||||
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
|
||||
|
||||
/**
|
||||
* M18, M84: Disable all stepper motors
|
||||
*/
|
||||
inline void gcode_M18_M84() {
|
||||
if (code_seen('S')) {
|
||||
stepper_inactive_time = code_value() * 1000;
|
||||
}
|
||||
else {
|
||||
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
||||
if (all_axis) {
|
||||
st_synchronize();
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
disable_e3();
|
||||
finishAndDisableSteppers();
|
||||
}
|
||||
else {
|
||||
st_synchronize();
|
||||
if (code_seen('X')) disable_x();
|
||||
if (code_seen('Y')) disable_y();
|
||||
if (code_seen('Z')) disable_z();
|
||||
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
||||
if (code_seen('E')) {
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
disable_e3();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
||||
*/
|
||||
inline void gcode_M85() {
|
||||
if (code_seen('S')) max_inactive_time = code_value() * 1000;
|
||||
}
|
||||
|
||||
/**
|
||||
* M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
||||
*/
|
||||
inline void gcode_M92() {
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
if (i == E_AXIS) {
|
||||
float value = code_value();
|
||||
if (value < 20.0) {
|
||||
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
||||
max_e_jerk *= factor;
|
||||
max_feedrate[i] *= factor;
|
||||
axis_steps_per_sqr_second[i] *= factor;
|
||||
}
|
||||
axis_steps_per_unit[i] = value;
|
||||
}
|
||||
else {
|
||||
axis_steps_per_unit[i] = code_value();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M114: Output current position to serial port
|
||||
*/
|
||||
inline void gcode_M114() {
|
||||
SERIAL_PROTOCOLPGM("X:");
|
||||
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Y:");
|
||||
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" E:");
|
||||
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
||||
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
||||
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Y:");
|
||||
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
||||
|
||||
SERIAL_PROTOCOLLN("");
|
||||
|
||||
#ifdef SCARA
|
||||
SERIAL_PROTOCOLPGM("SCARA Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
||||
SERIAL_PROTOCOL(delta[Y_AXIS]);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
|
||||
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
|
||||
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
|
||||
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
||||
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_PROTOCOLLN("");
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M115: Capabilities string
|
||||
*/
|
||||
inline void gcode_M115() {
|
||||
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
|
||||
}
|
||||
|
||||
/**
|
||||
* M117: Set LCD Status Message
|
||||
*/
|
||||
inline void gcode_M117() {
|
||||
char* codepos = strchr_pointer + 5;
|
||||
char* starpos = strchr(codepos, '*');
|
||||
if (starpos) *starpos = '\0';
|
||||
lcd_setstatus(codepos);
|
||||
}
|
||||
|
||||
/**
|
||||
* M119: Output endstop states to serial output
|
||||
*/
|
||||
inline void gcode_M119() {
|
||||
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_X_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_X_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M120: Enable endstops
|
||||
*/
|
||||
inline void gcode_M120() { enable_endstops(false); }
|
||||
|
||||
/**
|
||||
* M121: Disable endstops
|
||||
*/
|
||||
inline void gcode_M121() { enable_endstops(true); }
|
||||
|
||||
#ifdef BLINKM
|
||||
|
||||
/**
|
||||
* M150: Set Status LED Color - Use R-U-B for R-G-B
|
||||
*/
|
||||
inline void gcode_M150() {
|
||||
SendColors(
|
||||
code_seen('R') ? (byte)code_value() : 0,
|
||||
code_seen('U') ? (byte)code_value() : 0,
|
||||
code_seen('B') ? (byte)code_value() : 0
|
||||
);
|
||||
}
|
||||
|
||||
#endif // BLINKM
|
||||
|
||||
/**
|
||||
* M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
||||
* T<extruder>
|
||||
* D<millimeters>
|
||||
*/
|
||||
inline void gcode_M200() {
|
||||
tmp_extruder = active_extruder;
|
||||
if (code_seen('T')) {
|
||||
tmp_extruder = code_value();
|
||||
if (tmp_extruder >= EXTRUDERS) {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
float area = .0;
|
||||
if (code_seen('D')) {
|
||||
float diameter = code_value();
|
||||
// setting any extruder filament size disables volumetric on the assumption that
|
||||
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
||||
// for all extruders
|
||||
volumetric_enabled = (diameter != 0.0);
|
||||
if (volumetric_enabled) {
|
||||
filament_size[tmp_extruder] = diameter;
|
||||
// make sure all extruders have some sane value for the filament size
|
||||
for (int i=0; i<EXTRUDERS; i++)
|
||||
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
||||
}
|
||||
}
|
||||
else {
|
||||
//reserved for setting filament diameter via UFID or filament measuring device
|
||||
return;
|
||||
}
|
||||
calculate_volumetric_multipliers();
|
||||
}
|
||||
|
||||
/**
|
||||
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
||||
*/
|
||||
inline void gcode_M201() {
|
||||
for (int8_t i=0; i < NUM_AXIS; i++) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
max_acceleration_units_per_sq_second[i] = code_value();
|
||||
}
|
||||
}
|
||||
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
||||
reset_acceleration_rates();
|
||||
}
|
||||
|
||||
#if 0 // Not used for Sprinter/grbl gen6
|
||||
inline void gcode_M202() {
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
||||
*/
|
||||
inline void gcode_M203() {
|
||||
for (int8_t i=0; i < NUM_AXIS; i++) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
max_feedrate[i] = code_value();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
|
||||
*
|
||||
* S = normal moves
|
||||
* T = filament only moves
|
||||
*
|
||||
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
||||
*/
|
||||
inline void gcode_M204() {
|
||||
if (code_seen('S')) acceleration = code_value();
|
||||
if (code_seen('T')) retract_acceleration = code_value();
|
||||
}
|
||||
|
||||
/**
|
||||
* M205: Set Advanced Settings
|
||||
*
|
||||
* S = Min Feed Rate (mm/s)
|
||||
* T = Min Travel Feed Rate (mm/s)
|
||||
* B = Min Segment Time (µs)
|
||||
* X = Max XY Jerk (mm/s/s)
|
||||
* Z = Max Z Jerk (mm/s/s)
|
||||
* E = Max E Jerk (mm/s/s)
|
||||
*/
|
||||
inline void gcode_M205() {
|
||||
if (code_seen('S')) minimumfeedrate = code_value();
|
||||
if (code_seen('T')) mintravelfeedrate = code_value();
|
||||
if (code_seen('B')) minsegmenttime = code_value();
|
||||
if (code_seen('X')) max_xy_jerk = code_value();
|
||||
if (code_seen('Z')) max_z_jerk = code_value();
|
||||
if (code_seen('E')) max_e_jerk = code_value();
|
||||
}
|
||||
|
||||
/**
|
||||
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
||||
*/
|
||||
inline void gcode_M206() {
|
||||
for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
add_homing[i] = code_value();
|
||||
}
|
||||
}
|
||||
#ifdef SCARA
|
||||
if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
|
||||
if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef DELTA
|
||||
/**
|
||||
* M665: Set delta configurations
|
||||
*
|
||||
* L = diagonal rod
|
||||
* R = delta radius
|
||||
* S = segments per second
|
||||
*/
|
||||
inline void gcode_M665() {
|
||||
if (code_seen('L')) delta_diagonal_rod = code_value();
|
||||
if (code_seen('R')) delta_radius = code_value();
|
||||
if (code_seen('S')) delta_segments_per_second = code_value();
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
}
|
||||
/**
|
||||
* M666: Set delta endstop adjustment
|
||||
*/
|
||||
inline void gcode_M666() {
|
||||
for (int8_t i = 0; i < 3; i++) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
endstop_adj[i] = code_value();
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // DELTA
|
||||
|
||||
#ifdef FWRETRACT
|
||||
|
||||
/**
|
||||
* M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
||||
*/
|
||||
inline void gcode_M207() {
|
||||
if (code_seen('S')) retract_length = code_value();
|
||||
if (code_seen('F')) retract_feedrate = code_value() / 60;
|
||||
if (code_seen('Z')) retract_zlift = code_value();
|
||||
}
|
||||
|
||||
/**
|
||||
* M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
||||
*/
|
||||
inline void gcode_M208() {
|
||||
if (code_seen('S')) retract_recover_length = code_value();
|
||||
if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
|
||||
}
|
||||
|
||||
/**
|
||||
* M209: Enable automatic retract (M209 S1)
|
||||
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
||||
*/
|
||||
inline void gcode_M209() {
|
||||
if (code_seen('S')) {
|
||||
int t = code_value();
|
||||
switch(t) {
|
||||
case 0:
|
||||
autoretract_enabled = false;
|
||||
break;
|
||||
case 1:
|
||||
autoretract_enabled = true;
|
||||
break;
|
||||
default:
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
||||
SERIAL_ECHO(cmdbuffer[bufindr]);
|
||||
SERIAL_ECHOLNPGM("\"");
|
||||
return;
|
||||
}
|
||||
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // FWRETRACT
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
|
||||
/**
|
||||
* M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
||||
*/
|
||||
inline void gcode_M218() {
|
||||
if (setTargetedHotend(218)) return;
|
||||
|
||||
if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
||||
if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
||||
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
|
||||
#endif
|
||||
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||
for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
|
||||
SERIAL_ECHO(" ");
|
||||
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
|
||||
#endif
|
||||
}
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
#endif // EXTRUDERS > 1
|
||||
|
||||
/**
|
||||
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
|
||||
*/
|
||||
inline void gcode_M220() {
|
||||
if (code_seen('S')) feedmultiply = code_value();
|
||||
}
|
||||
|
||||
/**
|
||||
* M221: Set extrusion percentage (M221 T0 S95)
|
||||
*/
|
||||
inline void gcode_M221() {
|
||||
if (code_seen('S')) {
|
||||
int sval = code_value();
|
||||
if (code_seen('T')) {
|
||||
if (setTargetedHotend(221)) return;
|
||||
extruder_multiply[tmp_extruder] = sval;
|
||||
}
|
||||
else {
|
||||
extrudemultiply = sval;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
|
||||
*/
|
||||
inline void gcode_M226() {
|
||||
if (code_seen('P')) {
|
||||
int pin_number = code_value();
|
||||
|
||||
int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
|
||||
|
||||
if (pin_state >= -1 && pin_state <= 1) {
|
||||
|
||||
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
|
||||
if (sensitive_pins[i] == pin_number) {
|
||||
pin_number = -1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (pin_number > -1) {
|
||||
int target = LOW;
|
||||
|
||||
st_synchronize();
|
||||
|
||||
pinMode(pin_number, INPUT);
|
||||
|
||||
switch(pin_state){
|
||||
case 1:
|
||||
target = HIGH;
|
||||
break;
|
||||
|
||||
case 0:
|
||||
target = LOW;
|
||||
break;
|
||||
|
||||
case -1:
|
||||
target = !digitalRead(pin_number);
|
||||
break;
|
||||
}
|
||||
|
||||
while(digitalRead(pin_number) != target) {
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
|
||||
} // pin_number > -1
|
||||
} // pin_state -1 0 1
|
||||
} // code_seen('P')
|
||||
}
|
||||
|
||||
#if NUM_SERVOS > 0
|
||||
|
||||
/**
|
||||
* M280: Set servo position absolute. P: servo index, S: angle or microseconds
|
||||
*/
|
||||
inline void gcode_M280() {
|
||||
int servo_index = code_seen('P') ? code_value() : -1;
|
||||
int servo_position = 0;
|
||||
if (code_seen('S')) {
|
||||
servo_position = code_value();
|
||||
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
||||
#if SERVO_LEVELING
|
||||
servos[servo_index].attach(0);
|
||||
#endif
|
||||
servos[servo_index].write(servo_position);
|
||||
#if SERVO_LEVELING
|
||||
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
||||
servos[servo_index].detach();
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO("Servo ");
|
||||
SERIAL_ECHO(servo_index);
|
||||
SERIAL_ECHOLN(" out of range");
|
||||
}
|
||||
}
|
||||
else if (servo_index >= 0) {
|
||||
SERIAL_PROTOCOL(MSG_OK);
|
||||
SERIAL_PROTOCOL(" Servo ");
|
||||
SERIAL_PROTOCOL(servo_index);
|
||||
SERIAL_PROTOCOL(": ");
|
||||
SERIAL_PROTOCOL(servos[servo_index].read());
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
}
|
||||
|
||||
#endif // NUM_SERVOS > 0
|
||||
|
||||
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
|
||||
|
||||
/**
|
||||
* M300: Play beep sound S<frequency Hz> P<duration ms>
|
||||
*/
|
||||
inline void gcode_M300() {
|
||||
int beepS = code_seen('S') ? code_value() : 110;
|
||||
int beepP = code_seen('P') ? code_value() : 1000;
|
||||
if (beepS > 0) {
|
||||
#if BEEPER > 0
|
||||
tone(BEEPER, beepS);
|
||||
delay(beepP);
|
||||
noTone(BEEPER);
|
||||
#elif defined(ULTRALCD)
|
||||
lcd_buzz(beepS, beepP);
|
||||
#elif defined(LCD_USE_I2C_BUZZER)
|
||||
lcd_buzz(beepP, beepS);
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
delay(beepP);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
|
||||
|
||||
#ifdef PIDTEMP
|
||||
|
||||
/**
|
||||
* M301: Set PID parameters P I D (and optionally C)
|
||||
*/
|
||||
inline void gcode_M301() {
|
||||
|
||||
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
||||
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
||||
int e = code_seen('E') ? code_value() : 0; // extruder being updated
|
||||
|
||||
if (e < EXTRUDERS) { // catch bad input value
|
||||
if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
|
||||
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
|
||||
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
|
||||
#endif
|
||||
|
||||
updatePID();
|
||||
SERIAL_PROTOCOL(MSG_OK);
|
||||
#ifdef PID_PARAMS_PER_EXTRUDER
|
||||
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
|
||||
SERIAL_PROTOCOL(e);
|
||||
#endif // PID_PARAMS_PER_EXTRUDER
|
||||
SERIAL_PROTOCOL(" p:");
|
||||
SERIAL_PROTOCOL(PID_PARAM(Kp, e));
|
||||
SERIAL_PROTOCOL(" i:");
|
||||
SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
|
||||
SERIAL_PROTOCOL(" d:");
|
||||
SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
SERIAL_PROTOCOL(" c:");
|
||||
//Kc does not have scaling applied above, or in resetting defaults
|
||||
SERIAL_PROTOCOL(PID_PARAM(Kc, e));
|
||||
#endif
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // PIDTEMP
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
|
||||
inline void gcode_M304() {
|
||||
if (code_seen('P')) bedKp = code_value();
|
||||
if (code_seen('I')) bedKi = scalePID_i(code_value());
|
||||
if (code_seen('D')) bedKd = scalePID_d(code_value());
|
||||
|
||||
updatePID();
|
||||
SERIAL_PROTOCOL(MSG_OK);
|
||||
SERIAL_PROTOCOL(" p:");
|
||||
SERIAL_PROTOCOL(bedKp);
|
||||
SERIAL_PROTOCOL(" i:");
|
||||
SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
||||
SERIAL_PROTOCOL(" d:");
|
||||
SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
|
||||
#endif // PIDTEMPBED
|
||||
|
||||
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
|
||||
|
||||
/**
|
||||
* M240: Trigger a camera by emulating a Canon RC-1
|
||||
* See http://www.doc-diy.net/photo/rc-1_hacked/
|
||||
*/
|
||||
inline void gcode_M240() {
|
||||
#ifdef CHDK
|
||||
|
||||
OUT_WRITE(CHDK, HIGH);
|
||||
chdkHigh = millis();
|
||||
chdkActive = true;
|
||||
|
||||
#elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
||||
|
||||
const uint8_t NUM_PULSES = 16;
|
||||
const float PULSE_LENGTH = 0.01524;
|
||||
for (int i = 0; i < NUM_PULSES; i++) {
|
||||
WRITE(PHOTOGRAPH_PIN, HIGH);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
WRITE(PHOTOGRAPH_PIN, LOW);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
}
|
||||
delay(7.33);
|
||||
for (int i = 0; i < NUM_PULSES; i++) {
|
||||
WRITE(PHOTOGRAPH_PIN, HIGH);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
WRITE(PHOTOGRAPH_PIN, LOW);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
}
|
||||
|
||||
#endif // !CHDK && PHOTOGRAPH_PIN > -1
|
||||
}
|
||||
|
||||
#endif // CHDK || PHOTOGRAPH_PIN
|
||||
|
||||
#ifdef DOGLCD
|
||||
|
||||
/**
|
||||
* M250: Read and optionally set the LCD contrast
|
||||
*/
|
||||
inline void gcode_M250() {
|
||||
if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
|
||||
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
||||
SERIAL_PROTOCOL(lcd_contrast);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
|
||||
#endif // DOGLCD
|
||||
|
||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||
|
||||
/**
|
||||
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
|
||||
*/
|
||||
inline void gcode_M302() {
|
||||
set_extrude_min_temp(code_seen('S') ? code_value() : 0);
|
||||
}
|
||||
|
||||
#endif // PREVENT_DANGEROUS_EXTRUDE
|
||||
|
||||
/**
|
||||
* M303: PID relay autotune
|
||||
* S<temperature> sets the target temperature. (default target temperature = 150C)
|
||||
* E<extruder> (-1 for the bed)
|
||||
* C<cycles>
|
||||
*/
|
||||
inline void gcode_M303() {
|
||||
int e = code_seen('E') ? code_value_long() : 0;
|
||||
int c = code_seen('C') ? code_value_long() : 5;
|
||||
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
|
||||
PID_autotune(temp, e, c);
|
||||
}
|
||||
|
||||
#ifdef SCARA
|
||||
|
||||
/**
|
||||
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
||||
*/
|
||||
inline bool gcode_M360() {
|
||||
SERIAL_ECHOLN(" Cal: Theta 0 ");
|
||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if (! Stopped) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 0;
|
||||
delta[Y_AXIS] = 120;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
||||
*/
|
||||
inline bool gcode_M361() {
|
||||
SERIAL_ECHOLN(" Cal: Theta 90 ");
|
||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if (! Stopped) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 90;
|
||||
delta[Y_AXIS] = 130;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
||||
*/
|
||||
inline bool gcode_M362() {
|
||||
SERIAL_ECHOLN(" Cal: Psi 0 ");
|
||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if (! Stopped) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 60;
|
||||
delta[Y_AXIS] = 180;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
||||
*/
|
||||
inline bool gcode_M363() {
|
||||
SERIAL_ECHOLN(" Cal: Psi 90 ");
|
||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if (! Stopped) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 50;
|
||||
delta[Y_AXIS] = 90;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
||||
*/
|
||||
inline bool gcode_M364() {
|
||||
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
|
||||
// SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if (! Stopped) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 45;
|
||||
delta[Y_AXIS] = 135;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
|
||||
*/
|
||||
inline void gcode_M365() {
|
||||
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
axis_scaling[i] = code_value();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // SCARA
|
||||
|
||||
#ifdef EXT_SOLENOID
|
||||
|
||||
void enable_solenoid(uint8_t num) {
|
||||
switch(num) {
|
||||
case 0:
|
||||
OUT_WRITE(SOL0_PIN, HIGH);
|
||||
break;
|
||||
#else
|
||||
case 31: // dock the sled
|
||||
dock_sled(true);
|
||||
#if defined(SOL1_PIN) && SOL1_PIN > -1
|
||||
case 1:
|
||||
OUT_WRITE(SOL1_PIN, HIGH);
|
||||
break;
|
||||
#endif
|
||||
#if defined(SOL2_PIN) && SOL2_PIN > -1
|
||||
case 2:
|
||||
OUT_WRITE(SOL2_PIN, HIGH);
|
||||
break;
|
||||
#endif
|
||||
#if defined(SOL3_PIN) && SOL3_PIN > -1
|
||||
case 3:
|
||||
OUT_WRITE(SOL3_PIN, HIGH);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
||||
break;
|
||||
case 32: // undock the sled
|
||||
dock_sled(false);
|
||||
}
|
||||
}
|
||||
|
||||
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
||||
|
||||
void disable_all_solenoids() {
|
||||
OUT_WRITE(SOL0_PIN, LOW);
|
||||
OUT_WRITE(SOL1_PIN, LOW);
|
||||
OUT_WRITE(SOL2_PIN, LOW);
|
||||
OUT_WRITE(SOL3_PIN, LOW);
|
||||
}
|
||||
|
||||
/**
|
||||
* M380: Enable solenoid on the active extruder
|
||||
*/
|
||||
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
|
||||
|
||||
/**
|
||||
* M381: Disable all solenoids
|
||||
*/
|
||||
inline void gcode_M381() { disable_all_solenoids(); }
|
||||
|
||||
#endif // EXT_SOLENOID
|
||||
|
||||
/**
|
||||
* M400: Finish all moves
|
||||
*/
|
||||
inline void gcode_M400() { st_synchronize(); }
|
||||
|
||||
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
||||
|
||||
/**
|
||||
* M401: Engage Z Servo endstop if available
|
||||
*/
|
||||
inline void gcode_M401() { engage_z_probe(); }
|
||||
/**
|
||||
* M402: Retract Z Servo endstop if enabled
|
||||
*/
|
||||
inline void gcode_M402() { retract_z_probe(); }
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
|
||||
/**
|
||||
* M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
|
||||
*/
|
||||
inline void gcode_M404() {
|
||||
#if FILWIDTH_PIN > -1
|
||||
if (code_seen('N')) {
|
||||
filament_width_nominal = code_value();
|
||||
}
|
||||
else {
|
||||
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
||||
SERIAL_PROTOCOLLN(filament_width_nominal);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M405: Turn on filament sensor for control
|
||||
*/
|
||||
inline void gcode_M405() {
|
||||
if (code_seen('D')) meas_delay_cm = code_value();
|
||||
if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
||||
|
||||
if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
|
||||
int temp_ratio = widthFil_to_size_ratio();
|
||||
|
||||
for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
|
||||
measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
|
||||
|
||||
delay_index1 = delay_index2 = 0;
|
||||
}
|
||||
|
||||
filament_sensor = true;
|
||||
|
||||
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||
//SERIAL_PROTOCOL(filament_width_meas);
|
||||
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
||||
//SERIAL_PROTOCOL(extrudemultiply);
|
||||
}
|
||||
|
||||
/**
|
||||
* M406: Turn off filament sensor for control
|
||||
*/
|
||||
inline void gcode_M406() { filament_sensor = false; }
|
||||
|
||||
/**
|
||||
* M407: Get measured filament diameter on serial output
|
||||
*/
|
||||
inline void gcode_M407() {
|
||||
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||
SERIAL_PROTOCOLLN(filament_width_meas);
|
||||
}
|
||||
|
||||
#endif // FILAMENT_SENSOR
|
||||
|
||||
/**
|
||||
* M500: Store settings in EEPROM
|
||||
*/
|
||||
inline void gcode_M500() {
|
||||
Config_StoreSettings();
|
||||
}
|
||||
|
||||
/**
|
||||
* M501: Read settings from EEPROM
|
||||
*/
|
||||
inline void gcode_M501() {
|
||||
Config_RetrieveSettings();
|
||||
}
|
||||
|
||||
/**
|
||||
* M502: Revert to default settings
|
||||
*/
|
||||
inline void gcode_M502() {
|
||||
Config_ResetDefault();
|
||||
}
|
||||
|
||||
/**
|
||||
* M503: print settings currently in memory
|
||||
*/
|
||||
inline void gcode_M503() {
|
||||
Config_PrintSettings(code_seen('S') && code_value == 0);
|
||||
}
|
||||
|
||||
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||
|
||||
/**
|
||||
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
|
||||
*/
|
||||
inline void gcode_M540() {
|
||||
if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
|
||||
}
|
||||
|
||||
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||
|
||||
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||
|
||||
inline void gcode_SET_Z_PROBE_OFFSET() {
|
||||
float value;
|
||||
if (code_seen('Z')) {
|
||||
value = code_value();
|
||||
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
|
||||
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
|
||||
SERIAL_ECHOPGM(MSG_Z_MIN);
|
||||
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
||||
SERIAL_ECHOPGM(MSG_Z_MAX);
|
||||
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
|
||||
SERIAL_ECHO(-zprobe_zoffset);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
}
|
||||
|
||||
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||
|
||||
#ifdef FILAMENTCHANGEENABLE
|
||||
|
||||
/**
|
||||
* M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
||||
*/
|
||||
inline void gcode_M600() {
|
||||
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
|
||||
for (int i=0; i<NUM_AXIS; i++)
|
||||
target[i] = lastpos[i] = current_position[i];
|
||||
|
||||
#define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
|
||||
#ifdef DELTA
|
||||
#define RUNPLAN calculate_delta(target); BASICPLAN
|
||||
#else
|
||||
#define RUNPLAN BASICPLAN
|
||||
#endif
|
||||
|
||||
//retract by E
|
||||
if (code_seen('E')) target[E_AXIS] += code_value();
|
||||
#ifdef FILAMENTCHANGE_FIRSTRETRACT
|
||||
else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
|
||||
#endif
|
||||
|
||||
RUNPLAN;
|
||||
|
||||
//lift Z
|
||||
if (code_seen('Z')) target[Z_AXIS] += code_value();
|
||||
#ifdef FILAMENTCHANGE_ZADD
|
||||
else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
|
||||
#endif
|
||||
|
||||
RUNPLAN;
|
||||
|
||||
//move xy
|
||||
if (code_seen('X')) target[X_AXIS] = code_value();
|
||||
#ifdef FILAMENTCHANGE_XPOS
|
||||
else target[X_AXIS] = FILAMENTCHANGE_XPOS;
|
||||
#endif
|
||||
|
||||
if (code_seen('Y')) target[Y_AXIS] = code_value();
|
||||
#ifdef FILAMENTCHANGE_YPOS
|
||||
else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
|
||||
#endif
|
||||
|
||||
RUNPLAN;
|
||||
|
||||
if (code_seen('L')) target[E_AXIS] += code_value();
|
||||
#ifdef FILAMENTCHANGE_FINALRETRACT
|
||||
else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
|
||||
#endif
|
||||
|
||||
RUNPLAN;
|
||||
|
||||
//finish moves
|
||||
st_synchronize();
|
||||
//disable extruder steppers so filament can be removed
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
disable_e3();
|
||||
delay(100);
|
||||
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
||||
uint8_t cnt = 0;
|
||||
while (!lcd_clicked()) {
|
||||
cnt++;
|
||||
manage_heater();
|
||||
manage_inactivity(true);
|
||||
lcd_update();
|
||||
if (cnt == 0) {
|
||||
#if BEEPER > 0
|
||||
OUT_WRITE(BEEPER,HIGH);
|
||||
delay(3);
|
||||
WRITE(BEEPER,LOW);
|
||||
delay(3);
|
||||
#else
|
||||
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
||||
lcd_buzz(1000/6, 100);
|
||||
#else
|
||||
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
} // while(!lcd_clicked)
|
||||
|
||||
//return to normal
|
||||
if (code_seen('L')) target[E_AXIS] -= code_value();
|
||||
#ifdef FILAMENTCHANGE_FINALRETRACT
|
||||
else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
|
||||
#endif
|
||||
|
||||
current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
|
||||
RUNPLAN; //should do nothing
|
||||
|
||||
lcd_reset_alert_level();
|
||||
|
||||
#ifdef DELTA
|
||||
calculate_delta(lastpos);
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
||||
#else
|
||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
|
||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
|
||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // FILAMENTCHANGEENABLE
|
||||
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
|
||||
/**
|
||||
* M605: Set dual x-carriage movement mode
|
||||
*
|
||||
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
||||
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
||||
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
||||
* millimeters x-offset and an optional differential hotend temperature of
|
||||
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
||||
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
||||
*
|
||||
* Note: the X axis should be homed after changing dual x-carriage mode.
