|
|
|
@ -79,7 +79,7 @@
|
|
|
|
|
// G4 - Dwell S<seconds> or P<milliseconds>
|
|
|
|
|
// G10 - retract filament according to settings of M207
|
|
|
|
|
// G11 - retract recover filament according to settings of M208
|
|
|
|
|
// G28 - Home one or more axes
|
|
|
|
|
// G28 - Home all Axis
|
|
|
|
|
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
|
|
|
|
// G30 - Single Z Probe, probes bed at current XY location.
|
|
|
|
|
// G31 - Dock sled (Z_PROBE_SLED only)
|
|
|
|
@ -210,6 +210,7 @@ int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
|
|
|
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
|
|
|
int feedmultiply = 100; //100->1 200->2
|
|
|
|
|
int saved_feedmultiply;
|
|
|
|
|
int extrudemultiply = 100; //100->1 200->2
|
|
|
|
|
int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
|
|
|
|
|
bool volumetric_enabled = false;
|
|
|
|
|
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
|
|
|
|
@ -305,7 +306,7 @@ int fanSpeed = 0;
|
|
|
|
|
#ifdef SCARA
|
|
|
|
|
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
|
|
|
|
|
static float delta[3] = { 0, 0, 0 };
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
bool cancel_heatup = false;
|
|
|
|
|
|
|
|
|
@ -476,6 +477,8 @@ bool enquecommand(const char *cmd)
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void setup_killpin()
|
|
|
|
|
{
|
|
|
|
|
#if defined(KILL_PIN) && KILL_PIN > -1
|
|
|
|
@ -898,7 +901,7 @@ bool code_seen(char code) {
|
|
|
|
|
strchr_pointer = strchr(cmdbuffer[bufindr], code);
|
|
|
|
|
return (strchr_pointer != NULL); //Return True if a character was found
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define DEFINE_PGM_READ_ANY(type, reader) \
|
|
|
|
|
static inline type pgm_read_any(const type *p) \
|
|
|
|
|
{ return pgm_read_##reader##_near(p); }
|
|
|
|
@ -929,7 +932,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
|
|
|
|
|
|
static float x_home_pos(int extruder) {
|
|
|
|
|
if (extruder == 0)
|
|
|
|
|
return base_home_pos(X_AXIS) + home_offset[X_AXIS];
|
|
|
|
|
return base_home_pos(X_AXIS) + home_offset[X_AXIS];
|
|
|
|
|
else
|
|
|
|
|
// In dual carriage mode the extruder offset provides an override of the
|
|
|
|
|
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
|
|
|
|
@ -958,15 +961,15 @@ static void axis_is_at_home(int axis) {
|
|
|
|
|
if (axis == X_AXIS) {
|
|
|
|
|
if (active_extruder != 0) {
|
|
|
|
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
|
|
|
|
min_pos[X_AXIS] = X2_MIN_POS;
|
|
|
|
|
max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
|
|
|
|
|
min_pos[X_AXIS] = X2_MIN_POS;
|
|
|
|
|
max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
|
|
|
float xoff = home_offset[X_AXIS];
|
|
|
|
|
current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
|
|
|
|
|
min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
|
|
|
|
|
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
|
|
|
|
|
current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
|
|
|
|
|
min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
|
|
|
|
|
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
|
|
|
|
|
max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -1020,189 +1023,178 @@ static void axis_is_at_home(int axis) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Some planner shorthand inline functions
|
|
|
|
|
* Shorthand to tell the planner our current position (in mm).