|
||||
*/
|
||||
inline void gcode_M605() {
|
||||
st_synchronize();
|
||||
if (code_seen('S')) dual_x_carriage_mode = code_value();
|
||||
switch(dual_x_carriage_mode) {
|
||||
case DXC_DUPLICATION_MODE:
|
||||
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
|
||||
if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||
SERIAL_ECHO(" ");
|
||||
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
|
||||
SERIAL_ECHO(" ");
|
||||
SERIAL_ECHO(duplicate_extruder_x_offset);
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
|
||||
break;
|
||||
#endif // Z_PROBE_SLED
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
case DXC_FULL_CONTROL_MODE:
|
||||
case DXC_AUTO_PARK_MODE:
|
||||
break;
|
||||
default:
|
||||
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
||||
break;
|
||||
}
|
||||
active_extruder_parked = false;
|
||||
extruder_duplication_enabled = false;
|
||||
delayed_move_time = 0;
|
||||
}
|
||||
|
||||
#endif // DUAL_X_CARRIAGE
|
||||
|
||||
/**
|
||||
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
||||
*/
|
||||
inline void gcode_M907() {
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
for (int i=0;i<NUM_AXIS;i++)
|
||||
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
|
||||
if (code_seen('B')) digipot_current(4, code_value());
|
||||
if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
|
||||
#endif
|
||||
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
||||
if (code_seen('X')) digipot_current(0, code_value());
|
||||
#endif
|
||||
#ifdef MOTOR_CURRENT_PWM_Z_PIN
|
||||
if (code_seen('Z')) digipot_current(1, code_value());
|
||||
#endif
|
||||
#ifdef MOTOR_CURRENT_PWM_E_PIN
|
||||
if (code_seen('E')) digipot_current(2, code_value());
|
||||
#endif
|
||||
#ifdef DIGIPOT_I2C
|
||||
// this one uses actual amps in floating point
|
||||
for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
||||
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
||||
for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
|
||||
/**
|
||||
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
||||
*/
|
||||
inline void gcode_M908() {
|
||||
digitalPotWrite(
|
||||
code_seen('P') ? code_value() : 0,
|
||||
code_seen('S') ? code_value() : 0
|
||||
);
|
||||
}
|
||||
|
||||
#endif // DIGIPOTSS_PIN
|
||||
|
||||
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
inline void gcode_M350() {
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
||||
if(code_seen('B')) microstep_mode(4,code_value());
|
||||
microstep_readings();
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
|
||||
* S# determines MS1 or MS2, X# sets the pin high/low.
|
||||
*/
|
||||
inline void gcode_M351() {
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||
if (code_seen('S')) switch(code_value_long()) {
|
||||
case 1:
|
||||
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
|
||||
if (code_seen('B')) microstep_ms(4, code_value(), -1);
|
||||
break;
|
||||
case 2:
|
||||
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
|
||||
if (code_seen('B')) microstep_ms(4, -1, code_value());
|
||||
break;
|
||||
}
|
||||
microstep_readings();
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M999: Restart after being stopped
|
||||
*/
|
||||
inline void gcode_M999() {
|
||||
Stopped = false;
|
||||
lcd_reset_alert_level();
|
||||
gcode_LastN = Stopped_gcode_LastN;
|
||||
FlushSerialRequestResend();
|
||||
}
|
||||
|
||||
inline void gcode_T() {
|
||||
tmp_extruder = code_value();
|
||||
if (tmp_extruder >= EXTRUDERS) {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO("T");
|
||||
SERIAL_ECHO(tmp_extruder);
|
||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||
}
|
||||
else {
|
||||
boolean make_move = false;
|
||||
if (code_seen('F')) {
|
||||
make_move = true;
|
||||
next_feedrate = code_value();
|
||||
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
||||
}
|
||||
#if EXTRUDERS > 1
|
||||
if (tmp_extruder != active_extruder) {
|
||||
// Save current position to return to after applying extruder offset
|
||||
memcpy(destination, current_position, sizeof(destination));
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
|
||||
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
|
||||
// Park old head: 1) raise 2) move to park position 3) lower
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
||||
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
||||
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
||||
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
|
||||
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
|
||||
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
||||
st_synchronize();
|
||||
}
|
||||
|
||||
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
||||
current_position[Y_AXIS] = current_position[Y_AXIS] -
|
||||
extruder_offset[Y_AXIS][active_extruder] +
|
||||
extruder_offset[Y_AXIS][tmp_extruder];
|
||||
current_position[Z_AXIS] = current_position[Z_AXIS] -
|
||||
extruder_offset[Z_AXIS][active_extruder] +
|
||||
extruder_offset[Z_AXIS][tmp_extruder];
|
||||
|
||||
active_extruder = tmp_extruder;
|
||||
|
||||
// This function resets the max/min values - the current position may be overwritten below.
|
||||
axis_is_at_home(X_AXIS);
|
||||
|
||||
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
|
||||
current_position[X_AXIS] = inactive_extruder_x_pos;
|
||||
inactive_extruder_x_pos = destination[X_AXIS];
|
||||
}
|
||||
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
||||
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
|
||||
if (active_extruder == 0 || active_extruder_parked)
|
||||
current_position[X_AXIS] = inactive_extruder_x_pos;
|
||||
else
|
||||
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
||||
inactive_extruder_x_pos = destination[X_AXIS];
|
||||
extruder_duplication_enabled = false;
|
||||
}
|
||||
else {
|
||||
// record raised toolhead position for use by unpark
|
||||
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
||||
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
||||
active_extruder_parked = true;
|
||||
delayed_move_time = 0;
|
||||
}
|
||||
#else // !DUAL_X_CARRIAGE
|
||||
// Offset extruder (only by XY)
|
||||
for (int i=X_AXIS; i<=Y_AXIS; i++)
|
||||
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
|
||||
// Set the new active extruder and position
|
||||
active_extruder = tmp_extruder;
|
||||
#endif // !DUAL_X_CARRIAGE
|
||||
#ifdef DELTA
|
||||
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
||||
//sent position to plan_set_position();
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
|
||||
#else
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
#endif
|
||||
// Move to the old position if 'F' was in the parameters
|
||||
if (make_move && !Stopped) prepare_move();
|
||||
}
|
||||
|
||||
#ifdef EXT_SOLENOID
|
||||
st_synchronize();
|
||||
disable_all_solenoids();
|
||||
enable_solenoid_on_active_extruder();
|
||||
#endif // EXT_SOLENOID
|
||||
|
||||
#endif // EXTRUDERS > 1
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
|
||||
SERIAL_PROTOCOLLN((int)active_extruder);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Process Commands and dispatch them to handlers
|
||||
*/
|
||||
void process_commands() {
|
||||
if (code_seen('G')) {
|
||||
|
||||
int gCode = code_value_long();
|
||||
|
||||
switch(gCode) {
|
||||
|
||||
// G0, G1
|
||||
case 0:
|
||||
case 1:
|
||||
gcode_G0_G1();
|
||||
break;
|
||||
|
||||
// G2, G3
|
||||
#ifndef SCARA
|
||||
case 2: // G2 - CW ARC
|
||||
case 3: // G3 - CCW ARC
|
||||
gcode_G2_G3(gCode == 2);
|
||||
break;
|
||||
#endif
|
||||
|
||||
// G4 Dwell
|
||||
case 4:
|
||||
gcode_G4();
|
||||
break;
|
||||
|
||||
#ifdef FWRETRACT
|
||||
|
||||
case 10: // G10: retract
|
||||
case 11: // G11: retract_recover
|
||||
gcode_G10_G11(gCode == 10);
|
||||
break;
|
||||
|
||||
#endif //FWRETRACT
|
||||
|
||||
case 28: // G28: Home all axes, one at a time
|
||||
gcode_G28();
|
||||
break;
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
||||
gcode_G29();
|
||||
break;
|
||||
|
||||
#ifndef Z_PROBE_SLED
|
||||
|
||||
case 30: // G30 Single Z Probe
|
||||
gcode_G30();
|
||||
break;
|
||||
|
||||
#else // Z_PROBE_SLED
|
||||
|
||||
case 31: // G31: dock the sled
|
||||
case 32: // G32: undock the sled
|
||||
dock_sled(gCode == 31);
|
||||
break;
|
||||
|
||||
#endif // Z_PROBE_SLED
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
case 90: // G90
|
||||
relative_mode = false;
|
||||
break;
|
||||
case 91: // G91
|
||||
relative_mode = true;
|
||||
break;
|
||||
|
||||
case 92: // G92
|
||||
if(!code_seen(axis_codes[E_AXIS]))
|
||||
st_synchronize();
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
if(code_seen(axis_codes[i])) {
|
||||
if(i == E_AXIS) {
|
||||
current_position[i] = code_value();
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
}
|
||||
else {
|
||||
#ifdef SCARA
|
||||
if (i == X_AXIS || i == Y_AXIS) {
|
||||
current_position[i] = code_value();
|
||||
}
|
||||
else {
|
||||
current_position[i] = code_value()+add_homing[i];
|
||||
}
|
||||
#else
|
||||
current_position[i] = code_value()+add_homing[i];
|
||||
#endif
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
}
|
||||
}
|
||||
}
|
||||
gcode_G92();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
else if(code_seen('M'))
|
||||
{
|
||||
switch( (int)code_value() )
|
||||
{
|
||||
#ifdef ULTIPANEL
|
||||
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
||||
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
||||
{
|
||||
char *src = strchr_pointer + 2;
|
||||
else if (code_seen('M')) {
|
||||
switch( code_value_long() ) {
|
||||
#ifdef ULTIPANEL
|
||||
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
||||
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
||||
gcode_M0_M1();
|
||||
break;
|
||||
#endif // ULTIPANEL
|
||||
|
||||
codenum = 0;
|
||||
case 17:
|
||||
gcode_M17();
|
||||
break;
|
||||
|
||||
bool hasP = false, hasS = false;
|
||||
if (code_seen('P')) {
|
||||
codenum = code_value(); // milliseconds to wait
|
||||
hasP = codenum > 0;
|
||||
}
|
||||
if (code_seen('S')) {
|
||||
codenum = code_value() * 1000; // seconds to wait
|
||||
hasS = codenum > 0;
|
||||
}
|
||||
starpos = strchr(src, '*');
|
||||
if (starpos != NULL) *(starpos) = '\0';
|
||||
while (*src == ' ') ++src;
|
||||
if (!hasP && !hasS && *src != '\0') {
|
||||
lcd_setstatus(src);
|
||||
} else {
|
||||
LCD_MESSAGEPGM(MSG_USERWAIT);
|
||||
}
|
||||
#ifdef SDSUPPORT
|
||||
|
||||
lcd_ignore_click();
|
||||
st_synchronize();
|
||||
previous_millis_cmd = millis();
|
||||
if (codenum > 0){
|
||||
codenum += millis(); // keep track of when we started waiting
|
||||
while(millis() < codenum && !lcd_clicked()){
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
lcd_ignore_click(false);
|
||||
}else{
|
||||
if (!lcd_detected())
|
||||
break;
|
||||
while(!lcd_clicked()){
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
}
|
||||
if (IS_SD_PRINTING)
|
||||
LCD_MESSAGEPGM(MSG_RESUMING);
|
||||
else
|
||||
LCD_MESSAGEPGM(WELCOME_MSG);
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
case 17:
|
||||
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
||||
enable_x();
|
||||
enable_y();
|
||||
enable_z();
|
||||
enable_e0();
|
||||
enable_e1();
|
||||
enable_e2();
|
||||
break;
|
||||
case 20: // M20 - list SD card
|
||||
gcode_M20(); break;
|
||||
case 21: // M21 - init SD card
|
||||
gcode_M21(); break;
|
||||
case 22: //M22 - release SD card
|
||||
gcode_M22(); break;
|
||||
case 23: //M23 - Select file
|
||||
gcode_M23(); break;
|
||||
case 24: //M24 - Start SD print
|
||||
gcode_M24(); break;
|
||||
case 25: //M25 - Pause SD print
|
||||
gcode_M25(); break;
|
||||
case 26: //M26 - Set SD index
|
||||
gcode_M26(); break;
|
||||
case 27: //M27 - Get SD status
|
||||
gcode_M27(); break;
|
||||
case 28: //M28 - Start SD write
|
||||
gcode_M28(); break;
|
||||
case 29: //M29 - Stop SD write
|
||||
gcode_M29(); break;
|
||||
case 30: //M30 <filename> Delete File
|
||||
gcode_M30(); break;
|
||||
case 32: //M32 - Select file and start SD print
|
||||
gcode_M32(); break;
|
||||
case 928: //M928 - Start SD write
|
||||
gcode_M928(); break;
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
case 20: // M20 - list SD card
|
||||
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
||||
card.ls();
|
||||
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
||||
break;
|
||||
case 21: // M21 - init SD card
|
||||
#endif //SDSUPPORT
|
||||
|
||||
card.initsd();
|
||||
case 31: //M31 take time since the start of the SD print or an M109 command
|
||||
gcode_M31();
|
||||
break;
|
||||
|
||||
break;
|
||||
case 22: //M22 - release SD card
|
||||
card.release();
|
||||
case 42: //M42 -Change pin status via gcode
|
||||
gcode_M42();
|
||||
break;
|
||||
|
||||
break;
|
||||
case 23: //M23 - Select file
|
||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
||||
if(starpos!=NULL)
|
||||
*(starpos)='\0';
|
||||
card.openFile(strchr_pointer + 4,true);
|
||||
break;
|
||||
case 24: //M24 - Start SD print
|
||||
card.startFileprint();
|
||||
starttime=millis();
|
||||
break;
|
||||
case 25: //M25 - Pause SD print
|
||||
card.pauseSDPrint();
|
||||
break;
|
||||
case 26: //M26 - Set SD index
|
||||
if(card.cardOK && code_seen('S')) {
|
||||
card.setIndex(code_value_long());
|
||||
}
|
||||
break;
|
||||
case 27: //M27 - Get SD status
|
||||
card.getStatus();
|
||||
break;
|
||||
case 28: //M28 - Start SD write
|
||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
||||
if(starpos != NULL){
|
||||
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
||||
strchr_pointer = strchr(npos,' ') + 1;
|
||||
*(starpos) = '\0';
|
||||
}
|
||||
card.openFile(strchr_pointer+4,false);
|
||||
break;
|
||||
case 29: //M29 - Stop SD write
|
||||
//processed in write to file routine above
|
||||
//card,saving = false;
|
||||
break;
|
||||
case 30: //M30 <filename> Delete File
|
||||
if (card.cardOK){
|
||||
card.closefile();
|
||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
||||
if(starpos != NULL){
|
||||
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
||||
strchr_pointer = strchr(npos,' ') + 1;
|
||||
*(starpos) = '\0';
|
||||
}
|
||||
card.removeFile(strchr_pointer + 4);
|
||||
}
|
||||
break;
|
||||
case 32: //M32 - Select file and start SD print
|
||||
{
|
||||
if(card.sdprinting) {
|
||||
st_synchronize();
|
||||
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
|
||||
case 48: // M48 Z-Probe repeatability
|
||||
gcode_M48();
|
||||
break;
|
||||
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
|
||||
|
||||
}
|
||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
||||
case 104: // M104
|
||||
gcode_M104();
|
||||
break;
|
||||
|
||||
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
|
||||
if(namestartpos==NULL)
|
||||
{
|
||||
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
|
||||
}
|
||||
else
|
||||
namestartpos++; //to skip the '!'
|
||||
case 112: // M112 Emergency Stop
|
||||
gcode_M112();
|
||||
break;
|
||||
|
||||
if(starpos!=NULL)
|
||||
*(starpos)='\0';
|
||||
case 140: // M140 Set bed temp
|
||||
gcode_M140();
|
||||
break;
|
||||
|
||||
bool call_procedure=(code_seen('P'));
|
||||
case 105: // M105 Read current temperature
|
||||
gcode_M105();
|
||||
return;
|
||||
break;
|
||||
|
||||
if(strchr_pointer>namestartpos)
|
||||
call_procedure=false; //false alert, 'P' found within filename
|
||||
case 109: // M109 Wait for temperature
|
||||
gcode_M109();
|
||||
break;
|
||||
|
||||
if( card.cardOK )
|
||||
{
|
||||
card.openFile(namestartpos,true,!call_procedure);
|
||||
if(code_seen('S'))
|
||||
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
|
||||
card.setIndex(code_value_long());
|
||||
card.startFileprint();
|
||||
if(!call_procedure)
|
||||
starttime=millis(); //procedure calls count as normal print time.
|
||||
}
|
||||
} break;
|
||||
case 928: //M928 - Start SD write
|
||||
starpos = (strchr(strchr_pointer + 5,'*'));
|
||||
if(starpos != NULL){
|
||||
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
||||
strchr_pointer = strchr(npos,' ') + 1;
|
||||
*(starpos) = '\0';
|
||||
}
|
||||
card.openLogFile(strchr_pointer+5);
|
||||
break;
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
case 190: // M190 - Wait for bed heater to reach target.
|
||||
gcode_M190();
|
||||
break;
|
||||
#endif //TEMP_BED_PIN
|
||||
|
||||
#endif //SDSUPPORT
|
||||
|
||||
case 31: //M31 take time since the start of the SD print or an M109 command
|
||||
{
|
||||
stoptime=millis();
|
||||
char time[30];
|
||||
unsigned long t=(stoptime-starttime)/1000;
|
||||
int sec,min;
|
||||
min=t/60;
|
||||
sec=t%60;
|
||||
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLN(time);
|
||||
lcd_setstatus(time);
|
||||
autotempShutdown();
|
||||
}
|
||||
break;
|
||||
case 42: //M42 -Change pin status via gcode
|
||||
if (code_seen('S'))
|
||||
{
|
||||
int pin_status = code_value();
|
||||
int pin_number = LED_PIN;
|
||||
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
||||
pin_number = code_value();
|
||||
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
||||
{
|
||||
if (sensitive_pins[i] == pin_number)
|
||||
{
|
||||
pin_number = -1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||
if (pin_number == FAN_PIN)
|
||||
fanSpeed = pin_status;
|
||||
#endif
|
||||
if (pin_number > -1)
|
||||
{
|
||||
pinMode(pin_number, OUTPUT);
|
||||
digitalWrite(pin_number, pin_status);
|
||||
analogWrite(pin_number, pin_status);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
// M48 Z-Probe repeatability measurement function.
|
||||
//
|
||||
// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
|
||||
//
|
||||
// This function assumes the bed has been homed. Specificaly, that a G28 command
|
||||
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
||||
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
||||
// regenerated.
|
||||
//
|
||||
// The number of samples will default to 10 if not specified. You can use upper or lower case
|
||||
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
||||
// N for its communication protocol and will get horribly confused if you send it a capital N.
|
||||
//
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
#ifdef Z_PROBE_REPEATABILITY_TEST
|
||||
|
||||
case 48: // M48 Z-Probe repeatability
|
||||
{
|
||||
#if Z_MIN_PIN == -1
|
||||
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
||||
#endif
|
||||
|
||||
double sum=0.0;
|
||||
double mean=0.0;
|
||||
double sigma=0.0;
|
||||
double sample_set[50];
|
||||
int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
|
||||
double X_current, Y_current, Z_current;
|
||||
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
|
||||
|
||||
if (code_seen('V') || code_seen('v')) {
|
||||
verbose_level = code_value();
|
||||
if (verbose_level<0 || verbose_level>4 ) {
|
||||
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
|
||||
goto Sigma_Exit;
|
||||
}
|
||||
}
|
||||
|
||||
if (verbose_level > 0) {
|
||||
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
|
||||
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
|
||||
}
|
||||
|
||||
if (code_seen('n')) {
|
||||
n_samples = code_value();
|
||||
if (n_samples<4 || n_samples>50 ) {
|
||||
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
|
||||
goto Sigma_Exit;
|
||||
}
|
||||
}
|
||||
|
||||
X_current = X_probe_location = st_get_position_mm(X_AXIS);
|
||||
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
|
||||
Z_current = st_get_position_mm(Z_AXIS);
|
||||
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
||||
ext_position = st_get_position_mm(E_AXIS);
|
||||
|
||||
if (code_seen('E') || code_seen('e') )
|
||||
engage_probe_for_each_reading++;
|
||||
|
||||
if (code_seen('X') || code_seen('x') ) {
|
||||
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
|
||||
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
|
||||
goto Sigma_Exit;
|
||||
}
|
||||
}
|
||||
|
||||
if (code_seen('Y') || code_seen('y') ) {
|
||||
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
|
||||
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
|
||||
goto Sigma_Exit;
|
||||
}
|
||||
}
|
||||
|
||||
if (code_seen('L') || code_seen('l') ) {
|
||||
n_legs = code_value();
|
||||
if ( n_legs==1 )
|
||||
n_legs = 2;
|
||||
if ( n_legs<0 || n_legs>15 ) {
|
||||
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
|
||||
goto Sigma_Exit;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Do all the preliminary setup work. First raise the probe.
|
||||
//
|
||||
|
||||
st_synchronize();
|
||||
plan_bed_level_matrix.set_to_identity();
|
||||
plan_buffer_line( X_current, Y_current, Z_start_location,
|
||||
ext_position,
|
||||
homing_feedrate[Z_AXIS]/60,
|
||||
active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
//
|
||||
// Now get everything to the specified probe point So we can safely do a probe to
|
||||
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
||||
// use that as a starting point for each probe.
|
||||
//
|
||||
if (verbose_level > 2)
|
||||
SERIAL_PROTOCOL("Positioning probe for the test.\n");
|
||||
|
||||
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
||||
ext_position,
|
||||
homing_feedrate[X_AXIS]/60,
|
||||
active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
||||
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
||||
|
||||
//
|
||||
// OK, do the inital probe to get us close to the bed.
|
||||
// Then retrace the right amount and use that in subsequent probes
|
||||
//
|
||||
|
||||
engage_z_probe();
|
||||
|
||||
setup_for_endstop_move();
|
||||
run_z_probe();
|
||||
|
||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
||||
|
||||
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
||||
ext_position,
|
||||
homing_feedrate[X_AXIS]/60,
|
||||
active_extruder);
|
||||
st_synchronize();
|
||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||
|
||||
if (engage_probe_for_each_reading)
|
||||
retract_z_probe();
|
||||
|
||||
for( n=0; n<n_samples; n++) {
|
||||
|
||||
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
||||
|
||||
if ( n_legs) {
|
||||
double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
||||
int rotational_direction, l;
|
||||
|
||||
rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
||||
radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
|
||||
theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
|
||||
|
||||
//SERIAL_ECHOPAIR("starting radius: ",radius);
|
||||
//SERIAL_ECHOPAIR(" theta: ",theta);
|
||||
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
|
||||
//SERIAL_PROTOCOLLNPGM("");
|
||||
|
||||
for( l=0; l<n_legs-1; l++) {
|
||||
if (rotational_direction==1)
|
||||
theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
||||
else
|
||||
theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
|
||||
|
||||
radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
|
||||
if ( radius<0.0 )
|
||||
radius = -radius;
|
||||
|
||||
X_current = X_probe_location + cos(theta) * radius;
|
||||
Y_current = Y_probe_location + sin(theta) * radius;
|
||||
|
||||
if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
|
||||
X_current = X_MIN_POS;
|
||||
if ( X_current>X_MAX_POS)
|
||||
X_current = X_MAX_POS;
|
||||
|
||||
if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
|
||||
Y_current = Y_MIN_POS;
|
||||
if ( Y_current>Y_MAX_POS)
|
||||
Y_current = Y_MAX_POS;
|
||||
|
||||
if (verbose_level>3 ) {
|
||||
SERIAL_ECHOPAIR("x: ", X_current);
|
||||
SERIAL_ECHOPAIR("y: ", Y_current);
|
||||
SERIAL_PROTOCOLLNPGM("");
|
||||
}
|
||||
|
||||
do_blocking_move_to( X_current, Y_current, Z_current );
|
||||
}
|
||||
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
||||
}
|
||||
|
||||
if (engage_probe_for_each_reading) {
|
||||
engage_z_probe();
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
setup_for_endstop_move();
|
||||
run_z_probe();
|
||||
|
||||
sample_set[n] = current_position[Z_AXIS];
|
||||
|
||||
//
|
||||
// Get the current mean for the data points we have so far
|
||||
//
|
||||
sum=0.0;
|
||||
for( j=0; j<=n; j++) {
|
||||
sum = sum + sample_set[j];
|
||||
}
|
||||
mean = sum / (double (n+1));
|
||||
//
|
||||
// Now, use that mean to calculate the standard deviation for the
|
||||
// data points we have so far
|
||||
//
|
||||
|
||||
sum=0.0;
|
||||
for( j=0; j<=n; j++) {
|
||||
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
|
||||
}
|
||||
sigma = sqrt( sum / (double (n+1)) );
|
||||
|
||||
if (verbose_level > 1) {
|
||||
SERIAL_PROTOCOL(n+1);
|
||||
SERIAL_PROTOCOL(" of ");
|
||||
SERIAL_PROTOCOL(n_samples);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
||||
}
|
||||
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOL(" mean: ");
|
||||
SERIAL_PROTOCOL_F(mean,6);
|
||||
|
||||
SERIAL_PROTOCOL(" sigma: ");
|
||||
SERIAL_PROTOCOL_F(sigma,6);
|
||||
}
|
||||
|
||||
if (verbose_level > 0)
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
|
||||
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
||||
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
if (engage_probe_for_each_reading) {
|
||||
retract_z_probe();
|
||||
delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
retract_z_probe();
|
||||
delay(1000);
|
||||
|
||||
clean_up_after_endstop_move();
|
||||
|
||||
// enable_endstops(true);
|
||||
|
||||
if (verbose_level > 0) {
|
||||
SERIAL_PROTOCOLPGM("Mean: ");
|
||||
SERIAL_PROTOCOL_F(mean, 6);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
}
|
||||
|
||||
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
||||
SERIAL_PROTOCOL_F(sigma, 6);
|
||||
SERIAL_PROTOCOLPGM("\n\n");
|
||||
|
||||
Sigma_Exit:
|
||||
break;
|
||||
}
|
||||
#endif // Z_PROBE_REPEATABILITY_TEST
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
case 104: // M104
|
||||
if(setTargetedHotend(104)){
|
||||
break;
|
||||
}
|
||||
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
||||
#endif
|
||||
setWatch();
|
||||
break;
|
||||
case 112: // M112 -Emergency Stop
|
||||
kill();
|
||||
break;
|
||||
case 140: // M140 set bed temp
|
||||
if (code_seen('S')) setTargetBed(code_value());
|
||||
break;
|
||||
case 105 : // M105
|
||||
if(setTargetedHotend(105)){
|
||||
break;
|
||||
}
|
||||
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
||||
SERIAL_PROTOCOLPGM("ok T:");
|
||||
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
||||
SERIAL_PROTOCOLPGM(" /");
|
||||
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(" B:");
|
||||
SERIAL_PROTOCOL_F(degBed(),1);
|
||||
SERIAL_PROTOCOLPGM(" /");
|
||||
SERIAL_PROTOCOL_F(degTargetBed(),1);
|
||||
#endif //TEMP_BED_PIN
|
||||
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
||||
SERIAL_PROTOCOLPGM(" T");
|
||||
SERIAL_PROTOCOL(cur_extruder);
|
||||
SERIAL_PROTOCOLPGM(":");
|
||||
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
||||
SERIAL_PROTOCOLPGM(" /");
|
||||
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
||||
}
|
||||
#else
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLPGM(" @:");
|
||||
#ifdef EXTRUDER_WATTS
|
||||
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
||||
SERIAL_PROTOCOLPGM("W");
|
||||
#else
|
||||
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLPGM(" B@:");
|
||||
#ifdef BED_WATTS
|
||||
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
||||
SERIAL_PROTOCOLPGM("W");
|
||||
#else
|
||||
SERIAL_PROTOCOL(getHeaterPower(-1));
|
||||
#endif
|
||||
|
||||
#ifdef SHOW_TEMP_ADC_VALUES
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(" ADC B:");
|
||||
SERIAL_PROTOCOL_F(degBed(),1);
|
||||
SERIAL_PROTOCOLPGM("C->");
|
||||
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
|
||||
#endif
|
||||
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
||||
SERIAL_PROTOCOLPGM(" T");
|
||||
SERIAL_PROTOCOL(cur_extruder);
|
||||
SERIAL_PROTOCOLPGM(":");
|
||||
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
||||
SERIAL_PROTOCOLPGM("C->");
|
||||
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
|
||||
}
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLLN("");
|
||||
return;
|
||||
break;
|
||||
case 109:
|
||||
{// M109 - Wait for extruder heater to reach target.
|
||||
if(setTargetedHotend(109)){
|
||||
break;
|
||||
}
|
||||
LCD_MESSAGEPGM(MSG_HEATING);
|
||||
#ifdef AUTOTEMP
|
||||
autotemp_enabled=false;
|
||||
#endif
|
||||
if (code_seen('S')) {
|
||||
setTargetHotend(code_value(), tmp_extruder);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
||||
#endif
|
||||
CooldownNoWait = true;
|
||||
} else if (code_seen('R')) {
|
||||
setTargetHotend(code_value(), tmp_extruder);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
||||
#endif
|
||||
CooldownNoWait = false;
|
||||
}
|
||||
#ifdef AUTOTEMP
|
||||
if (code_seen('S')) autotemp_min=code_value();
|
||||
if (code_seen('B')) autotemp_max=code_value();
|
||||
if (code_seen('F'))
|
||||
{
|
||||
autotemp_factor=code_value();
|
||||
autotemp_enabled=true;
|
||||
}
|
||||
#endif
|
||||
|
||||
setWatch();
|
||||
codenum = millis();
|
||||
|
||||
/* See if we are heating up or cooling down */
|
||||
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
||||
|
||||
cancel_heatup = false;
|
||||
|
||||
#ifdef TEMP_RESIDENCY_TIME
|
||||
long residencyStart;
|
||||
residencyStart = -1;
|
||||
/* continue to loop until we have reached the target temp
|
||||
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
||||
while((!cancel_heatup)&&((residencyStart == -1) ||
|
||||
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
|
||||
#else
|
||||
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
|
||||
#endif //TEMP_RESIDENCY_TIME
|
||||
if( (millis() - codenum) > 1000UL )
|
||||
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
|
||||
SERIAL_PROTOCOLPGM("T:");
|
||||
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
||||
SERIAL_PROTOCOLPGM(" E:");
|
||||
SERIAL_PROTOCOL((int)tmp_extruder);
|
||||
#ifdef TEMP_RESIDENCY_TIME
|
||||
SERIAL_PROTOCOLPGM(" W:");
|
||||
if(residencyStart > -1)
|
||||
{
|
||||
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
||||
SERIAL_PROTOCOLLN( codenum );
|
||||
}
|
||||
else
|
||||
{
|
||||
SERIAL_PROTOCOLLN( "?" );
|
||||
}
|
||||
#else
|
||||
SERIAL_PROTOCOLLN("");
|
||||
#endif
|
||||
codenum = millis();
|
||||
}
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
#ifdef TEMP_RESIDENCY_TIME
|
||||
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
||||
or when current temp falls outside the hysteresis after target temp was reached */
|
||||
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
|
||||
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
|
||||
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
|
||||
{
|
||||
residencyStart = millis();
|
||||
}
|
||||
#endif //TEMP_RESIDENCY_TIME
|
||||
}
|
||||
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
||||
starttime=millis();
|
||||
previous_millis_cmd = millis();
|
||||
}
|
||||
break;
|
||||
case 190: // M190 - Wait for bed heater to reach target.
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
||||
if (code_seen('S')) {
|
||||
setTargetBed(code_value());
|
||||
CooldownNoWait = true;
|
||||
} else if (code_seen('R')) {
|
||||
setTargetBed(code_value());
|
||||
CooldownNoWait = false;
|
||||
}
|
||||
codenum = millis();
|
||||
|
||||
cancel_heatup = false;
|
||||
target_direction = isHeatingBed(); // true if heating, false if cooling
|
||||
|
||||
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
|
||||
{
|
||||
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
||||
{
|
||||
float tt=degHotend(active_extruder);
|
||||
SERIAL_PROTOCOLPGM("T:");
|
||||
SERIAL_PROTOCOL(tt);
|
||||
SERIAL_PROTOCOLPGM(" E:");
|
||||
SERIAL_PROTOCOL((int)active_extruder);
|
||||
SERIAL_PROTOCOLPGM(" B:");
|
||||
SERIAL_PROTOCOL_F(degBed(),1);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
codenum = millis();
|
||||
}
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
LCD_MESSAGEPGM(MSG_BED_DONE);
|
||||
previous_millis_cmd = millis();
|
||||
#endif
|
||||
break;
|
||||
|
||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||
case 106: //M106 Fan On
|
||||
if (code_seen('S')){
|
||||
fanSpeed=constrain(code_value(),0,255);
|
||||
}
|
||||
else {
|
||||
fanSpeed=255;
|
||||
}
|
||||
break;
|
||||
case 107: //M107 Fan Off
|
||||
fanSpeed = 0;
|
||||
break;
|
||||
#endif //FAN_PIN
|
||||
#ifdef BARICUDA
|
||||
// PWM for HEATER_1_PIN
|
||||
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
||||
case 126: //M126 valve open
|
||||
if (code_seen('S')){
|
||||
ValvePressure=constrain(code_value(),0,255);
|
||||
}
|
||||
else {
|
||||
ValvePressure=255;
|
||||
}
|
||||
case 106: //M106 Fan On
|
||||
gcode_M106();
|
||||
break;
|
||||
case 127: //M127 valve closed
|
||||
ValvePressure = 0;
|
||||
case 107: //M107 Fan Off
|
||||
gcode_M107();
|
||||
break;
|
||||
#endif //HEATER_1_PIN
|
||||
#endif //FAN_PIN
|
||||
|
||||
// PWM for HEATER_2_PIN
|
||||
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
||||
case 128: //M128 valve open
|
||||
if (code_seen('S')){
|
||||
EtoPPressure=constrain(code_value(),0,255);
|
||||
}
|
||||
else {
|
||||
EtoPPressure=255;
|
||||
}
|
||||
#ifdef BARICUDA
|
||||
// PWM for HEATER_1_PIN
|
||||
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
||||
case 126: // M126 valve open
|
||||
gcode_M126();
|
||||
break;
|
||||
case 127: // M127 valve closed
|
||||
gcode_M127();
|
||||
break;
|
||||
#endif //HEATER_1_PIN
|
||||
|
||||
// PWM for HEATER_2_PIN
|
||||
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
||||
case 128: // M128 valve open
|
||||
gcode_M128();
|
||||
break;
|
||||
case 129: // M129 valve closed
|
||||
gcode_M129();
|
||||
break;
|
||||
#endif //HEATER_2_PIN
|
||||
#endif //BARICUDA
|
||||
|
||||
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||
|
||||
case 80: // M80 - Turn on Power Supply
|
||||
gcode_M80();
|
||||
break;
|
||||
case 129: //M129 valve closed
|
||||
EtoPPressure = 0;
|
||||
break;
|
||||
#endif //HEATER_2_PIN
|
||||
#endif
|
||||
|
||||
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||
case 80: // M80 - Turn on Power Supply
|
||||
SET_OUTPUT(PS_ON_PIN); //GND
|
||||
WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
||||
|
||||
// If you have a switch on suicide pin, this is useful
|
||||
// if you want to start another print with suicide feature after
|
||||
// a print without suicide...