|
|
|
|
|
*/
|
|
|
|
|
inline void line_to_current_position() {
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
}
|
|
|
|
|
inline void line_to_z(float zPosition) {
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
}
|
|
|
|
|
inline void line_to_destination() {
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
}
|
|
|
|
|
inline void sync_plan_position() {
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
|
|
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
|
|
|
|
|
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
|
|
|
planeNormal.debug("planeNormal");
|
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
|
//bedLevel.debug("bedLevel");
|
|
|
|
|
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
//plan_bed_level_matrix.debug("bed level before");
|
|
|
|
|
//vector_3 uncorrected_position = plan_get_position_mm();
|
|
|
|
|
//uncorrected_position.debug("position before");
|
|
|
|
|
|
|
|
|
|
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
|
|
|
|
|
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
|
|
|
planeNormal.debug("planeNormal");
|
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
|
//bedLevel.debug("bedLevel");
|
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
|
|
|
//corrected_position.debug("position after");
|
|
|
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
|
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
|
|
|
|
|
|
|
|
|
|
//plan_bed_level_matrix.debug("bed level before");
|
|
|
|
|
//vector_3 uncorrected_position = plan_get_position_mm();
|
|
|
|
|
//uncorrected_position.debug("position before");
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
|
|
|
//corrected_position.debug("position after");
|
|
|
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
|
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
|
|
|
|
|
#else // not AUTO_BED_LEVELING_GRID
|
|
|
|
|
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
}
|
|
|
|
|
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
|
|
|
|
|
|
|
|
#endif // !DELTA
|
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
|
|
|
|
|
|
#else // !AUTO_BED_LEVELING_GRID
|
|
|
|
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
|
|
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
|
|
|
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
|
|
|
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
|
|
|
|
|
|
|
|
|
|
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
|
|
|
|
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
|
|
|
|
|
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
|
|
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
|
|
|
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
|
|
|
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
|
|
|
|
|
|
|
|
|
|
if (planeNormal.z < 0) {
|
|
|
|
|
planeNormal.x = -planeNormal.x;
|
|
|
|
|
planeNormal.y = -planeNormal.y;
|
|
|
|
|
planeNormal.z = -planeNormal.z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
|
|
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
|
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
|
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
|
|
|
|
|
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
if (planeNormal.z < 0) {
|
|
|
|
|
planeNormal.x = -planeNormal.x;
|
|
|
|
|
planeNormal.y = -planeNormal.y;
|
|
|
|
|
planeNormal.z = -planeNormal.z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // !AUTO_BED_LEVELING_GRID
|
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
|
|
|
|
|
|
static void run_z_probe() {
|
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
|
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
|
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
|
|
|
|
|
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
|
|
|
|
|
|
static void run_z_probe() {
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
|
|
|
|
|
float start_z = current_position[Z_AXIS];
|
|
|
|
|
long start_steps = st_get_position(Z_AXIS);
|
|
|
|
|
float start_z = current_position[Z_AXIS];
|
|
|
|
|
long start_steps = st_get_position(Z_AXIS);
|
|
|
|
|
|
|
|
|
|
// move down slowly until you find the bed
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS] / 4;
|
|
|
|
|
destination[Z_AXIS] = -10;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
|
|
|
|
|
// move down slowly until you find the bed
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS] / 4;
|
|
|
|
|
destination[Z_AXIS] = -10;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
|
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
|
|
|
long stop_steps = st_get_position(Z_AXIS);
|
|
|
|
|
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
|
|
|
|
|
current_position[Z_AXIS] = mm;
|
|
|
|
|
calculate_delta(current_position);
|
|
|
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
|
|
|
|
|
#else // !DELTA
|
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
|
|
|
long stop_steps = st_get_position(Z_AXIS);
|
|
|
|
|
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