|
||||
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
|
||||
SET_OUTPUT(SUICIDE_PIN);
|
||||
WRITE(SUICIDE_PIN, HIGH);
|
||||
#endif
|
||||
|
||||
#ifdef ULTIPANEL
|
||||
powersupply = true;
|
||||
LCD_MESSAGEPGM(WELCOME_MSG);
|
||||
lcd_update();
|
||||
#endif
|
||||
break;
|
||||
#endif
|
||||
#endif // PS_ON_PIN
|
||||
|
||||
case 81: // M81 - Turn off Power Supply
|
||||
disable_heater();
|
||||
st_synchronize();
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
finishAndDisableSteppers();
|
||||
fanSpeed = 0;
|
||||
delay(1000); // Wait a little before to switch off
|
||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||
st_synchronize();
|
||||
suicide();
|
||||
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||
SET_OUTPUT(PS_ON_PIN);
|
||||
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
||||
#endif
|
||||
#ifdef ULTIPANEL
|
||||
powersupply = false;
|
||||
LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
|
||||
lcd_update();
|
||||
#endif
|
||||
break;
|
||||
|
||||
case 82:
|
||||
axis_relative_modes[3] = false;
|
||||
break;
|
||||
case 83:
|
||||
axis_relative_modes[3] = true;
|
||||
break;
|
||||
case 18: //compatibility
|
||||
case 84: // M84
|
||||
if(code_seen('S')){
|
||||
stepper_inactive_time = code_value() * 1000;
|
||||
}
|
||||
else
|
||||
{
|
||||
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
||||
if(all_axis)
|
||||
{
|
||||
st_synchronize();
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
finishAndDisableSteppers();
|
||||
}
|
||||
else
|
||||
{
|
||||
st_synchronize();
|
||||
if(code_seen('X')) disable_x();
|
||||
if(code_seen('Y')) disable_y();
|
||||
if(code_seen('Z')) disable_z();
|
||||
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
||||
if(code_seen('E')) {
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 85: // M85
|
||||
if(code_seen('S')) {
|
||||
max_inactive_time = code_value() * 1000;
|
||||
}
|
||||
break;
|
||||
case 92: // M92
|
||||
for(int8_t i=0; i < NUM_AXIS; i++)
|
||||
{
|
||||
if(code_seen(axis_codes[i]))
|
||||
{
|
||||
if(i == 3) { // E
|
||||
float value = code_value();
|
||||
if(value < 20.0) {
|
||||
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
||||
max_e_jerk *= factor;
|
||||
max_feedrate[i] *= factor;
|
||||
axis_steps_per_sqr_second[i] *= factor;
|
||||
}
|
||||
axis_steps_per_unit[i] = value;
|
||||
}
|
||||
else {
|
||||
axis_steps_per_unit[i] = code_value();
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 115: // M115
|
||||
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
|
||||
break;
|
||||
case 117: // M117 display message
|
||||
starpos = (strchr(strchr_pointer + 5,'*'));
|
||||
if(starpos!=NULL)
|
||||
*(starpos)='\0';
|
||||
lcd_setstatus(strchr_pointer + 5);
|
||||
break;
|
||||
case 114: // M114
|
||||
SERIAL_PROTOCOLPGM("X:");
|
||||
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Y:");
|
||||
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" E:");
|
||||
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
||||
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
||||
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Y:");
|
||||
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
||||
|
||||
SERIAL_PROTOCOLLN("");
|
||||
#ifdef SCARA
|
||||
SERIAL_PROTOCOLPGM("SCARA Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
||||
SERIAL_PROTOCOL(delta[Y_AXIS]);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
|
||||
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
|
||||
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
|
||||
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
||||
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_PROTOCOLLN("");
|
||||
#endif
|
||||
break;
|
||||
case 120: // M120
|
||||
enable_endstops(false) ;
|
||||
break;
|
||||
case 121: // M121
|
||||
enable_endstops(true) ;
|
||||
break;
|
||||
case 119: // M119
|
||||
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_X_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_X_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
break;
|
||||
//TODO: update for all axis, use for loop
|
||||
#ifdef BLINKM
|
||||
case 150: // M150
|
||||
{
|
||||
byte red;
|
||||
byte grn;
|
||||
byte blu;
|
||||
|
||||
if(code_seen('R')) red = code_value();
|
||||
if(code_seen('U')) grn = code_value();
|
||||
if(code_seen('B')) blu = code_value();
|
||||
|
||||
SendColors(red,grn,blu);
|
||||
}
|
||||
break;
|
||||
#endif //BLINKM
|
||||
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
||||
{
|
||||
|
||||
tmp_extruder = active_extruder;
|
||||
if(code_seen('T')) {
|
||||
tmp_extruder = code_value();
|
||||
if(tmp_extruder >= EXTRUDERS) {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
float area = .0;
|
||||
if(code_seen('D')) {
|
||||
float diameter = code_value();
|
||||
// setting any extruder filament size disables volumetric on the assumption that
|
||||
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
||||
// for all extruders
|
||||
volumetric_enabled = (diameter != 0.0);
|
||||
if (volumetric_enabled) {
|
||||
filament_size[tmp_extruder] = diameter;
|
||||
// make sure all extruders have some sane value for the filament size
|
||||
for (int i=0; i<EXTRUDERS; i++)
|
||||
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
||||
}
|
||||
} else {
|
||||
//reserved for setting filament diameter via UFID or filament measuring device
|
||||
break;
|
||||
}
|
||||
calculate_volumetric_multipliers();
|
||||
}
|
||||
break;
|
||||
case 201: // M201
|
||||
for(int8_t i=0; i < NUM_AXIS; i++)
|
||||
{
|
||||
if(code_seen(axis_codes[i]))
|
||||
{
|
||||
max_acceleration_units_per_sq_second[i] = code_value();
|
||||
}
|
||||
}
|
||||
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
||||
reset_acceleration_rates();
|
||||
break;
|
||||
#if 0 // Not used for Sprinter/grbl gen6
|
||||
case 202: // M202
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
case 203: // M203 max feedrate mm/sec
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
|
||||
}
|
||||
break;
|
||||
case 204: // M204 acclereration S normal moves T filmanent only moves
|
||||
{
|
||||
if(code_seen('S')) acceleration = code_value() ;
|
||||
if(code_seen('T')) retract_acceleration = code_value() ;
|
||||
}
|
||||
break;
|
||||
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
||||
{
|
||||
if(code_seen('S')) minimumfeedrate = code_value();
|
||||
if(code_seen('T')) mintravelfeedrate = code_value();
|
||||
if(code_seen('B')) minsegmenttime = code_value() ;
|
||||
if(code_seen('X')) max_xy_jerk = code_value() ;
|
||||
if(code_seen('Z')) max_z_jerk = code_value() ;
|
||||
if(code_seen('E')) max_e_jerk = code_value() ;
|
||||
}
|
||||
break;
|
||||
case 206: // M206 additional homing offset
|
||||
for(int8_t i=0; i < 3; i++)
|
||||
{
|
||||
if(code_seen(axis_codes[i])) add_homing[i] = code_value();
|
||||
}
|
||||
#ifdef SCARA
|
||||
if(code_seen('T')) // Theta
|
||||
{
|
||||
add_homing[X_AXIS] = code_value() ;
|
||||
}
|
||||
if(code_seen('P')) // Psi
|
||||
{
|
||||
add_homing[Y_AXIS] = code_value() ;
|
||||
}
|
||||
#endif
|
||||
break;
|
||||
#ifdef DELTA
|
||||
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
|
||||
if(code_seen('L')) {
|
||||
delta_diagonal_rod= code_value();
|
||||
}
|
||||
if(code_seen('R')) {
|
||||
delta_radius= code_value();
|
||||
}
|
||||
if(code_seen('S')) {
|
||||
delta_segments_per_second= code_value();
|
||||
}
|
||||
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
break;
|
||||
case 666: // M666 set delta endstop adjustemnt
|
||||
for(int8_t i=0; i < 3; i++)
|
||||
{
|
||||
if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef FWRETRACT
|
||||
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
||||
{
|
||||
if(code_seen('S'))
|
||||
{
|
||||
retract_length = code_value() ;
|
||||
}
|
||||
if(code_seen('F'))
|
||||
{
|
||||
retract_feedrate = code_value()/60 ;
|
||||
}
|
||||
if(code_seen('Z'))
|
||||
{
|
||||
retract_zlift = code_value() ;
|
||||
}
|
||||
}break;
|
||||
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
||||
{
|
||||
if(code_seen('S'))
|
||||
{
|
||||
retract_recover_length = code_value() ;
|
||||
}
|
||||
if(code_seen('F'))
|
||||
{
|
||||
retract_recover_feedrate = code_value()/60 ;
|
||||
}
|
||||
}break;
|
||||
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
||||
{
|
||||
if(code_seen('S'))
|
||||
{
|
||||
int t= code_value() ;
|
||||
switch(t)
|
||||
{
|
||||
case 0:
|
||||
case 1:
|
||||
{
|
||||
autoretract_enabled = (t == 1);
|
||||
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
|
||||
}break;
|
||||
default:
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
||||
SERIAL_ECHO(cmdbuffer[bufindr]);
|
||||
SERIAL_ECHOLNPGM("\"");
|
||||
}
|
||||
}
|
||||
|
||||
}break;
|
||||
#endif // FWRETRACT
|
||||
#if EXTRUDERS > 1
|
||||
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
||||
{
|
||||
if(setTargetedHotend(218)){
|
||||
gcode_M81();
|
||||
break;
|
||||
}
|
||||
if(code_seen('X'))
|
||||
{
|
||||
extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
||||
}
|
||||
if(code_seen('Y'))
|
||||
{
|
||||
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
||||
}
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if(code_seen('Z'))
|
||||
{
|
||||
extruder_offset[Z_AXIS][tmp_extruder] = code_value();
|
||||
}
|
||||
#endif
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
|
||||
{
|
||||
SERIAL_ECHO(" ");
|
||||
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
|
||||
#endif
|
||||
}
|
||||
SERIAL_ECHOLN("");
|
||||
}break;
|
||||
#endif
|
||||
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
||||
{
|
||||
if(code_seen('S'))
|
||||
{
|
||||
feedmultiply = code_value() ;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
||||
{
|
||||
if(code_seen('S'))
|
||||
{
|
||||
int tmp_code = code_value();
|
||||
if (code_seen('T'))
|
||||
{
|
||||
if(setTargetedHotend(221)){
|
||||
break;
|
||||
}
|
||||
extruder_multiply[tmp_extruder] = tmp_code;
|
||||
}
|
||||
else
|
||||
{
|
||||
extrudemultiply = tmp_code ;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
||||
{
|
||||
if(code_seen('P')){
|
||||
int pin_number = code_value(); // pin number
|
||||
int pin_state = -1; // required pin state - default is inverted
|
||||
|
||||
if(code_seen('S')) pin_state = code_value(); // required pin state
|
||||
|
||||
if(pin_state >= -1 && pin_state <= 1){
|
||||
|
||||
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
|
||||
{
|
||||
if (sensitive_pins[i] == pin_number)
|
||||
{
|
||||
pin_number = -1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (pin_number > -1)
|
||||
{
|
||||
int target = LOW;
|
||||
|
||||
st_synchronize();
|
||||
|
||||
pinMode(pin_number, INPUT);
|
||||
|
||||
switch(pin_state){
|
||||
case 1:
|
||||
target = HIGH;
|
||||
break;
|
||||
|
||||
case 0:
|
||||
target = LOW;
|
||||
break;
|
||||
|
||||
case -1:
|
||||
target = !digitalRead(pin_number);
|
||||
break;
|
||||
}
|
||||
|
||||
while(digitalRead(pin_number) != target){
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
#if NUM_SERVOS > 0
|
||||
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
||||
{
|
||||
int servo_index = -1;
|
||||
int servo_position = 0;
|
||||
if (code_seen('P'))
|
||||
servo_index = code_value();
|
||||
if (code_seen('S')) {
|
||||
servo_position = code_value();
|
||||
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
servos[servo_index].attach(0);
|
||||
#endif
|
||||
servos[servo_index].write(servo_position);
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
||||
servos[servo_index].detach();
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO("Servo ");
|
||||
SERIAL_ECHO(servo_index);
|
||||
SERIAL_ECHOLN(" out of range");
|
||||
}
|
||||
}
|
||||
else if (servo_index >= 0) {
|
||||
SERIAL_PROTOCOL(MSG_OK);
|
||||
SERIAL_PROTOCOL(" Servo ");
|
||||
SERIAL_PROTOCOL(servo_index);
|
||||
SERIAL_PROTOCOL(": ");
|
||||
SERIAL_PROTOCOL(servos[servo_index].read());
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif // NUM_SERVOS > 0
|
||||
|
||||
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
|
||||
case 300: // M300
|
||||
{
|
||||
int beepS = code_seen('S') ? code_value() : 110;
|
||||
int beepP = code_seen('P') ? code_value() : 1000;
|
||||
if (beepS > 0)
|
||||
{
|
||||
#if BEEPER > 0
|
||||
tone(BEEPER, beepS);
|
||||
delay(beepP);
|
||||
noTone(BEEPER);
|
||||
#elif defined(ULTRALCD)
|
||||
lcd_buzz(beepS, beepP);
|
||||
#elif defined(LCD_USE_I2C_BUZZER)
|
||||
lcd_buzz(beepP, beepS);
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
delay(beepP);
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif // M300
|
||||
|
||||
#ifdef PIDTEMP
|
||||
case 301: // M301
|
||||
{
|
||||
|
||||
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
||||
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
||||
int e = 0; // extruder being updated
|
||||
if (code_seen('E'))
|
||||
{
|
||||
e = (int)code_value();
|
||||
}
|
||||
if (e < EXTRUDERS) // catch bad input value
|
||||
{
|
||||
|
||||
if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
|
||||
if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
|
||||
if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
|
||||
#endif
|
||||
|
||||
updatePID();
|
||||
SERIAL_PROTOCOL(MSG_OK);
|
||||
#ifdef PID_PARAMS_PER_EXTRUDER
|
||||
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
|
||||
SERIAL_PROTOCOL(e);
|
||||
#endif // PID_PARAMS_PER_EXTRUDER
|
||||
SERIAL_PROTOCOL(" p:");
|
||||
SERIAL_PROTOCOL(PID_PARAM(Kp,e));
|
||||
SERIAL_PROTOCOL(" i:");
|
||||
SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
|
||||
SERIAL_PROTOCOL(" d:");
|
||||
SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
SERIAL_PROTOCOL(" c:");
|
||||
//Kc does not have scaling applied above, or in resetting defaults
|
||||
SERIAL_PROTOCOL(PID_PARAM(Kc,e));
|
||||
#endif
|
||||
SERIAL_PROTOCOLLN("");
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||
}
|
||||
|
||||
}
|
||||
break;
|
||||
#endif //PIDTEMP
|
||||
#ifdef PIDTEMPBED
|
||||
case 304: // M304
|
||||
{
|
||||
if(code_seen('P')) bedKp = code_value();
|
||||
if(code_seen('I')) bedKi = scalePID_i(code_value());
|
||||
if(code_seen('D')) bedKd = scalePID_d(code_value());
|
||||
|
||||
updatePID();
|
||||
SERIAL_PROTOCOL(MSG_OK);
|
||||
SERIAL_PROTOCOL(" p:");
|
||||
SERIAL_PROTOCOL(bedKp);
|
||||
SERIAL_PROTOCOL(" i:");
|
||||
SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
||||
SERIAL_PROTOCOL(" d:");
|
||||
SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
break;
|
||||
#endif //PIDTEMP
|
||||
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
||||
{
|
||||
#ifdef CHDK
|
||||
|
||||
SET_OUTPUT(CHDK);
|
||||
WRITE(CHDK, HIGH);
|
||||
chdkHigh = millis();
|
||||
chdkActive = true;
|
||||
|
||||
#else
|
||||
|
||||
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
||||
const uint8_t NUM_PULSES=16;
|
||||
const float PULSE_LENGTH=0.01524;
|
||||
for(int i=0; i < NUM_PULSES; i++) {
|
||||
WRITE(PHOTOGRAPH_PIN, HIGH);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
WRITE(PHOTOGRAPH_PIN, LOW);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
}
|
||||
delay(7.33);
|
||||
for(int i=0; i < NUM_PULSES; i++) {
|
||||
WRITE(PHOTOGRAPH_PIN, HIGH);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
WRITE(PHOTOGRAPH_PIN, LOW);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
}
|
||||
#endif
|
||||
#endif //chdk end if
|
||||
}
|
||||
break;
|
||||
#ifdef DOGLCD
|
||||
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
||||
{
|
||||
if (code_seen('C')) {
|
||||
lcd_setcontrast( ((int)code_value())&63 );
|
||||
}
|
||||
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
||||
SERIAL_PROTOCOL(lcd_contrast);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
||||
{
|
||||
float temp = .0;
|
||||
if (code_seen('S')) temp=code_value();
|
||||
set_extrude_min_temp(temp);
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
case 303: // M303 PID autotune
|
||||
{
|
||||
float temp = 150.0;
|
||||
int e=0;
|
||||
int c=5;
|
||||
if (code_seen('E')) e=code_value();
|
||||
if (e<0)
|
||||
temp=70;
|
||||
if (code_seen('S')) temp=code_value();
|
||||
if (code_seen('C')) c=code_value();
|
||||
PID_autotune(temp, e, c);
|
||||
}
|
||||
break;
|
||||
#ifdef SCARA
|
||||
case 360: // M360 SCARA Theta pos1
|
||||
SERIAL_ECHOLN(" Cal: Theta 0 ");
|
||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if(Stopped == false) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 0;
|
||||
delta[Y_AXIS] = 120;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case 361: // SCARA Theta pos2
|
||||
SERIAL_ECHOLN(" Cal: Theta 90 ");
|
||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if(Stopped == false) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 90;
|
||||
delta[Y_AXIS] = 130;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return;
|
||||
}
|
||||
break;
|
||||
case 362: // SCARA Psi pos1
|
||||
SERIAL_ECHOLN(" Cal: Psi 0 ");
|
||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if(Stopped == false) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 60;
|
||||
delta[Y_AXIS] = 180;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return;
|
||||
}
|
||||
break;
|
||||
case 363: // SCARA Psi pos2
|
||||
SERIAL_ECHOLN(" Cal: Psi 90 ");
|
||||
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if(Stopped == false) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 50;
|
||||
delta[Y_AXIS] = 90;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return;
|
||||
}
|
||||
break;
|
||||
case 364: // SCARA Psi pos3 (90 deg to Theta)
|
||||
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
|
||||
// SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
||||
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
||||
if(Stopped == false) {
|
||||
//get_coordinates(); // For X Y Z E F
|
||||
delta[X_AXIS] = 45;
|
||||
delta[Y_AXIS] = 135;
|
||||
calculate_SCARA_forward_Transform(delta);
|
||||
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
||||
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
||||
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return;
|
||||
}
|
||||
break;
|
||||
case 365: // M364 Set SCARA scaling for X Y Z
|
||||
for(int8_t i=0; i < 3; i++)
|
||||
{
|
||||
if(code_seen(axis_codes[i]))
|
||||
{
|
||||
|
||||
axis_scaling[i] = code_value();
|
||||
|
||||
}
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
case 400: // M400 finish all moves
|
||||
{
|
||||
st_synchronize();
|
||||
}
|
||||
break;
|
||||
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
||||
case 401:
|
||||
{
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
}
|
||||
break;
|
||||
|
||||
case 402:
|
||||
{
|
||||
retract_z_probe(); // Retract Z Servo endstop if enabled
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
||||
{
|
||||
#if (FILWIDTH_PIN > -1)
|
||||
if(code_seen('N')) filament_width_nominal=code_value();
|
||||
else{
|
||||
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
||||
SERIAL_PROTOCOLLN(filament_width_nominal);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
|
||||
case 405: //M405 Turn on filament sensor for control
|
||||
{
|
||||
|
||||
|
||||
if(code_seen('D')) meas_delay_cm=code_value();
|
||||
|
||||
if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
|
||||
meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
||||
|
||||
if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
|
||||
{
|
||||
int temp_ratio = widthFil_to_size_ratio();
|
||||
|
||||
for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
|
||||
measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
|
||||
}
|
||||
delay_index1=0;
|
||||
delay_index2=0;
|
||||
}
|
||||
|
||||
filament_sensor = true ;
|
||||
|
||||
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||
//SERIAL_PROTOCOL(filament_width_meas);
|
||||
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
||||
//SERIAL_PROTOCOL(extrudemultiply);
|
||||
}
|
||||
break;
|
||||
|
||||
case 406: //M406 Turn off filament sensor for control
|
||||
{
|
||||
filament_sensor = false ;
|
||||
}
|
||||
break;
|
||||
|
||||
case 407: //M407 Display measured filament diameter
|
||||
{
|
||||
|
||||
|
||||
|
||||
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||
SERIAL_PROTOCOLLN(filament_width_meas);
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
case 500: // M500 Store settings in EEPROM
|
||||
{
|
||||
Config_StoreSettings();
|
||||
}
|
||||
break;
|
||||
case 501: // M501 Read settings from EEPROM
|
||||
{
|
||||
Config_RetrieveSettings();
|
||||
}
|
||||
break;
|
||||
case 502: // M502 Revert to default settings
|
||||
{
|
||||
Config_ResetDefault();
|
||||
}
|
||||
break;
|
||||
case 503: // M503 print settings currently in memory
|
||||
{
|
||||
Config_PrintSettings(code_seen('S') && code_value == 0);
|
||||
}
|
||||
break;
|
||||
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||
case 540:
|
||||
{
|
||||
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
|
||||
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
||||
{
|
||||
float value;
|
||||
if (code_seen('Z'))
|
||||
{
|
||||
value = code_value();
|
||||
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
|
||||
{
|
||||
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
else
|
||||
{
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
|
||||
SERIAL_ECHOPGM(MSG_Z_MIN);
|
||||
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
||||
SERIAL_ECHOPGM(MSG_Z_MAX);
|
||||
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
|
||||
SERIAL_ECHO(-zprobe_zoffset);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
}
|
||||
break;
|
||||
}
|
||||
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||
|
||||
#ifdef FILAMENTCHANGEENABLE
|
||||
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
||||
{
|
||||
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate/60;
|
||||
for (int i=0; i<NUM_AXIS; i++)
|
||||
target[i] = lastpos[i] = current_position[i];
|
||||
|
||||
#define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
|
||||
#ifdef DELTA
|
||||
#define RUNPLAN calculate_delta(target); BASICPLAN
|
||||
#else
|
||||
#define RUNPLAN BASICPLAN
|
||||
#endif
|
||||
|
||||
//retract by E
|
||||
if(code_seen('E'))
|
||||
{
|
||||
target[E_AXIS]+= code_value();
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef FILAMENTCHANGE_FIRSTRETRACT
|
||||
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
|
||||
#endif
|
||||
}
|
||||
RUNPLAN;
|
||||
|
||||
//lift Z
|
||||
if(code_seen('Z'))
|
||||
{
|
||||
target[Z_AXIS]+= code_value();
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef FILAMENTCHANGE_ZADD
|
||||
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
|
||||
#endif
|
||||
}
|
||||
RUNPLAN;
|
||||
|
||||
//move xy
|
||||
if(code_seen('X'))
|
||||
{
|
||||
target[X_AXIS]= code_value();
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef FILAMENTCHANGE_XPOS
|
||||
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
|
||||
#endif
|
||||
}
|
||||
if(code_seen('Y'))
|
||||
{
|
||||
target[Y_AXIS]= code_value();
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef FILAMENTCHANGE_YPOS
|
||||
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
|
||||
#endif
|
||||
}
|
||||
|
||||
RUNPLAN;
|
||||
|
||||
if(code_seen('L'))
|
||||
{
|
||||
target[E_AXIS]+= code_value();
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef FILAMENTCHANGE_FINALRETRACT
|
||||
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
|
||||
#endif
|
||||
}
|
||||
|
||||
RUNPLAN;
|
||||
|
||||
//finish moves
|
||||
st_synchronize();
|
||||
//disable extruder steppers so filament can be removed
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
delay(100);
|
||||
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
||||
uint8_t cnt=0;
|
||||
while(!lcd_clicked()){
|
||||
cnt++;
|
||||
manage_heater();
|
||||
manage_inactivity(true);
|
||||
lcd_update();
|
||||
if(cnt==0)
|
||||
{
|
||||
#if BEEPER > 0
|
||||
SET_OUTPUT(BEEPER);
|
||||
|
||||
WRITE(BEEPER,HIGH);
|
||||
delay(3);
|
||||
WRITE(BEEPER,LOW);
|
||||
delay(3);
|
||||
#else
|
||||
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
||||
lcd_buzz(1000/6,100);
|
||||
#else
|
||||
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
//return to normal
|
||||
if(code_seen('L'))
|
||||
{
|
||||
target[E_AXIS]+= -code_value();
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef FILAMENTCHANGE_FINALRETRACT
|
||||
target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
|
||||
#endif
|
||||
}
|
||||
current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
|
||||
RUNPLAN; //should do nothing
|
||||
|
||||
//reset LCD alert message
|
||||
lcd_reset_alert_level();
|
||||
|
||||
#ifdef DELTA
|
||||
calculate_delta(lastpos);
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
||||
#else
|
||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
|
||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
|
||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
#endif //FILAMENTCHANGEENABLE
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
case 605: // Set dual x-carriage movement mode:
|
||||
// M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
||||
// M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
||||
// M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
||||
// millimeters x-offset and an optional differential hotend temperature of
|
||||
// mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
||||
// the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
||||
//
|
||||
// Note: the X axis should be homed after changing dual x-carriage mode.
|
||||
{
|
||||
st_synchronize();
|
||||
|
||||
if (code_seen('S'))
|
||||
dual_x_carriage_mode = code_value();
|
||||
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
|
||||
{
|
||||
if (code_seen('X'))
|
||||
duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
|
||||
|
||||
if (code_seen('R'))
|
||||
duplicate_extruder_temp_offset = code_value();
|
||||
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||
SERIAL_ECHO(" ");
|
||||
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
|
||||
SERIAL_ECHO(" ");
|
||||
SERIAL_ECHO(duplicate_extruder_x_offset);
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
|
||||
}
|
||||
else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
|
||||
{
|
||||
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
||||
}
|
||||
|
||||
active_extruder_parked = false;
|
||||
extruder_duplication_enabled = false;
|
||||
delayed_move_time = 0;
|
||||
}
|
||||
break;
|
||||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
case 907: // M907 Set digital trimpot motor current using axis codes.
|
||||
{
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
|
||||
if(code_seen('B')) digipot_current(4,code_value());
|
||||
if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
|
||||
#endif
|
||||
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
||||
if(code_seen('X')) digipot_current(0, code_value());
|
||||
#endif
|
||||
#ifdef MOTOR_CURRENT_PWM_Z_PIN
|
||||
if(code_seen('Z')) digipot_current(1, code_value());
|
||||
#endif
|
||||
#ifdef MOTOR_CURRENT_PWM_E_PIN
|
||||
if(code_seen('E')) digipot_current(2, code_value());
|
||||
#endif
|
||||
#ifdef DIGIPOT_I2C
|
||||
// this one uses actual amps in floating point
|
||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
||||
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
||||
for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
case 908: // M908 Control digital trimpot directly.
|
||||
{
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
uint8_t channel,current;
|
||||
if(code_seen('P')) channel=code_value();
|
||||
if(code_seen('S')) current=code_value();
|
||||
digitalPotWrite(channel, current);
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
{
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
||||
if(code_seen('B')) microstep_mode(4,code_value());
|
||||
microstep_readings();
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
||||
{
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||
if(code_seen('S')) switch((int)code_value())
|
||||
{
|
||||
case 1:
|
||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
|
||||
if(code_seen('B')) microstep_ms(4,code_value(),-1);
|
||||
case 82:
|
||||
gcode_M82();
|
||||
break;
|
||||
case 83:
|
||||
gcode_M83();
|
||||
break;
|
||||
case 18: //compatibility
|
||||
case 84: // M84
|
||||
gcode_M18_M84();
|
||||
break;
|
||||
case 85: // M85
|
||||
gcode_M85();
|
||||
break;
|
||||
case 92: // M92
|
||||
gcode_M92();
|
||||
break;
|
||||
case 115: // M115
|
||||
gcode_M115();
|
||||
break;
|
||||
case 117: // M117 display message
|
||||
gcode_M117();
|
||||
break;
|
||||
case 114: // M114
|
||||
gcode_M114();
|
||||
break;
|
||||
case 120: // M120
|
||||
gcode_M120();
|
||||
break;
|
||||
case 121: // M121
|
||||
gcode_M121();
|
||||
break;
|
||||
case 119: // M119
|
||||
gcode_M119();
|
||||
break;
|
||||
//TODO: update for all axis, use for loop
|
||||
|
||||
#ifdef BLINKM
|
||||
|
||||
case 150: // M150
|
||||
gcode_M150();
|
||||
break;
|
||||
case 2:
|
||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
|
||||
if(code_seen('B')) microstep_ms(4,-1,code_value());
|
||||
break;
|
||||
}
|
||||
microstep_readings();
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
case 999: // M999: Restart after being stopped
|
||||
Stopped = false;
|
||||
lcd_reset_alert_level();
|
||||
gcode_LastN = Stopped_gcode_LastN;
|
||||
FlushSerialRequestResend();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
else if(code_seen('T'))
|
||||
{
|
||||
tmp_extruder = code_value();
|
||||
if(tmp_extruder >= EXTRUDERS) {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO("T");
|
||||
SERIAL_ECHO(tmp_extruder);
|
||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||
}
|
||||
else {
|
||||
boolean make_move = false;
|
||||
if(code_seen('F')) {
|
||||
make_move = true;
|
||||
next_feedrate = code_value();
|
||||
if(next_feedrate > 0.0) {
|
||||
feedrate = next_feedrate;
|
||||
}
|
||||
}
|
||||
#endif //BLINKM
|
||||
|
||||
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
||||
gcode_M200();
|
||||
break;
|
||||
case 201: // M201
|
||||
gcode_M201();
|
||||
break;
|
||||
#if 0 // Not used for Sprinter/grbl gen6
|
||||
case 202: // M202
|
||||
gcode_M202();
|
||||
break;
|
||||
#endif
|
||||
case 203: // M203 max feedrate mm/sec
|
||||
gcode_M203();
|
||||
break;
|
||||
case 204: // M204 acclereration S normal moves T filmanent only moves
|
||||
gcode_M204();
|
||||
break;
|
||||
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
||||
gcode_M205();
|
||||
break;
|
||||
case 206: // M206 additional homing offset
|
||||
gcode_M206();
|
||||
break;
|
||||
|
||||
#ifdef DELTA
|
||||
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
|
||||
gcode_M665();
|
||||
break;
|
||||
case 666: // M666 set delta endstop adjustment
|
||||
gcode_M666();
|
||||
break;
|
||||
#endif // DELTA
|
||||
|
||||
#ifdef FWRETRACT
|
||||
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
||||
gcode_M207();
|
||||
break;
|
||||
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
||||
gcode_M208();
|
||||
break;
|
||||
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
||||
gcode_M209();
|
||||
break;
|
||||
#endif // FWRETRACT
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
if(tmp_extruder != active_extruder) {
|
||||
// Save current position to return to after applying extruder offset
|
||||
memcpy(destination, current_position, sizeof(destination));
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
|
||||
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
|
||||
{
|
||||
// Park old head: 1) raise 2) move to park position 3) lower
|
||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
||||
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
||||
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
||||
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
|
||||
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
|
||||
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
||||
st_synchronize();
|
||||
}
|
||||
|
||||
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
||||
current_position[Y_AXIS] = current_position[Y_AXIS] -
|
||||
extruder_offset[Y_AXIS][active_extruder] +
|
||||
extruder_offset[Y_AXIS][tmp_extruder];
|
||||
current_position[Z_AXIS] = current_position[Z_AXIS] -
|
||||
extruder_offset[Z_AXIS][active_extruder] +
|
||||
extruder_offset[Z_AXIS][tmp_extruder];
|
||||
|
||||
active_extruder = tmp_extruder;
|
||||
|
||||
// This function resets the max/min values - the current position may be overwritten below.
|
||||
axis_is_at_home(X_AXIS);
|
||||
|
||||
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
|
||||
{
|
||||
current_position[X_AXIS] = inactive_extruder_x_pos;
|
||||
inactive_extruder_x_pos = destination[X_AXIS];
|
||||
}
|
||||
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
|
||||
{
|
||||
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
|
||||
if (active_extruder == 0 || active_extruder_parked)
|
||||
current_position[X_AXIS] = inactive_extruder_x_pos;
|
||||
else
|
||||
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
||||
inactive_extruder_x_pos = destination[X_AXIS];
|
||||
extruder_duplication_enabled = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
// record raised toolhead position for use by unpark
|
||||
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
||||
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
||||
active_extruder_parked = true;
|
||||
delayed_move_time = 0;
|
||||
}
|
||||
#else
|
||||
// Offset extruder (only by XY)
|
||||
int i;
|
||||
for(i = 0; i < 2; i++) {
|
||||
current_position[i] = current_position[i] -
|
||||
extruder_offset[i][active_extruder] +
|
||||
extruder_offset[i][tmp_extruder];
|
||||
}
|
||||
// Set the new active extruder and position
|
||||
active_extruder = tmp_extruder;
|
||||
#endif //else DUAL_X_CARRIAGE
|
||||
#ifdef DELTA
|
||||
|
||||
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
|
||||
//sent position to plan_set_position();
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
|
||||
|
||||
#else
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
#endif
|
||||
// Move to the old position if 'F' was in the parameters
|
||||
if(make_move && Stopped == false) {
|
||||
prepare_move();
|
||||
}
|
||||
}
|
||||
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
||||
gcode_M218();
|
||||
break;
|
||||
#endif
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
|
||||
SERIAL_PROTOCOLLN((int)active_extruder);
|
||||
|
||||
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
||||
gcode_M220();
|
||||
break;
|
||||
|
||||
case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
||||
gcode_M221();
|
||||
break;
|
||||
|
||||
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
||||
gcode_M226();
|
||||
break;
|
||||
|
||||
#if NUM_SERVOS > 0
|
||||
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
||||
gcode_M280();
|
||||
break;
|
||||
#endif // NUM_SERVOS > 0
|
||||
|
||||
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
|
||||
case 300: // M300 - Play beep tone
|
||||
gcode_M300();
|
||||
break;
|
||||
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
|
||||
|
||||
#ifdef PIDTEMP
|
||||
case 301: // M301
|
||||
gcode_M301();
|
||||
break;
|
||||
#endif // PIDTEMP
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
case 304: // M304
|
||||
gcode_M304();
|
||||
break;
|
||||
#endif // PIDTEMPBED
|
||||
|
||||
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
|
||||
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
||||
gcode_M240();
|
||||
break;
|
||||
#endif // CHDK || PHOTOGRAPH_PIN
|
||||
|
||||
#ifdef DOGLCD
|
||||
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
||||
gcode_M250();
|
||||
break;
|
||||
#endif // DOGLCD
|
||||
|
||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
||||
gcode_M302();
|
||||
break;
|
||||
#endif // PREVENT_DANGEROUS_EXTRUDE
|
||||
|
||||
case 303: // M303 PID autotune
|
||||
gcode_M303();
|
||||
break;
|
||||
|
||||
#ifdef SCARA
|
||||
case 360: // M360 SCARA Theta pos1
|
||||
if (gcode_M360()) return;
|
||||
break;
|
||||
case 361: // M361 SCARA Theta pos2
|
||||
if (gcode_M361()) return;
|
||||
break;
|
||||
case 362: // M362 SCARA Psi pos1
|
||||
if (gcode_M362()) return;
|
||||
break;
|
||||
case 363: // M363 SCARA Psi pos2
|
||||
if (gcode_M363()) return;
|
||||
break;
|
||||
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
|
||||
if (gcode_M364()) return;
|
||||
break;
|
||||
case 365: // M365 Set SCARA scaling for X Y Z
|
||||
gcode_M365();
|
||||
break;
|
||||
#endif // SCARA
|
||||
|
||||
case 400: // M400 finish all moves
|
||||
gcode_M400();
|
||||
break;
|
||||
|
||||
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
|
||||
case 401:
|
||||
gcode_M401();
|
||||
break;
|
||||
case 402:
|
||||
gcode_M402();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
||||
gcode_M404();
|
||||
break;
|
||||
case 405: //M405 Turn on filament sensor for control
|
||||
gcode_M405();
|
||||
break;
|
||||
case 406: //M406 Turn off filament sensor for control
|
||||
gcode_M406();
|
||||
break;
|
||||
case 407: //M407 Display measured filament diameter
|
||||
gcode_M407();
|
||||
break;
|
||||
#endif // FILAMENT_SENSOR
|
||||
|
||||
case 500: // M500 Store settings in EEPROM
|
||||
gcode_M500();
|
||||
break;
|
||||
case 501: // M501 Read settings from EEPROM
|
||||
gcode_M501();
|
||||
break;
|
||||
case 502: // M502 Revert to default settings
|
||||
gcode_M502();
|
||||
break;
|
||||
case 503: // M503 print settings currently in memory
|
||||
gcode_M503();
|
||||
break;
|
||||
|
||||
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||
case 540:
|
||||
gcode_M540();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
||||
gcode_SET_Z_PROBE_OFFSET();
|
||||
break;
|
||||
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
||||
|
||||
#ifdef FILAMENTCHANGEENABLE
|
||||
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
||||
gcode_M600();
|
||||
break;
|
||||
#endif // FILAMENTCHANGEENABLE
|
||||
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
case 605:
|
||||
gcode_M605();
|
||||
break;
|
||||
#endif // DUAL_X_CARRIAGE
|
||||
|
||||
case 907: // M907 Set digital trimpot motor current using axis codes.
|
||||
gcode_M907();
|
||||
break;
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
case 908: // M908 Control digital trimpot directly.
|
||||
gcode_M908();
|
||||
break;
|
||||
#endif // DIGIPOTSS_PIN
|
||||
|
||||
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
gcode_M350();
|
||||
break;
|
||||
|
||||
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
||||
gcode_M351();
|
||||
break;
|
||||
|
||||
case 999: // M999: Restart after being Stopped
|
||||
gcode_M999();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
else if (code_seen('T')) {
|
||||
gcode_T();
|
||||
}
|
||||
|
||||
else {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
||||
SERIAL_ECHO(cmdbuffer[bufindr]);
|
||||
|
@ -4104,13 +4887,13 @@ void clamp_to_software_endstops(float target[3])
|
|||
#ifdef DELTA
|
||||
void recalc_delta_settings(float radius, float diagonal_rod)
|
||||
{
|
||||
delta_tower1_x= -SIN_60*radius; // front left tower
|
||||
delta_tower1_y= -COS_60*radius;
|
||||
delta_tower2_x= SIN_60*radius; // front right tower
|
||||
delta_tower2_y= -COS_60*radius;
|
||||
delta_tower3_x= 0.0; // back middle tower
|
||||
delta_tower3_y= radius;
|
||||
delta_diagonal_rod_2= sq(diagonal_rod);
|
||||
delta_tower1_x= -SIN_60*radius; // front left tower
|
||||
delta_tower1_y= -COS_60*radius;
|
||||
delta_tower2_x= SIN_60*radius; // front right tower
|
||||
delta_tower2_y= -COS_60*radius;
|
||||
delta_tower3_x= 0.0; // back middle tower
|
||||
delta_tower3_y= radius;
|
||||
delta_diagonal_rod_2= sq(diagonal_rod);
|
||||
}
|
||||
|
||||
void calculate_delta(float cartesian[3])
|
||||
|
@ -4148,12 +4931,12 @@ void prepare_move()
|
|||
|
||||
float difference[NUM_AXIS];
|
||||
for (int8_t i=0; i < NUM_AXIS; i++) {
|
||||
difference[i] = destination[i] - current_position[i];
|
||||
difference[i] = destination[i] - current_position[i];
|
||||
}
|
||||
|
||||
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
|
||||
sq(difference[Y_AXIS]) +
|
||||
sq(difference[Z_AXIS]));
|
||||
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
|
||||
sq(difference[Y_AXIS]) +
|
||||
sq(difference[Z_AXIS]));
|
||||
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
||||
if (cartesian_mm < 0.000001) { return; }
|
||||
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
||||
|
@ -4162,13 +4945,13 @@ int steps = max(1, int(scara_segments_per_second * seconds));
|
|||
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
||||
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
||||
for (int s = 1; s <= steps; s++) {
|
||||
float fraction = float(s) / float(steps);
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
destination[i] = current_position[i] + difference[i] * fraction;
|
||||
}
|
||||
float fraction = float(s) / float(steps);
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
destination[i] = current_position[i] + difference[i] * fraction;
|
||||
}
|
||||
|
||||
|
||||
calculate_delta(destination);
|
||||
calculate_delta(destination);
|
||||
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
|
||||
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
|
||||
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
|
||||
|
@ -4176,9 +4959,9 @@ for (int s = 1; s <= steps; s++) {
|
|||
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
||||
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
||||
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
||||
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
||||
active_extruder);
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
||||
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
||||
active_extruder);
|
||||
}
|
||||
#endif // SCARA
|
||||
|
||||
|
@ -4298,17 +5081,17 @@ void controllerFan()
|
|||
{
|
||||
lastMotorCheck = millis();
|
||||
|
||||
if(!X_ENABLE_READ || !Y_ENABLE_READ || !Z_ENABLE_READ || (soft_pwm_bed > 0)
|
||||
if((X_ENABLE_READ) == (X_ENABLE_ON)) || (Y_ENABLE_READ) == (Y_ENABLE_ON)) || (Z_ENABLE_READ) == (Z_ENABLE_ON)) || (soft_pwm_bed > 0)
|
||||
#if EXTRUDERS > 2
|
||||
|| !E2_ENABLE_READ
|
||||
|| (E2_ENABLE_READ) == (E_ENABLE_ON))
|
||||
#endif
|
||||
#if EXTRUDER > 1
|
||||
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
||||
|| !X2_ENABLE_READ
|
||||
|| (X2_ENABLE_READ) == (X_ENABLE_ON))
|
||||
#endif
|
||||
|| !E1_ENABLE_READ)
|
||||
|| (E1_ENABLE_READ) == (E_ENABLE_ON))
|
||||
#endif
|
||||
|| !E0_ENABLE_READ) //If any of the drivers are enabled...
|
||||
|| (E0_ENABLE_READ) == (E_ENABLE_ON))) //If any of the drivers are enabled...
|
||||
{
|
||||
lastMotor = millis(); //... set time to NOW so the fan will turn on
|
||||
}
|
||||
|
@ -4443,7 +5226,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
|
|||
{
|
||||
|
||||
#if defined(KILL_PIN) && KILL_PIN > -1
|
||||
static int killCount = 0; // make the inactivity button a bit less responsive
|
||||
static int killCount = 0; // make the inactivity button a bit less responsive
|
||||
const int KILL_DELAY = 10000;
|
||||
#endif
|
||||
|
||||
|
@ -4469,6 +5252,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
|
|||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
disable_e3();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -4574,6 +5358,7 @@ void kill()
|
|||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
disable_e3();
|
||||
|
||||
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
|
||||
pinMode(PS_ON_PIN,INPUT);
|
||||
|
@ -4707,7 +5492,6 @@ bool setTargetedHotend(int code){
|
|||
return false;
|
||||
}
|
||||
|
||||
|
||||
float calculate_volumetric_multiplier(float diameter) {
|
||||
if (!volumetric_enabled || diameter == 0) return 1.0;
|
||||
float d2 = diameter * 0.5;
|
||||
|
|
|
@ -22,8 +22,7 @@ CardReader::CardReader() {
|
|||
autostart_index = 0;
|
||||
//power to SD reader
|
||||
#if SDPOWER > -1
|
||||
SET_OUTPUT(SDPOWER);
|
||||
WRITE(SDPOWER, HIGH);
|
||||
OUT_WRITE(SDPOWER, HIGH);
|
||||
#endif //SDPOWER
|
||||
|
||||
autostart_atmillis = millis() + 5000;
|
||||
|
|
|
@ -21,17 +21,13 @@
|
|||
**/
|
||||
|
||||
#ifdef ULTIPANEL
|
||||
#define BLEN_A 0
|
||||
#define BLEN_B 1
|
||||
#define BLEN_C 2
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_C (1<<BLEN_C)
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
#define LCD_CLICKED (buttons&EN_C)
|
||||
#define BLEN_A 0
|
||||
#define BLEN_B 1
|
||||
#define BLEN_C 2
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_C (1<<BLEN_C)
|
||||
#define LCD_CLICKED (buttons&EN_C)
|
||||
#endif
|
||||
|
||||
#include <U8glib.h>
|
||||
|
|
|
@ -82,7 +82,7 @@ Here are some standard links for getting your machine calibrated:
|
|||
// #define PS_DEFAULT_OFF
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Settings ============================
|
||||
//============================= Thermal Settings ============================
|
||||
//===========================================================================
|
||||
//
|
||||
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
|
||||
|
@ -118,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
|
|||
// 1010 is Pt1000 with 1k pullup (non standard)
|
||||
// 147 is Pt100 with 4k7 pullup
|
||||
// 110 is Pt100 with 1k pullup (non standard)
|
||||
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
|
||||
// Use it for Testing or Development purposes. NEVER for production machine.
|
||||
// #define DUMMY_THERMISTOR_998_VALUE 25
|
||||
// #define DUMMY_THERMISTOR_999_VALUE 100
|
||||
|
||||
#define TEMP_SENSOR_0 1
|
||||
#define TEMP_SENSOR_1 0
|
||||
|
@ -297,9 +301,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
|
|||
//============================= Mechanical Settings =========================
|
||||
//===========================================================================
|
||||
|
||||
// Uncomment the following line to enable CoreXY kinematics
|
||||
// Uncomment this option to enable CoreXY kinematics
|
||||
// #define COREXY
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
// #define CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
// coarse Endstop Settings
|
||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
|
@ -332,11 +339,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define DISABLE_MAX_ENDSTOPS
|
||||
//#define DISABLE_MIN_ENDSTOPS
|
||||
|
||||
// Disable max endstops for compatibility with endstop checking routine
|
||||
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
|
||||
#define DISABLE_MAX_ENDSTOPS
|
||||
#endif
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 0
|
||||
#define Y_ENABLE_ON 0
|
||||
|
@ -389,40 +391,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// There are 2 different ways to pick the X and Y locations to probe:
|
||||
|
||||
// - "grid" mode
|
||||
// Probe every point in a rectangular grid
|
||||
// You must specify the rectangle, and the density of sample points
|
||||
// This mode is preferred because there are more measurements.
|
||||
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
|
||||
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You must specify the X & Y coordinates of all 3 points
|
||||
// There are 2 different ways to specify probing locations
|
||||
//
|
||||
// - "grid" mode
|
||||
// Probe several points in a rectangular grid.
|
||||
// You specify the rectangle and the density of sample points.
|
||||
// This mode is preferred because there are more measurements.
|
||||
//
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You specify the XY coordinates of all 3 points.
|
||||
|
||||
// Enable this to sample the bed in a grid (least squares solution)
|
||||
// Note: this feature generates 10KB extra code size
|
||||
#define AUTO_BED_LEVELING_GRID
|
||||
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
|
||||
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
|
||||
// and least squares solution is calculated
|
||||
// Note: this feature occupies 10'206 byte
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// set the rectangle in which to probe
|
||||
// The edges of the rectangle in which to probe
|
||||
#define LEFT_PROBE_BED_POSITION 15
|
||||
#define RIGHT_PROBE_BED_POSITION 170
|
||||
#define BACK_PROBE_BED_POSITION 180
|
||||
#define FRONT_PROBE_BED_POSITION 20
|
||||
#define BACK_PROBE_BED_POSITION 170
|
||||
|
||||
// set the number of grid points per dimension
|
||||
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
|
||||
// Set the number of grid points per dimension
|
||||
// You probably don't need more than 3 (squared=9)
|
||||
#define AUTO_BED_LEVELING_GRID_POINTS 2
|
||||
|
||||
|
||||
#else // not AUTO_BED_LEVELING_GRID
|
||||
// with no grid, just probe 3 arbitrary points. A simple cross-product
|
||||
// is used to esimate the plane of the print bed
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
// Arbitrary points to probe. A simple cross-product
|
||||
// is used to estimate the plane of the bed.