|
|
|
|
|
current_position[Z_AXIS] = mm;
|
|
|
|
|
calculate_delta(current_position);
|
|
|
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
// move down until you find the bed
|
|
|
|
|
float zPosition = -10;
|
|
|
|
|
line_to_z(zPosition);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
// move down until you find the bed
|
|
|
|
|
float zPosition = -10;
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
|
|
|
zPosition = st_get_position_mm(Z_AXIS);
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
|
|
|
zPosition = st_get_position_mm(Z_AXIS);
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
|
|
|
|
|
|
|
|
|
// move up the retract distance
|
|
|
|
|
zPosition += home_retract_mm(Z_AXIS);
|
|
|
|
|
line_to_z(zPosition);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
// move up the retract distance
|
|
|
|
|
zPosition += home_retract_mm(Z_AXIS);
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
|
|
|
|
|
// move back down slowly to find bed
|
|
|
|
|
if (homing_bump_divisor[Z_AXIS] >= 1)
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
|
|
|
|
|
else {
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS] / 10;
|
|
|
|
|
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
|
|
|
|
|
}
|
|
|
|
|
// move back down slowly to find bed
|
|
|
|
|
if (homing_bump_divisor[Z_AXIS] >= 1) {
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS]/10;
|
|
|
|
|
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
zPosition -= home_retract_mm(Z_AXIS) * 2;
|
|
|
|
|
line_to_z(zPosition);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
zPosition -= home_retract_mm(Z_AXIS) * 2;
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
|
|
|
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
|
|
|
// make sure the planner knows where we are as it may be a bit different than we last said to move to
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
#endif // !DELTA
|
|
|
|
|
}
|
|
|
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
|
|
|
// make sure the planner knows where we are as it may be a bit different than we last said to move to
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void do_blocking_move_to(float x, float y, float z) {
|
|
|
|
|
static void do_blocking_move_to(float x, float y, float z) {
|
|
|
|
|
float oldFeedRate = feedrate;
|
|
|
|
|
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
|
|
|
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
|
|
|
|
|
|
|
|
destination[X_AXIS] = x;
|
|
|
|
|
destination[Y_AXIS] = y;
|
|
|
|
|
destination[Z_AXIS] = z;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
st_synchronize();
|
|
|
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
|
|
|
|
|
|
|
|
destination[X_AXIS] = x;
|
|
|
|
|
destination[Y_AXIS] = y;
|
|
|
|
|
destination[Z_AXIS] = z;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
current_position[Z_AXIS] = z;
|
|
|
|
|
line_to_current_position();
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[Z_AXIS] = z;
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
feedrate = xy_travel_speed;
|
|
|
|
|
feedrate = xy_travel_speed;
|
|
|
|
|
|
|
|
|
|
current_position[X_AXIS] = x;
|
|
|
|
|
current_position[Y_AXIS] = y;
|
|
|
|
|
line_to_current_position();
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[X_AXIS] = x;
|
|
|
|
|
current_position[Y_AXIS] = y;
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
feedrate = oldFeedRate;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void setup_for_endstop_move() {
|
|
|
|
|
static void setup_for_endstop_move() {
|
|
|
|
|
saved_feedrate = feedrate;
|
|
|
|
|
saved_feedmultiply = feedmultiply;
|
|
|
|
|
feedmultiply = 100;
|
|
|
|
|
previous_millis_cmd = millis();
|
|
|
|
|
enable_endstops(true);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void clean_up_after_endstop_move() {
|
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
|
enable_endstops(false);
|
|
|
|
|
#endif
|
|
|
|
|
enable_endstops(true);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void clean_up_after_endstop_move() {
|
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
|
enable_endstops(false);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
feedrate = saved_feedrate;
|
|
|
|
|
feedmultiply = saved_feedmultiply;
|
|
|
|
|
previous_millis_cmd = millis();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
<<<<<<< HEAD
|
|
|
|
|
static void engage_z_probe() {
|
|
|
|
|
// Engage Z Servo endstop if enabled
|
|
|
|
|
#ifdef SERVO_ENDSTOPS
|
|
|
|
@ -1250,59 +1242,13 @@ static void engage_z_probe() {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
|
|
|
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
|
|
|
=======
|
|
|
|
|
static void engage_z_probe() {
|
|
|
|
|
|
|
|
|
|
#ifdef SERVO_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
// Engage Z Servo endstop if enabled
|
|
|
|
|
if (servo_endstops[Z_AXIS] >= 0) {
|
|
|
|
|
#if SERVO_LEVELING
|
|
|
|
|
servos[servo_endstops[Z_AXIS]].attach(0);