|
||||
#define ABL_PROBE_PT_1_X 15
|
||||
#define ABL_PROBE_PT_1_Y 180
|
||||
#define ABL_PROBE_PT_2_X 15
|
||||
|
@ -433,11 +433,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
|
||||
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// X and Y offsets must be integers
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
|
||||
|
||||
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
|
||||
// Be sure you have this distance over your Z_MAX_POS in case
|
||||
|
@ -474,29 +474,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID // Check if Probe_Offset * Grid Points is greater than Probing Range
|
||||
#if X_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
#if (-(X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
|
||||
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#else
|
||||
#if ((X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
|
||||
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#endif
|
||||
#if Y_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
#if (-(Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
|
||||
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#else
|
||||
#if ((Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
|
||||
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -536,9 +513,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define DEFAULT_EJERK 5.0 // (mm/sec)
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Additional Features =========================
|
||||
//===========================================================================
|
||||
//=============================================================================
|
||||
//============================= Additional Features ===========================
|
||||
//=============================================================================
|
||||
|
||||
// Custom M code points
|
||||
#define CUSTOM_M_CODES
|
||||
|
@ -569,7 +546,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define ABS_PREHEAT_HPB_TEMP 100
|
||||
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
|
||||
|
||||
//LCD and SD support
|
||||
//==============================LCD and SD support=============================
|
||||
|
||||
// Define your display language below. Replace (en) with your language code and uncomment.
|
||||
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
|
||||
// See also language.h
|
||||
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
|
||||
|
||||
// Character based displays can have different extended charsets.
|
||||
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
|
||||
|
@ -583,7 +565,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
|
||||
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
|
||||
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
|
||||
#define ULTIPANEL //the UltiPanel as on Thingiverse
|
||||
//#define ULTIPANEL //the UltiPanel as on Thingiverse
|
||||
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
|
||||
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
|
||||
|
||||
|
@ -750,7 +732,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 20
|
||||
|
@ -759,7 +741,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#else //no panel but just LCD
|
||||
#ifdef ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 16
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
|
||||
#include "boards.h"
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Getting Started =============================
|
||||
//===========================================================================
|
||||
|
@ -39,7 +38,7 @@ Here are some standard links for getting your machine calibrated:
|
|||
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
|
||||
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
|
||||
// build by the user have been successfully uploaded into firmware.
|
||||
#define STRING_VERSION "v1.0.2"
|
||||
#define STRING_VERSION "1.0.2"
|
||||
#define STRING_URL "reprap.org"
|
||||
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
|
||||
#define STRING_CONFIG_H_AUTHOR "(K8200, CONSULitAS)" // Who made the changes.
|
||||
|
@ -82,7 +81,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
|
||||
// #define PS_DEFAULT_OFF
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Settings ============================
|
||||
//===========================================================================
|
||||
|
@ -120,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
|
|||
// 1010 is Pt1000 with 1k pullup (non standard)
|
||||
// 147 is Pt100 with 4k7 pullup
|
||||
// 110 is Pt100 with 1k pullup (non standard)
|
||||
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
|
||||
// Use it for Testing or Development purposes. NEVER for production machine.
|
||||
// #define DUMMY_THERMISTOR_998_VALUE 25
|
||||
// #define DUMMY_THERMISTOR_999_VALUE 100
|
||||
|
||||
#define TEMP_SENSOR_0 5
|
||||
#define TEMP_SENSOR_1 0
|
||||
|
@ -260,7 +262,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
#define EXTRUDE_MINTEMP 170
|
||||
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Runaway Protection ==================
|
||||
//===========================================================================
|
||||
|
@ -305,9 +306,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
|
|||
//============================= Mechanical Settings =========================
|
||||
//===========================================================================
|
||||
|
||||
// Uncomment the following line to enable CoreXY kinematics
|
||||
// Uncomment this option to enable CoreXY kinematics
|
||||
// #define COREXY
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
// #define CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
// coarse Endstop Settings
|
||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
|
@ -340,11 +344,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define DISABLE_MAX_ENDSTOPS
|
||||
//#define DISABLE_MIN_ENDSTOPS
|
||||
|
||||
// Disable max endstops for compatibility with endstop checking routine
|
||||
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
|
||||
#define DISABLE_MAX_ENDSTOPS
|
||||
#endif
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 0
|
||||
#define Y_ENABLE_ON 0
|
||||
|
@ -397,40 +396,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// There are 2 different ways to pick the X and Y locations to probe:
|
||||
|
||||
// - "grid" mode
|
||||
// Probe every point in a rectangular grid
|
||||
// You must specify the rectangle, and the density of sample points
|
||||
// This mode is preferred because there are more measurements.
|
||||
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
|
||||
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You must specify the X & Y coordinates of all 3 points
|
||||
// There are 2 different ways to specify probing locations
|
||||
//
|
||||
// - "grid" mode
|
||||
// Probe several points in a rectangular grid.
|
||||
// You specify the rectangle and the density of sample points.
|
||||
// This mode is preferred because there are more measurements.
|
||||
//
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You specify the XY coordinates of all 3 points.
|
||||
|
||||
// Enable this to sample the bed in a grid (least squares solution)
|
||||
// Note: this feature generates 10KB extra code size
|
||||
#define AUTO_BED_LEVELING_GRID
|
||||
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
|
||||
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
|
||||
// and least squares solution is calculated
|
||||
// Note: this feature occupies 10'206 byte
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// set the rectangle in which to probe
|
||||
// The edges of the rectangle in which to probe
|
||||
#define LEFT_PROBE_BED_POSITION 15
|
||||
#define RIGHT_PROBE_BED_POSITION 170
|
||||
#define BACK_PROBE_BED_POSITION 180
|
||||
#define FRONT_PROBE_BED_POSITION 20
|
||||
#define BACK_PROBE_BED_POSITION 170
|
||||
|
||||
// set the number of grid points per dimension
|
||||
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
|
||||
// Set the number of grid points per dimension
|
||||
// You probably don't need more than 3 (squared=9)
|
||||
#define AUTO_BED_LEVELING_GRID_POINTS 2
|
||||
|
||||
|
||||
#else // not AUTO_BED_LEVELING_GRID
|
||||
// with no grid, just probe 3 arbitrary points. A simple cross-product
|
||||
// is used to esimate the plane of the print bed
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
// Arbitrary points to probe. A simple cross-product
|
||||
// is used to estimate the plane of the bed.
|
||||
#define ABL_PROBE_PT_1_X 15
|
||||
#define ABL_PROBE_PT_1_Y 180
|
||||
#define ABL_PROBE_PT_2_X 15
|
||||
|
@ -441,11 +438,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
|
||||
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// X and Y offsets must be integers
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
|
||||
|
||||
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
|
||||
// Be sure you have this distance over your Z_MAX_POS in case
|
||||
|
@ -482,29 +479,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID // Check if Probe_Offset * Grid Points is greater than Probing Range
|
||||
#if X_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
#if (-(X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
|
||||
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#else
|
||||
#if ((X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
|
||||
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#endif
|
||||
#if Y_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
#if (-(Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
|
||||
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#else
|
||||
#if ((Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
|
||||
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -544,9 +518,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define DEFAULT_EJERK 5.0 // (mm/sec)
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Additional Features =========================
|
||||
//===========================================================================
|
||||
//=============================================================================
|
||||
//============================= Additional Features ===========================
|
||||
//=============================================================================
|
||||
|
||||
// Custom M code points
|
||||
#define CUSTOM_M_CODES
|
||||
|
@ -577,9 +551,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define ABS_PREHEAT_HPB_TEMP 60
|
||||
#define ABS_PREHEAT_FAN_SPEED 0 // Insert Value between 0 and 255
|
||||
|
||||
//LCD and SD support
|
||||
//==============================LCD and SD support=============================
|
||||
|
||||
// VM8201 (LCD Option for K8200) uses "DISPLAY_CHARSET_HD44870_JAPAN" and "ULTIMAKERCONTROLLER"
|
||||
// Define your display language below. Replace (en) with your language code and uncomment.
|
||||
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
|
||||
// See also language.h
|
||||
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
|
||||
|
||||
// Character based displays can have different extended charsets.
|
||||
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
|
||||
|
@ -760,7 +737,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 20
|
||||
|
@ -769,7 +746,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#else //no panel but just LCD
|
||||
#ifdef ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 16
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
|
||||
#include "boards.h"
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Getting Started =============================
|
||||
//===========================================================================
|
||||
|
@ -18,7 +17,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
* http://www.thingiverse.com/thing:298812
|
||||
*/
|
||||
|
||||
|
||||
// This configuration file contains the basic settings.
|
||||
// Advanced settings can be found in Configuration_adv.h
|
||||
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
|
||||
|
@ -52,7 +50,7 @@ Here are some standard links for getting your machine calibrated:
|
|||
#define L2_2 sq(Linkage_2) // do not change
|
||||
|
||||
//===========================================================================
|
||||
//========================= SCARA Settings end ==================================
|
||||
//========================= SCARA Settings end ==============================
|
||||
//===========================================================================
|
||||
|
||||
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
|
||||
|
@ -70,7 +68,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
|
||||
#define SERIAL_PORT 0
|
||||
|
||||
// This determines the communication speed of the printer
|
||||
// This determines the communication speed of the printer
|
||||
#define BAUDRATE 250000
|
||||
|
||||
|
@ -125,6 +122,7 @@ Here are some standard links for getting your machine calibrated:
|
|||
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
|
||||
// 11 is 100k beta 3950 1% thermistor (4.7k pullup)
|
||||
// 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
|
||||
// 13 is 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
|
||||
// 20 is the PT100 circuit found in the Ultimainboard V2.x
|
||||
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
|
||||
//
|
||||
|
@ -138,6 +136,10 @@ Here are some standard links for getting your machine calibrated:
|
|||
// 1010 is Pt1000 with 1k pullup (non standard)
|
||||
// 147 is Pt100 with 4k7 pullup
|
||||
// 110 is Pt100 with 1k pullup (non standard)
|
||||
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
|
||||
// Use it for Testing or Development purposes. NEVER for production machine.
|
||||
// #define DUMMY_THERMISTOR_998_VALUE 25
|
||||
// #define DUMMY_THERMISTOR_999_VALUE 100
|
||||
|
||||
#define TEMP_SENSOR_0 1
|
||||
#define TEMP_SENSOR_1 0
|
||||
|
@ -189,31 +191,24 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Comment the following line to disable PID and enable bang-bang.
|
||||
#define PIDTEMP
|
||||
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
|
||||
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||
#ifdef PIDTEMP
|
||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
|
||||
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
|
||||
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
|
||||
// Set/get with gcode: M301 E[extruder number, 0-2]
|
||||
#define PID_FUNCTIONAL_RANGE 20 // If the temperature difference between the target temperature and the actual temperature
|
||||
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
|
||||
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
|
||||
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
|
||||
#define K1 0.95 //smoothing factor within the PID
|
||||
#define PID_dT ((OVERSAMPLENR * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
|
||||
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
|
||||
|
||||
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
|
||||
// Ultimaker
|
||||
// #define DEFAULT_Kp 22.2
|
||||
// #define DEFAULT_Ki 1.08
|
||||
// #define DEFAULT_Kd 114
|
||||
|
||||
// Jhead MK5: From Autotune
|
||||
// #define DEFAULT_Kp 20.92
|
||||
// #define DEFAULT_Ki 1.51
|
||||
// #define DEFAULT_Kd 72.34
|
||||
|
||||
//Merlin Hotend: From Autotune
|
||||
#define DEFAULT_Kp 24.5
|
||||
#define DEFAULT_Ki 1.72
|
||||
#define DEFAULT_Kd 87.73
|
||||
// #define DEFAULT_Kp 22.2
|
||||
// #define DEFAULT_Ki 1.08
|
||||
// #define DEFAULT_Kd 114
|
||||
|
||||
// MakerGear
|
||||
// #define DEFAULT_Kp 7.0
|
||||
|
@ -221,9 +216,20 @@ Here are some standard links for getting your machine calibrated:
|
|||
// #define DEFAULT_Kd 12
|
||||
|
||||
// Mendel Parts V9 on 12V
|
||||
// #define DEFAULT_Kp 63.0
|
||||
// #define DEFAULT_Ki 2.25
|
||||
// #define DEFAULT_Kd 440
|
||||
// #define DEFAULT_Kp 63.0
|
||||
// #define DEFAULT_Ki 2.25
|
||||
// #define DEFAULT_Kd 440
|
||||
|
||||
// Jhead MK5: From Autotune
|
||||
// #define DEFAULT_Kp 20.92
|
||||
// #define DEFAULT_Ki 1.51
|
||||
// #define DEFAULT_Kd 72.34
|
||||
|
||||
// Merlin Hotend: From Autotune
|
||||
#define DEFAULT_Kp 24.5
|
||||
#define DEFAULT_Ki 1.72
|
||||
#define DEFAULT_Kd 87.73
|
||||
|
||||
#endif // PIDTEMP
|
||||
|
||||
//===========================================================================
|
||||
|
@ -251,9 +257,9 @@ Here are some standard links for getting your machine calibrated:
|
|||
#ifdef PIDTEMPBED
|
||||
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
|
||||
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
|
||||
// #define DEFAULT_bedKp 10.00
|
||||
// #define DEFAULT_bedKi .023
|
||||
// #define DEFAULT_bedKd 305.4
|
||||
// #define DEFAULT_bedKp 10.00
|
||||
// #define DEFAULT_bedKi .023
|
||||
// #define DEFAULT_bedKd 305.4
|
||||
|
||||
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
|
||||
//from pidautotune
|
||||
|
@ -271,7 +277,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
#endif // PIDTEMPBED
|
||||
|
||||
|
||||
|
||||
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
|
||||
//can be software-disabled for whatever purposes by
|
||||
//#define PREVENT_DANGEROUS_EXTRUDE
|
||||
|
@ -281,7 +286,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
#define EXTRUDE_MINTEMP 150
|
||||
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Runaway Protection ==================
|
||||
//===========================================================================
|
||||
|
@ -323,12 +327,15 @@ your extruder heater takes 2 minutes to hit the target on heating.
|
|||
|
||||
|
||||
//===========================================================================
|
||||
//============================ Mechanical Settings ==========================
|
||||
//============================= Mechanical Settings =========================
|
||||
//===========================================================================
|
||||
|
||||
// Uncomment the following line to enable CoreXY kinematics
|
||||
// Uncomment this option to enable CoreXY kinematics
|
||||
// #define COREXY
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
// #define CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
// coarse Endstop Settings
|
||||
//#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
|
@ -361,11 +368,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define DISABLE_MAX_ENDSTOPS
|
||||
//#define DISABLE_MIN_ENDSTOPS
|
||||
|
||||
// Disable max endstops for compatibility with endstop checking routine
|
||||
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
|
||||
#define DISABLE_MAX_ENDSTOPS
|
||||
#endif
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 0
|
||||
#define Y_ENABLE_ON 0
|
||||
|
@ -388,7 +390,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define INVERT_E3_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
|
||||
|
||||
// ENDSTOP SETTINGS:
|
||||
// Sets direction of endstop s when homing; 1=MAX, -1=MIN
|
||||
// Sets direction of endstops when homing; 1=MAX, -1=MIN
|
||||
#define X_HOME_DIR 1
|
||||
#define Y_HOME_DIR 1
|
||||
#define Z_HOME_DIR -1
|
||||
|
@ -414,43 +416,42 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//===========================================================================
|
||||
|
||||
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)
|
||||
#define Z_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// There are 2 different ways to pick the X and Y locations to probe:
|
||||
|
||||
// - "grid" mode
|
||||
// Probe every point in a rectangular grid
|
||||
// You must specify the rectangle, and the density of sample points
|
||||
// This mode is preferred because there are more measurements.
|
||||
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
|
||||
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You must specify the X & Y coordinates of all 3 points
|
||||
// There are 2 different ways to specify probing locations
|
||||
//
|
||||
// - "grid" mode
|
||||
// Probe several points in a rectangular grid.
|
||||
// You specify the rectangle and the density of sample points.
|
||||
// This mode is preferred because there are more measurements.
|
||||
//
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You specify the XY coordinates of all 3 points.
|
||||
|
||||
// Enable this to sample the bed in a grid (least squares solution)
|
||||
// Note: this feature generates 10KB extra code size
|
||||
#define AUTO_BED_LEVELING_GRID
|
||||
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
|
||||
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
|
||||
// and least squares solution is calculated
|
||||
// Note: this feature occupies 10'206 byte
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// set the rectangle in which to probe
|
||||
// The edges of the rectangle in which to probe
|
||||
#define LEFT_PROBE_BED_POSITION 15
|
||||
#define RIGHT_PROBE_BED_POSITION 170
|
||||
#define BACK_PROBE_BED_POSITION 180
|
||||
#define FRONT_PROBE_BED_POSITION 20
|
||||
#define BACK_PROBE_BED_POSITION 170
|
||||
|
||||
// set the number of grid points per dimension
|
||||
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
|
||||
// Set the number of grid points per dimension
|
||||
// You probably don't need more than 3 (squared=9)
|
||||
#define AUTO_BED_LEVELING_GRID_POINTS 2
|
||||
|
||||
|
||||
#else // not AUTO_BED_LEVELING_GRID
|
||||
// with no grid, just probe 3 arbitrary points. A simple cross-product
|
||||
// is used to esimate the plane of the print bed
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
// Arbitrary points to probe. A simple cross-product
|
||||
// is used to estimate the plane of the bed.
|
||||
#define ABL_PROBE_PT_1_X 15
|
||||
#define ABL_PROBE_PT_1_Y 180
|
||||
#define ABL_PROBE_PT_2_X 15
|
||||
|
@ -461,10 +462,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
|
||||
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
|
||||
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// X and Y offsets must be integers
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
|
||||
|
||||
//#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
|
||||
// Be sure you have this distance over your Z_MAX_POS in case
|
||||
|
@ -474,6 +476,8 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point.
|
||||
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points
|
||||
|
||||
//#define Z_PROBE_SLED // turn on if you have a z-probe mounted on a sled like those designed by Charles Bell
|
||||
//#define SLED_DOCKING_OFFSET 5 // the extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
|
||||
|
||||
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
|
||||
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
|
||||
|
@ -528,7 +532,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define DEFAULT_RETRACT_ACCELERATION 2000 // X, Y, Z and E max acceleration in mm/s^2 for retracts
|
||||
|
||||
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
|
||||
// The offset has to be X=0, Y=0 for extruder 0 hotend (default extruder).
|
||||
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
|
||||
// For the other hotends it is their distance from the extruder 0 hotend.
|
||||
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
|
||||
// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
|
||||
|
@ -539,9 +543,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define DEFAULT_EJERK 3 // (mm/sec)
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Additional Features =========================
|
||||
//===========================================================================
|
||||
//=============================================================================
|
||||
//============================= Additional Features ===========================
|
||||
//=============================================================================
|
||||
|
||||
// Custom M code points
|
||||
//#define CUSTOM_M_CODES
|
||||
|
@ -572,7 +576,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define ABS_PREHEAT_HPB_TEMP 100
|
||||
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
|
||||
|
||||
//LCD and SD support
|
||||
//==============================LCD and SD support=============================
|
||||
|
||||
// Define your display language below. Replace (en) with your language code and uncomment.
|
||||
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
|
||||
// See also language.h
|
||||
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
|
||||
|
||||
// Character based displays can have different extended charsets.
|
||||
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
|
||||
|
@ -739,10 +748,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// ---------------------
|
||||
// 2 wire Non-latching LCD SR from:
|
||||
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
|
||||
//#define SR_LCD
|
||||
#ifdef SR_LCD
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shift register
|
||||
//#define NEWPANEL
|
||||
|
||||
//#define SAV_3DLCD
|
||||
#ifdef SAV_3DLCD
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
|
||||
#define NEWPANEL
|
||||
#define ULTIPANEL
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -751,7 +762,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 20
|
||||
|
@ -760,7 +771,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#else //no panel but just LCD
|
||||
#ifdef ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 16
|
||||
|
@ -844,13 +855,13 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// Uncomment below to enable
|
||||
//#define FILAMENT_SENSOR
|
||||
|
||||
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
|
||||
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
|
||||
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
|
||||
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
|
||||
|
||||
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.0 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
|
||||
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
|
||||
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
|
||||
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
|
||||
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
|
||||
|
||||
//defines used in the code
|
||||
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
|
||||
#include "boards.h"
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Getting Started =============================
|
||||
//===========================================================================
|
||||
|
@ -18,7 +17,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
* http://www.thingiverse.com/thing:298812
|
||||
*/
|
||||
|
||||
|
||||
// This configuration file contains the basic settings.
|
||||
// Advanced settings can be found in Configuration_adv.h
|
||||
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
|
||||
|
@ -83,7 +81,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
|
||||
// #define PS_DEFAULT_OFF
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Settings ============================
|
||||
//===========================================================================
|
||||
|
@ -121,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
|
|||
// 1010 is Pt1000 with 1k pullup (non standard)
|
||||
// 147 is Pt100 with 4k7 pullup
|
||||
// 110 is Pt100 with 1k pullup (non standard)
|
||||
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
|
||||
// Use it for Testing or Development purposes. NEVER for production machine.
|
||||
// #define DUMMY_THERMISTOR_998_VALUE 25
|
||||
// #define DUMMY_THERMISTOR_999_VALUE 100
|
||||
|
||||
#define TEMP_SENSOR_0 1
|
||||
#define TEMP_SENSOR_1 0
|
||||
|
@ -164,7 +165,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
|
||||
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= PID Settings ================================
|
||||
//===========================================================================
|
||||
|
@ -184,7 +184,7 @@ Here are some standard links for getting your machine calibrated:
|
|||
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
|
||||
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
|
||||
#define K1 0.95 //smoothing factor within the PID
|
||||
#define PID_dT ((OVERSAMPLENR * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
|
||||
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
|
||||
|
||||
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
|
||||
// Ultimaker
|
||||
|
@ -256,7 +256,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
#define EXTRUDE_MINTEMP 170
|
||||
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Runaway Protection ==================
|
||||
//===========================================================================
|
||||
|
@ -301,9 +300,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
|
|||
//============================= Mechanical Settings =========================
|
||||
//===========================================================================
|
||||
|
||||
// Uncomment the following line to enable CoreXY kinematics
|
||||
// Uncomment this option to enable CoreXY kinematics
|
||||
// #define COREXY
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
// #define CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
// coarse Endstop Settings
|
||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
|
@ -336,11 +338,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define DISABLE_MAX_ENDSTOPS
|
||||
//#define DISABLE_MIN_ENDSTOPS
|
||||
|
||||
// Disable max endstops for compatibility with endstop checking routine
|
||||
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
|
||||
#define DISABLE_MAX_ENDSTOPS
|
||||
#endif
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 0
|
||||
#define Y_ENABLE_ON 0
|
||||
|
@ -393,40 +390,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// There are 2 different ways to pick the X and Y locations to probe:
|
||||
|
||||
// - "grid" mode
|
||||
// Probe every point in a rectangular grid
|
||||
// You must specify the rectangle, and the density of sample points
|
||||
// This mode is preferred because there are more measurements.
|
||||
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
|
||||
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You must specify the X & Y coordinates of all 3 points
|
||||
// There are 2 different ways to specify probing locations
|
||||
//
|
||||
// - "grid" mode
|
||||
// Probe several points in a rectangular grid.
|
||||
// You specify the rectangle and the density of sample points.
|
||||
// This mode is preferred because there are more measurements.
|
||||
//
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You specify the XY coordinates of all 3 points.
|
||||
|
||||
// Enable this to sample the bed in a grid (least squares solution)
|
||||
// Note: this feature generates 10KB extra code size
|
||||
#define AUTO_BED_LEVELING_GRID
|
||||
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
|
||||
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
|
||||
// and least squares solution is calculated
|
||||
// Note: this feature occupies 10'206 byte
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// set the rectangle in which to probe
|
||||
// The edges of the rectangle in which to probe
|
||||
#define LEFT_PROBE_BED_POSITION 15
|
||||
#define RIGHT_PROBE_BED_POSITION 170
|
||||
#define BACK_PROBE_BED_POSITION 180
|
||||
#define FRONT_PROBE_BED_POSITION 20
|
||||
#define BACK_PROBE_BED_POSITION 170
|
||||
|
||||
// set the number of grid points per dimension
|
||||
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
|
||||
// Set the number of grid points per dimension
|
||||
// You probably don't need more than 3 (squared=9)
|
||||
#define AUTO_BED_LEVELING_GRID_POINTS 2
|
||||
|
||||
|
||||
#else // not AUTO_BED_LEVELING_GRID
|
||||
// with no grid, just probe 3 arbitrary points. A simple cross-product
|
||||
// is used to esimate the plane of the print bed
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
// Arbitrary points to probe. A simple cross-product
|
||||
// is used to estimate the plane of the bed.
|
||||
#define ABL_PROBE_PT_1_X 15
|
||||
#define ABL_PROBE_PT_1_Y 180
|
||||
#define ABL_PROBE_PT_2_X 15
|
||||
|
@ -437,11 +432,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
|
||||
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// X and Y offsets must be integers
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
|
||||
|
||||
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
|
||||
// Be sure you have this distance over your Z_MAX_POS in case
|
||||
|
@ -478,29 +473,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID // Check if Probe_Offset * Grid Points is greater than Probing Range
|
||||
#if X_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
#if (-(X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
|
||||
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#else
|
||||
#if ((X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION))
|
||||
#error "The X axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#endif
|
||||
#if Y_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
#if (-(Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
|
||||
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#else
|
||||
#if ((Y_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1)) >= (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION))
|
||||
#error "The Y axis probing range is not enough to fit all the points defined in AUTO_BED_LEVELING_GRID_POINTS"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -540,9 +512,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define DEFAULT_EJERK 5.0 // (mm/sec)
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================ Additional Features ==========================
|
||||
//===========================================================================
|
||||
//=============================================================================
|
||||
//============================= Additional Features ===========================
|
||||
//=============================================================================
|
||||
|
||||
// Custom M code points
|
||||
#define CUSTOM_M_CODES
|
||||
|
@ -573,7 +545,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define ABS_PREHEAT_HPB_TEMP 100
|
||||
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
|
||||
|
||||
//LCD and SD support
|
||||
//==============================LCD and SD support=============================
|
||||
|
||||
// Define your display language below. Replace (en) with your language code and uncomment.
|
||||
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
|
||||
// See also language.h
|
||||
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
|
||||
|
||||
// Character based displays can have different extended charsets.
|
||||
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
|
||||
|
@ -587,7 +564,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
|
||||
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
|
||||
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
|
||||
#define ULTIPANEL //the UltiPanel as on Thingiverse
|
||||
//#define ULTIPANEL //the UltiPanel as on Thingiverse
|
||||
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
|
||||
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
|
||||
|
||||
|
@ -754,7 +731,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 20
|
||||
|
@ -763,7 +740,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#else //no panel but just LCD
|
||||
#ifdef ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 16
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
#ifndef CONFIGURATION_H
|
||||
#ifndef CONFIGURATION_H
|
||||
#define CONFIGURATION_H
|
||||
|
||||
#include "boards.h"
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Getting Started =============================
|
||||
//===========================================================================
|
||||
|
@ -22,7 +21,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Advanced settings can be found in Configuration_adv.h
|
||||
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= DELTA Printer ===============================
|
||||
//===========================================================================
|
||||
|
@ -30,6 +28,13 @@ Here are some standard links for getting your machine calibrated:
|
|||
// example_configurations/delta directory.
|
||||
//
|
||||
|
||||
//===========================================================================
|
||||
//============================= SCARA Printer ===============================
|
||||
//===========================================================================
|
||||
// For a Delta printer replace the configuration files with the files in the
|
||||
// example_configurations/SCARA directory.
|
||||
//
|
||||
|
||||
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
|
||||
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
|
||||
// build by the user have been successfully uploaded into firmware.
|
||||
|
@ -143,6 +148,10 @@ Here are some standard links for getting your machine calibrated:
|
|||
// 1010 is Pt1000 with 1k pullup (non standard)
|
||||
// 147 is Pt100 with 4k7 pullup
|
||||
// 110 is Pt100 with 1k pullup (non standard)
|
||||
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
|
||||
// Use it for Testing or Development purposes. NEVER for production machine.
|
||||
// #define DUMMY_THERMISTOR_998_VALUE 25
|
||||
// #define DUMMY_THERMISTOR_999_VALUE 100
|
||||
|
||||
#define TEMP_SENSOR_0 -1
|
||||
#define TEMP_SENSOR_1 -1
|
||||
|
@ -186,7 +195,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
|
||||
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= PID Settings ================================
|
||||
//===========================================================================
|
||||
|
@ -195,13 +203,16 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Comment the following line to disable PID and enable bang-bang.
|
||||
#define PIDTEMP
|
||||
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
|
||||
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||
#ifdef PIDTEMP
|
||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
|
||||
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
|
||||
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
|
||||
// Set/get with gcode: M301 E[extruder number, 0-2]
|
||||
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
|
||||
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
|
||||
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
|
||||
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
|
||||
#define K1 0.95 //smoothing factor within the PID
|
||||
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
|
||||
|
||||
|
@ -222,7 +233,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// #define DEFAULT_Kd 440
|
||||
#endif // PIDTEMP
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= PID > Bed Temperature Control ===============
|
||||
//===========================================================================
|
||||
|
@ -271,7 +281,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
#define EXTRUDE_MINTEMP 170
|
||||
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Runaway Protection ==================
|
||||
//===========================================================================
|
||||
|
@ -316,6 +325,12 @@ your extruder heater takes 2 minutes to hit the target on heating.
|
|||
//============================= Mechanical Settings =========================
|
||||
//===========================================================================
|
||||
|
||||
// Uncomment this option to enable CoreXY kinematics
|
||||
// #define COREXY
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
// #define CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
// coarse Endstop Settings
|
||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
|
@ -348,10 +363,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define DISABLE_MAX_ENDSTOPS
|
||||
// Deltas never have min endstops
|
||||
#define DISABLE_MIN_ENDSTOPS
|
||||
// Disable max endstops for compatibility with endstop checking routine
|
||||
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
|
||||
#define DISABLE_MAX_ENDSTOPS
|
||||
#endif
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 0
|
||||
|
@ -397,6 +408,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
|
||||
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Bed Auto Leveling ===========================
|
||||
//===========================================================================
|
||||
|
@ -407,12 +419,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
|
||||
// The position of the homing switches
|
||||
//#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
|
||||
#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
|
||||
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
|
||||
|
||||
//Manual homing switch locations:
|
||||
|
||||
#define MANUAL_HOME_POSITIONS // MANUAL_*_HOME_POS below will be used
|
||||
// For deltabots this means top and center of the Cartesian print volume.
|
||||
#define MANUAL_X_HOME_POS 0
|
||||
#define MANUAL_Y_HOME_POS 0
|
||||
|
@ -444,9 +454,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define DEFAULT_ZJERK 20.0 // (mm/sec) Must be same as XY for delta
|
||||
#define DEFAULT_EJERK 5.0 // (mm/sec)
|
||||
|
||||
//===========================================================================
|
||||
//============================= Additional Features =========================
|
||||
//===========================================================================
|
||||
|
||||
//=============================================================================
|
||||
//============================= Additional Features ===========================
|
||||
//=============================================================================
|
||||
|
||||
// Custom M code points
|
||||
#define CUSTOM_M_CODES
|
||||
|
@ -477,7 +488,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define ABS_PREHEAT_HPB_TEMP 100
|
||||
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
|
||||
|
||||
//LCD and SD support
|
||||
//==============================LCD and SD support=============================
|
||||
|
||||
// Define your display language below. Replace (en) with your language code and uncomment.
|
||||
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
|
||||
// See also language.h
|
||||
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
|
||||
|
||||
// Character based displays can have different extended charsets.
|
||||
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
|
||||
|
@ -651,10 +667,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// ---------------------
|
||||
// 2 wire Non-latching LCD SR from:
|
||||
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
|
||||
//#define SR_LCD
|
||||
#ifdef SR_LCD
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shift register
|
||||
//#define NEWPANEL
|
||||
|
||||
//#define SAV_3DLCD
|
||||
#ifdef SAV_3DLCD
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
|
||||
#define NEWPANEL
|
||||
#define ULTIPANEL
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -663,7 +681,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 20
|
||||
|
@ -672,7 +690,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#else //no panel but just LCD
|
||||
#ifdef ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 16
|
||||
|
@ -756,13 +774,13 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// Uncomment below to enable
|
||||
//#define FILAMENT_SENSOR
|
||||
|
||||
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
|
||||
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
|
||||
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
|
||||
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
|
||||
|
||||
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.0 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
|
||||
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
|
||||
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
|
||||
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
|
||||
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
|
||||
|
||||
//defines used in the code
|
||||
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
|
||||
|
@ -775,7 +793,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
|
||||
|
||||
|
||||
#include "Configuration_adv.h"
|
||||
#include "thermistortables.h"
|
||||
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
|
||||
#include "boards.h"
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Getting Started =============================
|
||||
//===========================================================================
|
||||
|
@ -18,12 +17,10 @@ Here are some standard links for getting your machine calibrated:
|
|||
* http://www.thingiverse.com/thing:298812
|
||||
*/
|
||||
|
||||
|
||||
// This configuration file contains the basic settings.
|
||||
// Advanced settings can be found in Configuration_adv.h
|
||||
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= DELTA Printer ===============================
|
||||
//===========================================================================
|
||||
|
@ -31,7 +28,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// example_configurations/delta directory.
|
||||
//
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= SCARA Printer ===============================
|
||||
//===========================================================================
|
||||
|
@ -85,7 +81,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
|
||||
// #define PS_DEFAULT_OFF
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Settings ============================
|
||||
//===========================================================================
|
||||
|
@ -123,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
|
|||
// 1010 is Pt1000 with 1k pullup (non standard)
|
||||
// 147 is Pt100 with 4k7 pullup
|
||||
// 110 is Pt100 with 1k pullup (non standard)
|
||||
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
|
||||
// Use it for Testing or Development purposes. NEVER for production machine.
|
||||
// #define DUMMY_THERMISTOR_998_VALUE 25
|
||||
// #define DUMMY_THERMISTOR_999_VALUE 100
|
||||
|
||||
#define TEMP_SENSOR_0 1
|
||||
#define TEMP_SENSOR_1 0
|
||||
|
@ -166,7 +165,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
|
||||
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= PID Settings ================================
|
||||
//===========================================================================
|
||||
|
@ -175,13 +173,16 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Comment the following line to disable PID and enable bang-bang.
|
||||
#define PIDTEMP
|
||||
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
|
||||
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||
#ifdef PIDTEMP
|
||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
|
||||
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
|
||||
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
|
||||
// Set/get with gcode: M301 E[extruder number, 0-2]
|
||||
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
|
||||
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
|
||||
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
|
||||
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
|
||||
#define K1 0.95 //smoothing factor within the PID
|
||||
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
|
||||
|
||||
|
@ -202,7 +203,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// #define DEFAULT_Kd 440
|
||||
#endif // PIDTEMP
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= PID > Bed Temperature Control ===============
|
||||
//===========================================================================
|
||||
|
@ -254,7 +254,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
#define EXTRUDE_MINTEMP 170
|
||||
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Runaway Protection ==================
|
||||
//===========================================================================
|
||||
|
@ -296,12 +295,15 @@ your extruder heater takes 2 minutes to hit the target on heating.
|
|||
|
||||
|
||||
//===========================================================================
|
||||
//============================ Mechanical Settings ==========================
|
||||
//============================= Mechanical Settings =========================
|
||||
//===========================================================================
|
||||
|
||||
// Uncomment the following line to enable CoreXY kinematics
|
||||
// Uncomment this option to enable CoreXY kinematics
|
||||
// #define COREXY
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
// #define CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
// coarse Endstop Settings
|
||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
|
@ -334,11 +336,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define DISABLE_MAX_ENDSTOPS
|
||||
//#define DISABLE_MIN_ENDSTOPS
|
||||
|
||||
// Disable max endstops for compatibility with endstop checking routine
|
||||
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
|
||||
#define DISABLE_MAX_ENDSTOPS
|
||||
#endif
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 0
|
||||
#define Y_ENABLE_ON 0
|
||||
|
@ -391,40 +388,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// There are 2 different ways to pick the X and Y locations to probe:
|
||||
|
||||
// - "grid" mode
|
||||
// Probe every point in a rectangular grid
|
||||
// You must specify the rectangle, and the density of sample points
|
||||
// This mode is preferred because there are more measurements.
|
||||
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
|
||||
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You must specify the X & Y coordinates of all 3 points
|
||||
// There are 2 different ways to specify probing locations
|
||||
//
|
||||
// - "grid" mode
|
||||
// Probe several points in a rectangular grid.
|
||||
// You specify the rectangle and the density of sample points.
|
||||
// This mode is preferred because there are more measurements.
|
||||
//
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You specify the XY coordinates of all 3 points.
|
||||
|
||||
// Enable this to sample the bed in a grid (least squares solution)
|
||||
// Note: this feature generates 10KB extra code size
|
||||
#define AUTO_BED_LEVELING_GRID
|
||||
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
|
||||
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
|
||||
// and least squares solution is calculated
|
||||
// Note: this feature occupies 10'206 byte
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// set the rectangle in which to probe
|
||||
// The edges of the rectangle in which to probe
|
||||
#define LEFT_PROBE_BED_POSITION 15
|
||||
#define RIGHT_PROBE_BED_POSITION 170
|
||||
#define BACK_PROBE_BED_POSITION 180
|
||||
#define FRONT_PROBE_BED_POSITION 20
|
||||
#define BACK_PROBE_BED_POSITION 170
|
||||
|
||||
// set the number of grid points per dimension
|
||||
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
|
||||
// Set the number of grid points per dimension
|
||||
// You probably don't need more than 3 (squared=9)
|
||||
#define AUTO_BED_LEVELING_GRID_POINTS 2
|
||||
|
||||
|
||||
#else // not AUTO_BED_LEVELING_GRID
|
||||
// with no grid, just probe 3 arbitrary points. A simple cross-product
|
||||
// is used to esimate the plane of the print bed
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
// Arbitrary points to probe. A simple cross-product
|
||||
// is used to estimate the plane of the bed.
|
||||
#define ABL_PROBE_PT_1_X 15
|
||||
#define ABL_PROBE_PT_1_Y 180
|
||||
#define ABL_PROBE_PT_2_X 15
|
||||
|
@ -435,10 +430,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
|
||||
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
|
||||
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// X and Y offsets must be integers
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
|
||||
|
||||
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
|
||||
// Be sure you have this distance over your Z_MAX_POS in case
|
||||
|
@ -514,9 +510,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define DEFAULT_EJERK 5.0 // (mm/sec)
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================ Additional Features ==========================
|
||||
//===========================================================================
|
||||
//=============================================================================
|
||||
//============================= Additional Features ===========================
|
||||
//=============================================================================
|
||||
|
||||
// Custom M code points
|
||||
#define CUSTOM_M_CODES
|
||||
|
@ -547,7 +543,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define ABS_PREHEAT_HPB_TEMP 100
|
||||
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
|
||||
|
||||
//LCD and SD support
|
||||
//==============================LCD and SD support=============================
|
||||
|
||||
// Define your display language below. Replace (en) with your language code and uncomment.
|
||||
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
|
||||
// See also language.h
|
||||
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
|
||||
|
||||
// Character based displays can have different extended charsets.
|
||||
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
|
||||
|
@ -714,10 +715,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// ---------------------
|
||||
// 2 wire Non-latching LCD SR from:
|
||||
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
|
||||
//#define SR_LCD
|
||||
#ifdef SR_LCD
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shift register
|
||||
//#define NEWPANEL
|
||||
|
||||
//#define SAV_3DLCD
|
||||
#ifdef SAV_3DLCD
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
|
||||
#define NEWPANEL
|
||||
#define ULTIPANEL
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -726,7 +729,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 20
|
||||
|
@ -735,7 +738,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#else //no panel but just LCD
|
||||
#ifdef ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 16
|
||||
|
|
|
@ -17,12 +17,10 @@ Here are some standard links for getting your machine calibrated:
|
|||
* http://www.thingiverse.com/thing:298812
|
||||
*/
|
||||
|
||||
|
||||
// This configuration file contains the basic settings.
|
||||
// Advanced settings can be found in Configuration_adv.h
|
||||
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= DELTA Printer ===============================
|
||||
//===========================================================================
|
||||
|
@ -30,7 +28,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// example_configurations/delta directory.
|
||||
//
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= SCARA Printer ===============================
|
||||
//===========================================================================
|
||||
|
@ -84,7 +81,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
|
||||
// #define PS_DEFAULT_OFF
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Settings ============================
|
||||
//===========================================================================
|
||||
|
@ -122,6 +118,10 @@ Here are some standard links for getting your machine calibrated:
|
|||
// 1010 is Pt1000 with 1k pullup (non standard)
|
||||
// 147 is Pt100 with 4k7 pullup
|
||||
// 110 is Pt100 with 1k pullup (non standard)
|
||||
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
|
||||
// Use it for Testing or Development purposes. NEVER for production machine.
|
||||
// #define DUMMY_THERMISTOR_998_VALUE 25
|
||||
// #define DUMMY_THERMISTOR_999_VALUE 100
|
||||
|
||||
#define TEMP_SENSOR_0 5
|
||||
#define TEMP_SENSOR_1 0
|
||||
|
@ -156,8 +156,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
#define HEATER_3_MAXTEMP 275
|
||||
#define BED_MAXTEMP 150
|
||||
|
||||
#define CONFIG_STEPPERS_TOSHIBA 1
|
||||
|
||||
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
|
||||
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of
|
||||
// HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
|
||||
|
@ -167,7 +165,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
|
||||
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= PID Settings ================================
|
||||
//===========================================================================
|
||||
|
@ -176,13 +173,16 @@ Here are some standard links for getting your machine calibrated:
|
|||
// Comment the following line to disable PID and enable bang-bang.
|
||||
#define PIDTEMP
|
||||
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
|
||||
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||
#ifdef PIDTEMP
|
||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
|
||||
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
|
||||
//#define PID_PARAMS_PER_EXTRUDER // Uses separate PID parameters for each extruder (useful for mismatched extruders)
|
||||
// Set/get with gcode: M301 E[extruder number, 0-2]
|
||||
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
|
||||
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
|
||||
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
|
||||
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
|
||||
#define K1 0.95 //smoothing factor within the PID
|
||||
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
|
||||
|
||||
|
@ -208,7 +208,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
// #define DEFAULT_Kd 440
|
||||
#endif // PIDTEMP
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= PID > Bed Temperature Control ===============
|
||||
//===========================================================================
|
||||
|
@ -257,7 +256,6 @@ Here are some standard links for getting your machine calibrated:
|
|||
#define EXTRUDE_MINTEMP 170
|
||||
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Runaway Protection ==================
|
||||
//===========================================================================
|
||||
|
@ -299,12 +297,15 @@ your extruder heater takes 2 minutes to hit the target on heating.
|
|||
|
||||
|
||||
//===========================================================================
|
||||
//============================ Mechanical Settings ==========================
|
||||
//============================= Mechanical Settings =========================
|
||||
//===========================================================================
|
||||
|
||||
// Uncomment the following line to enable CoreXY kinematics
|
||||
// Uncomment this option to enable CoreXY kinematics
|
||||
// #define COREXY
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
#define CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
// coarse Endstop Settings
|
||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
|
@ -337,11 +338,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define DISABLE_MAX_ENDSTOPS
|
||||
//#define DISABLE_MIN_ENDSTOPS
|
||||
|
||||
// Disable max endstops for compatibility with endstop checking routine
|
||||
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
|
||||
#define DISABLE_MAX_ENDSTOPS
|
||||
#endif
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 1
|
||||
#define Y_ENABLE_ON 1
|
||||
|
@ -394,40 +390,38 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// There are 2 different ways to pick the X and Y locations to probe:
|
||||
|
||||
// - "grid" mode
|
||||
// Probe every point in a rectangular grid
|
||||
// You must specify the rectangle, and the density of sample points
|
||||
// This mode is preferred because there are more measurements.
|
||||
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
|
||||
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You must specify the X & Y coordinates of all 3 points
|
||||
// There are 2 different ways to specify probing locations
|
||||
//
|
||||
// - "grid" mode
|
||||
// Probe several points in a rectangular grid.
|
||||
// You specify the rectangle and the density of sample points.
|
||||
// This mode is preferred because there are more measurements.
|
||||
//
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You specify the XY coordinates of all 3 points.
|
||||
|
||||
// Enable this to sample the bed in a grid (least squares solution)
|
||||
// Note: this feature generates 10KB extra code size
|
||||
#define AUTO_BED_LEVELING_GRID
|
||||
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
|
||||
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
|
||||
// and least squares solution is calculated
|
||||
// Note: this feature occupies 10'206 byte
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// set the rectangle in which to probe
|
||||
// The edges of the rectangle in which to probe
|
||||
#define LEFT_PROBE_BED_POSITION 15
|
||||
#define RIGHT_PROBE_BED_POSITION 170
|
||||
#define BACK_PROBE_BED_POSITION 180
|
||||
#define FRONT_PROBE_BED_POSITION 20
|
||||
#define BACK_PROBE_BED_POSITION 170
|
||||
|
||||
// set the number of grid points per dimension
|
||||
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
|
||||
// Set the number of grid points per dimension
|
||||
// You probably don't need more than 3 (squared=9)
|
||||
#define AUTO_BED_LEVELING_GRID_POINTS 2
|
||||
|
||||
|
||||
#else // not AUTO_BED_LEVELING_GRID
|
||||
// with no grid, just probe 3 arbitrary points. A simple cross-product
|
||||
// is used to esimate the plane of the print bed
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
// Arbitrary points to probe. A simple cross-product
|
||||
// is used to estimate the plane of the bed.
|
||||
#define ABL_PROBE_PT_1_X 15
|
||||
#define ABL_PROBE_PT_1_Y 180
|
||||
#define ABL_PROBE_PT_2_X 15
|
||||
|
@ -438,10 +432,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
|
||||
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
|
||||
// Offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
// X and Y offsets must be integers
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
|
||||
|
||||
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
|
||||
// Be sure you have this distance over your Z_MAX_POS in case
|
||||
|
@ -498,21 +493,15 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
// default settings
|
||||
|
||||
//#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200.0*8/3,760*1.1} // default steps per unit for Ultimaker
|
||||
//#define //DEFAULT_AXIS_STEPS_PER_UNIT {79.87, 79.87, 2566, 563,78} // Al's TVRR
|
||||
//#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87, 79.87, 2566, 563,78} // Al's TVRR
|
||||
//#define DEFAULT_AXIS_STEPS_PER_UNIT {81.26, 80.01, 2561, 599.14} // Michel TVRR old
|
||||
//#define DEFAULT_AXIS_STEPS_PER_UNIT {71.1, 71.1, 2560, 739.65} // Michel TVRR
|
||||
#define DEFAULT_AXIS_STEPS_PER_UNIT {71.1, 71.1, 2560, 600} // David TVRR
|
||||
|
||||
|
||||
|
||||
//#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 25} // (mm/sec) default
|
||||
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 45} // (mm/sec) David TVRR
|
||||
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot.
|
||||
|
||||
/* MICHEL: This has an impact on the "ripples" in print walls */
|
||||
#define DEFAULT_ACCELERATION 500 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
|
||||
//#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
|
||||
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts
|
||||
|
||||
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
|
||||
|
@ -527,9 +516,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define DEFAULT_EJERK 5.0 // (mm/sec)
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================ Additional Features ==========================
|
||||
//===========================================================================
|
||||
//=============================================================================
|
||||
//============================= Additional Features ===========================
|
||||
//=============================================================================
|
||||
|
||||
// Custom M code points
|
||||
#define CUSTOM_M_CODES
|
||||
|
@ -560,7 +549,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define ABS_PREHEAT_HPB_TEMP 100
|
||||
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
|
||||
|
||||
//LCD and SD support
|
||||
//==============================LCD and SD support=============================
|
||||
|
||||
// Define your display language below. Replace (en) with your language code and uncomment.
|
||||
// en, pl, fr, de, es, ru, it, pt, pt-br, fi, an, nl, ca, eu
|
||||
// See also language.h
|
||||
//#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
|
||||
|
||||
// Character based displays can have different extended charsets.
|
||||
#define DISPLAY_CHARSET_HD44780_JAPAN // "ääööüüß23°"
|
||||
|
@ -727,10 +721,12 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// ---------------------
|
||||
// 2 wire Non-latching LCD SR from:
|
||||
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
|
||||
//#define SR_LCD
|
||||
#ifdef SR_LCD
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shift register
|
||||
//#define NEWPANEL
|
||||
|
||||
//#define SAV_3DLCD
|
||||
#ifdef SAV_3DLCD
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
|
||||
#define NEWPANEL
|
||||
#define ULTIPANEL
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -739,7 +735,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 20
|
||||
|
@ -748,7 +744,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#else //no panel but just LCD
|
||||
#ifdef ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_WIDTH 22
|
||||
#define LCD_HEIGHT 5
|
||||
#else
|
||||
#define LCD_WIDTH 16
|
||||
|
@ -832,13 +828,13 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// Uncomment below to enable
|
||||
//#define FILAMENT_SENSOR
|
||||
|
||||
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
|
||||
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
|
||||
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
|
||||
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
|
||||
|
||||
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.0 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
|
||||
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
|
||||
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
|
||||
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
|
||||
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
|
||||
|
||||
//defines used in the code
|
||||
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
|
||||
|
|
|
@ -83,6 +83,9 @@
|
|||
/// check if pin is an timer wrapper
|
||||
#define GET_TIMER(IO) _GET_TIMER(IO)
|
||||
|
||||
// Shorthand
|
||||
#define OUT_WRITE(IO, v) { SET_OUTPUT(IO); WRITE(IO, v); }
|
||||
|
||||
/*
|
||||
ports and functions
|
||||
|
||||
|
|
|
@ -121,6 +121,7 @@
|
|||
#define MSG_UNKNOWN_COMMAND "Unknown command: \""
|
||||
#define MSG_ACTIVE_EXTRUDER "Active Extruder: "
|
||||
#define MSG_INVALID_EXTRUDER "Invalid extruder"
|
||||
#define MSG_INVALID_SOLENOID "Invalid solenoid"
|
||||
#define MSG_X_MIN "x_min: "
|
||||
#define MSG_X_MAX "x_max: "
|
||||
#define MSG_Y_MIN "y_min: "
|
||||
|
@ -168,8 +169,8 @@
|
|||
#define MSG_PID_TIMEOUT MSG_PID_AUTOTUNE_FAILED " timeout"
|
||||
#define MSG_BIAS " bias: "
|
||||
#define MSG_D " d: "
|
||||
#define MSG_MIN " min: "
|
||||
#define MSG_MAX " max: "
|
||||
#define MSG_T_MIN " min: "
|
||||
#define MSG_T_MAX " max: "
|
||||
#define MSG_KU " Ku: "
|
||||
#define MSG_TU " Tu: "
|
||||
#define MSG_CLASSIC_PID " Classic PID "
|
||||
|
@ -225,8 +226,7 @@
|
|||
#define STR_h3 "3"
|
||||
#define STR_Deg "\271"
|
||||
#define STR_THERMOMETER "\002"
|
||||
#endif
|
||||
#ifdef DISPLAY_CHARSET_HD44780_WESTERN // HD44780 ROM Code: A02 (Western)
|
||||
#elif defined(DISPLAY_CHARSET_HD44780_WESTERN) // HD44780 ROM Code: A02 (Western)
|
||||
#define STR_Ae "\216"
|
||||
#define STR_ae "\204"
|
||||
#define STR_Oe "\211"
|
||||
|
@ -238,6 +238,8 @@
|
|||
#define STR_h3 "\263"
|
||||
#define STR_Deg "\337"
|
||||
#define STR_THERMOMETER "\002"
|
||||
#elif defined(ULTRA_LCD)
|
||||
#error You must enable either DISPLAY_CHARSET_HD44780_JAPAN or DISPLAY_CHARSET_HD44780_WESTERN for your LCD controller.
|
||||
#endif
|
||||
#endif
|
||||
/*
|
||||
|
|
|
@ -87,9 +87,3 @@
|
|||
|
||||
// Cheaptronic v1.0 does not use this port
|
||||
#define SDCARDDETECT -1
|
||||
|
||||
// Encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
|
|
|
@ -74,12 +74,6 @@
|
|||
#define BLEN_B 1
|
||||
#define BLEN_A 0
|
||||
|
||||
//encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
|
||||
#endif // RA_CONTROL_PANEL
|
||||
|
||||
#ifdef RA_DISCO
|
||||
|
|
|
@ -83,10 +83,4 @@
|
|||
|
||||
#define SDCARDDETECT -1 // Ramps does not use this port
|
||||
|
||||
//encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
|
||||
#endif // ULTRA_LCD && NEWPANEL
|
||||
|
|
|
@ -80,9 +80,3 @@
|
|||
#define BLEN_A 0
|
||||
|
||||
#define SDCARDDETECT -1 // Megatronics does not use this port
|
||||
|
||||
// Encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
|
|
|
@ -95,9 +95,3 @@
|
|||
#define BLEN_A 0
|
||||
|
||||
#define SDCARDDETECT -1 // Megatronics does not use this port
|
||||
|
||||
// Encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
|
|
|
@ -95,9 +95,3 @@
|
|||
#define BLEN_A 0
|
||||
|
||||
#define SDCARDDETECT -1 // Megatronics does not use this port
|
||||
|
||||
// Encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
|
|
|
@ -116,11 +116,6 @@
|
|||
|
||||
#define SDCARDDETECT 81 // Ramps does not use this port
|
||||
|
||||
//encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
#else //!NEWPANEL - old style panel with shift register
|
||||
//arduino pin witch triggers an piezzo beeper
|
||||
#define BEEPER 33 No Beeper added
|
||||
|
@ -138,12 +133,6 @@
|
|||
#define LCD_PINS_D6 27
|
||||
#define LCD_PINS_D7 29
|
||||
|
||||
//encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
|
||||
//bits in the shift register that carry the buttons for:
|
||||
// left up center down right red
|
||||
#define BL_LE 7
|
||||
|
|
|
@ -187,7 +187,7 @@ void checkHitEndstops()
|
|||
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
|
||||
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
|
||||
}
|
||||
SERIAL_ECHOLN("");
|
||||
SERIAL_EOL;
|
||||
endstop_x_hit=false;
|
||||
endstop_y_hit=false;
|
||||
endstop_z_hit=false;
|
||||
|
@ -554,54 +554,48 @@ ISR(TIMER1_COMPA_vect)
|
|||
#endif //ADVANCE
|
||||
|
||||
counter_x += current_block->steps_x;
|
||||
|
||||
#ifdef CONFIG_STEPPERS_TOSHIBA
|
||||
/* The toshiba stepper controller require much longer pulses
|
||||
* tjerfore we 'stage' decompose the pulses between high, and
|
||||
* low instead of doing each in turn. The extra tests add enough
|
||||
* lag to allow it work with without needing NOPs */
|
||||
if (counter_x > 0) {
|
||||
X_STEP_WRITE(HIGH);
|
||||
}
|
||||
/* The Toshiba stepper controller require much longer pulses.
|
||||
* So we 'stage' decompose the pulses between high and low
|
||||
* instead of doing each in turn. The extra tests add enough
|
||||
* lag to allow it work with without needing NOPs
|
||||
*/
|
||||
if (counter_x > 0) X_STEP_WRITE(HIGH);
|
||||
|
||||
counter_y += current_block->steps_y;
|
||||
if (counter_y > 0) {
|
||||
Y_STEP_WRITE( HIGH);
|
||||
}
|
||||
if (counter_y > 0) Y_STEP_WRITE(HIGH);
|
||||
|
||||
counter_z += current_block->steps_z;
|
||||
if (counter_z > 0) {
|
||||
Z_STEP_WRITE( HIGH);
|
||||
}
|
||||
if (counter_z > 0) Z_STEP_WRITE(HIGH);
|
||||
|
||||
#ifndef ADVANCE
|
||||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) {
|
||||
WRITE_E_STEP(HIGH);
|
||||
}
|
||||
if (counter_e > 0) WRITE_E_STEP(HIGH);
|
||||
#endif //!ADVANCE
|
||||
|
||||
if (counter_x > 0) {
|
||||
counter_x -= current_block->step_event_count;
|
||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||
count_position[X_AXIS] += count_direction[X_AXIS];
|
||||
X_STEP_WRITE(LOW);
|
||||
}
|
||||
|
||||
if (counter_y > 0) {
|
||||
counter_y -= current_block->step_event_count;
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
count_position[Y_AXIS] += count_direction[Y_AXIS];
|
||||
Y_STEP_WRITE( LOW);
|
||||
}
|
||||
|
||||
if (counter_z > 0) {
|
||||
counter_z -= current_block->step_event_count;
|
||||
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
||||
count_position[Z_AXIS] += count_direction[Z_AXIS];
|
||||
Z_STEP_WRITE(LOW);
|
||||
}
|
||||
|
||||
#ifndef ADVANCE
|
||||
if (counter_e > 0) {
|
||||
counter_e -= current_block->step_event_count;
|
||||
count_position[E_AXIS]+=count_direction[E_AXIS];
|
||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||
WRITE_E_STEP(LOW);
|
||||
}
|
||||
#endif //!ADVANCE
|
||||
|
@ -622,7 +616,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
X_STEP_WRITE(!INVERT_X_STEP_PIN);
|
||||
#endif
|
||||
counter_x -= current_block->step_event_count;
|
||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||
count_position[X_AXIS] += count_direction[X_AXIS];
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (extruder_duplication_enabled){
|
||||
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
|
@ -648,7 +642,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
#endif
|
||||
|
||||
counter_y -= current_block->step_event_count;
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
count_position[Y_AXIS] += count_direction[Y_AXIS];
|
||||
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
|
@ -659,13 +653,12 @@ ISR(TIMER1_COMPA_vect)
|
|||
counter_z += current_block->steps_z;
|
||||
if (counter_z > 0) {
|
||||
Z_STEP_WRITE( !INVERT_Z_STEP_PIN);
|
||||
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
Z2_STEP_WRITE(!INVERT_Z_STEP_PIN);
|
||||
#endif
|
||||
|
||||
counter_z -= current_block->step_event_count;
|
||||
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
||||
count_position[Z_AXIS] += count_direction[Z_AXIS];
|
||||
Z_STEP_WRITE( INVERT_Z_STEP_PIN);
|
||||
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
|
@ -678,7 +671,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
if (counter_e > 0) {
|
||||
WRITE_E_STEP(!INVERT_E_STEP_PIN);
|
||||
counter_e -= current_block->step_event_count;
|
||||
count_position[E_AXIS]+=count_direction[E_AXIS];
|
||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||
WRITE_E_STEP(INVERT_E_STEP_PIN);
|
||||
}
|
||||
#endif //!ADVANCE
|
||||
|
|
|
@ -296,8 +296,8 @@ void PID_autotune(float temp, int extruder, int ncycles)
|
|||
|
||||
SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
|
||||
SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
|
||||
SERIAL_PROTOCOLPGM(MSG_MIN); SERIAL_PROTOCOL(min);
|
||||
SERIAL_PROTOCOLPGM(MSG_MAX); SERIAL_PROTOCOLLN(max);
|
||||
SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
|
||||
SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
|
||||
if (cycles > 2) {
|
||||
Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
|
||||
Tu = ((float)(t_low + t_high) / 1000.0);
|
||||
|
@ -901,21 +901,15 @@ void tp_init()
|
|||
#ifdef HEATER_0_USES_MAX6675
|
||||
|
||||
#ifndef SDSUPPORT
|
||||
SET_OUTPUT(SCK_PIN);
|
||||
WRITE(SCK_PIN,0);
|
||||
|
||||
SET_OUTPUT(MOSI_PIN);
|
||||
WRITE(MOSI_PIN,1);
|
||||
|
||||
SET_INPUT(MISO_PIN);
|
||||
WRITE(MISO_PIN,1);
|
||||
OUT_WRITE(SCK_PIN, LOW);
|
||||
OUT_WRITE(MOSI_PIN, HIGH);
|
||||
OUT_WRITE(MISO_PIN, HIGH);
|
||||
#else
|
||||
pinMode(SS_PIN, OUTPUT);
|
||||
digitalWrite(SS_PIN, HIGH);
|
||||
#endif
|
||||
|
||||
SET_OUTPUT(MAX6675_SS);
|
||||
WRITE(MAX6675_SS,1);
|
||||
OUT_WRITE(MAX6675_SS,HIGH);
|
||||
|
||||
#endif //HEATER_0_USES_MAX6675
|
||||
|
||||
|
|
|
@ -1394,6 +1394,17 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
|
|||
|
||||
#ifdef ULTIPANEL
|
||||
|
||||
////////////////////////
|
||||
// Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
|
||||
// These values are independent of which pins are used for EN_A and EN_B indications
|
||||
// The rotary encoder part is also independent to the chipset used for the LCD
|
||||
#if defined(EN_A) && defined(EN_B)
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
#endif
|
||||
|
||||
/* Warning: This function is called from interrupt context */
|
||||
void lcd_buttons_update() {
|
||||
#ifdef NEWPANEL
|
||||
|
|
|
@ -123,17 +123,6 @@
|
|||
#define LCD_CLICKED (buttons&(B_MI|B_ST))
|
||||
#endif
|
||||
|
||||
////////////////////////
|
||||
// Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
|
||||
// These values are independent of which pins are used for EN_A and EN_B indications
|
||||
// The rotary encoder part is also independent to the chipset used for the LCD
|
||||
#if defined(EN_A) && defined(EN_B)
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
#endif
|
||||
|
||||
#endif //ULTIPANEL
|
||||
|
||||
////////////////////////////////////
|
||||
|
@ -832,32 +821,28 @@ static void lcd_implementation_drawmenu_sddirectory(uint8_t row, const char* pst
|
|||
|
||||
static void lcd_implementation_quick_feedback()
|
||||
{
|
||||
#ifdef LCD_USE_I2C_BUZZER
|
||||
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
||||
lcd_buzz(1000/6,100);
|
||||
#else
|
||||
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
|
||||
#endif
|
||||
#elif defined(BEEPER) && BEEPER > -1
|
||||
SET_OUTPUT(BEEPER);
|
||||
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
||||
for(int8_t i=0;i<10;i++)
|
||||
{
|
||||
WRITE(BEEPER,HIGH);
|
||||
delayMicroseconds(100);
|
||||
WRITE(BEEPER,LOW);
|
||||
delayMicroseconds(100);
|
||||
}
|
||||
#ifdef LCD_USE_I2C_BUZZER
|
||||
#if defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) && defined(LCD_FEEDBACK_FREQUENCY_HZ)
|
||||
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
|
||||
#else
|
||||
for(int8_t i=0;i<(LCD_FEEDBACK_FREQUENCY_DURATION_MS / (1000 / LCD_FEEDBACK_FREQUENCY_HZ));i++)
|
||||
{
|
||||
WRITE(BEEPER,HIGH);
|
||||
delayMicroseconds(1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2);
|
||||
WRITE(BEEPER,LOW);
|
||||
delayMicroseconds(1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2);
|
||||
}
|
||||
lcd_buzz(1000/6, 100);
|
||||
#endif
|
||||
#endif
|
||||
#elif defined(BEEPER) && BEEPER > -1
|
||||
SET_OUTPUT(BEEPER);
|
||||
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
||||
const unsigned int delay = 100;
|
||||
uint8_t i = 10;
|
||||
#else
|
||||
const unsigned int delay = 1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2;
|
||||
int8_t i = LCD_FEEDBACK_FREQUENCY_DURATION_MS * LCD_FEEDBACK_FREQUENCY_HZ / 1000;
|
||||
#endif
|
||||
while (i--) {
|
||||
WRITE(BEEPER,HIGH);
|
||||
delayMicroseconds(delay);
|
||||
WRITE(BEEPER,LOW);
|
||||
delayMicroseconds(delay);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef LCD_HAS_STATUS_INDICATORS
|
||||
|
|
|
@ -47,12 +47,9 @@ uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, vo
|
|||
{
|
||||
case U8G_DEV_MSG_INIT:
|
||||
{
|
||||
SET_OUTPUT(ST7920_CS_PIN);
|
||||
WRITE(ST7920_CS_PIN,0);
|
||||
SET_OUTPUT(ST7920_DAT_PIN);
|
||||
WRITE(ST7920_DAT_PIN,0);
|
||||
SET_OUTPUT(ST7920_CLK_PIN);
|
||||
WRITE(ST7920_CLK_PIN,1);
|
||||
OUT_WRITE(ST7920_CS_PIN,LOW);
|
||||
OUT_WRITE(ST7920_DAT_PIN,LOW);
|
||||
OUT_WRITE(ST7920_CLK_PIN,HIGH);
|
||||
|
||||
ST7920_CS();
|
||||
u8g_Delay(120); //initial delay for boot up
|
||||
|
|
|
@ -84,7 +84,7 @@ void vector_3::debug(char* title)
|
|||
SERIAL_PROTOCOL(y);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL(z);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
void apply_rotation_xyz(matrix_3x3 matrix, float &x, float& y, float& z)
|
||||
|
@ -145,22 +145,17 @@ matrix_3x3 matrix_3x3::transpose(matrix_3x3 original)
|
|||
return new_matrix;
|
||||
}
|
||||
|
||||
void matrix_3x3::debug(char* title)
|
||||
{
|
||||
SERIAL_PROTOCOL(title);
|
||||
SERIAL_PROTOCOL("\n");
|
||||
int count = 0;
|
||||
for(int i=0; i<3; i++)
|
||||
{
|
||||
for(int j=0; j<3; j++)
|
||||
{
|
||||
SERIAL_PROTOCOL(matrix[count]);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
count++;
|
||||
}
|
||||
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
}
|
||||
void matrix_3x3::debug(char* title) {
|
||||
SERIAL_PROTOCOLLN(title);
|
||||
int count = 0;
|
||||
for(int i=0; i<3; i++) {
|
||||
for(int j=0; j<3; j++) {
|
||||
SERIAL_PROTOCOL(matrix[count] + 0.0001);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
count++;
|
||||
}
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
|
|
@ -52,9 +52,9 @@ More features have been added by:
|
|||
- Bradley Feldman,
|
||||
- and others...
|
||||
|
||||
## Licence
|
||||
## License
|
||||
|
||||
Marlin is published unde the [GPL license](/Documentation/COPYING.md) because I believe in open development.
|
||||
Marlin is published under the [GPL license](/Documentation/COPYING.md) because I believe in open development.
|
||||
Please do not use this code in products (3D printers, CNC etc) that are closed source or are crippled by a patent.
|
||||
|
||||
[![Flattr this git repo](http://api.flattr.com/button/flattr-badge-large.png)](https://flattr.com/submit/auto?user_id=ErikZalm&url=https://github.com/MarlinFirmware/Marlin&title=Marlin&language=&tags=github&category=software)
|
||||
|
|
Reference in a new issue