|
|
|
|
|
#endif
|
|
|
|
|
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
|
|
|
|
|
#if SERVO_LEVELING
|
|
|
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
|
|
|
servos[servo_endstops[Z_AXIS]].detach();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#elif defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
|
|
|
|
|
|
|
|
// Move to the start position to initiate deployment
|
|
|
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
|
|
|
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
|
|
|
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
|
|
|
|
|
// Home X to touch the belt
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS]/10;
|
|
|
|
|
destination[X_AXIS] = 0;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
|
|
|
|
|
// Home Y for safety
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS]/2;
|
|
|
|
|
destination[Y_AXIS] = 0;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
|
|
|
if (z_min_endstop) {
|
|
|
|
|
if (!Stopped) {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
|
|
|
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
|
|
|
>>>>>>> MarlinFirmware/Development
|
|
|
|
|
}
|
|
|
|
|
Stop();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif // Z_PROBE_ALLEN_KEY
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
<<<<<<< HEAD
|
|
|
|
|
static void retract_z_probe() {
|
|
|
|
|
// Retract Z Servo endstop if enabled
|
|
|
|
|
#ifdef SERVO_ENDSTOPS
|
|
|
|
@ -1365,216 +1311,126 @@ static void retract_z_probe() {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
|
|
|
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
|
|
|
=======
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void retract_z_probe(const float z_after=Z_RAISE_AFTER_PROBING) {
|
|
|
|
|
|
|
|
|
|
#ifdef SERVO_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
// Retract Z Servo endstop if enabled
|
|
|
|
|
if (servo_endstops[Z_AXIS] >= 0) {
|
|
|
|
|
|
|
|
|
|
if (z_after > 0) {
|
|
|
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_after);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
>>>>>>> MarlinFirmware/Development
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if SERVO_LEVELING
|
|
|
|
|
servos[servo_endstops[Z_AXIS]].attach(0);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
|
|
|
|
|
|
|
|
|
|
#if SERVO_LEVELING
|
|
|
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
|
|
|
servos[servo_endstops[Z_AXIS]].detach();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#elif defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
|
|
|
|
|
// Move up for safety
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
|
|
|
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
|
|
|
|
|
// Move to the start position to initiate retraction
|
|
|
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
|
|
|
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
|
|
|
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
|
|
|
|
|
// Move the nozzle down to push the probe into retracted position
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS]/10;
|
|
|
|
|
destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
|
|
|
|
|
// Move up for safety
|
|
|
|
|
feedrate = homing_feedrate[Z_AXIS]/2;
|
|
|
|
|
destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
|
|
|
|
|
// Home XY for safety
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS]/2;
|
|
|
|
|
destination[X_AXIS] = 0;
|
|
|
|
|
destination[Y_AXIS] = 0;
|
|
|
|
|
prepare_move_raw();
|
|
|
|
|
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
|
|
|
if (!z_min_endstop) {
|
|
|
|
|
if (!Stopped) {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
|
|
|
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
|
|
|
}
|
|
|
|
|
Stop();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum ProbeAction {
|
|
|
|
|
ProbeStay = 0,
|
|
|
|
|
ProbeEngage = BIT(0),
|
|
|
|
|
ProbeRetract = BIT(1),
|
|
|
|
|
ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/// Probe bed height at position (x,y), returns the measured z value
|
|
|
|
|
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
|
|
|
|
|
// move to right place
|
|
|
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
|
|
|
|
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
if (retract_action & ProbeEngage) engage_z_probe();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
run_z_probe();
|
|
|
|
|
float measured_z = current_position[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
if (retract_action & ProbeRetract) retract_z_probe();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
|
SERIAL_PROTOCOLPGM(MSG_BED);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(x, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(y, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(measured_z, 3);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
return measured_z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
enum ProbeAction {
|
|
|
|
|
ProbeStay = 0,
|
|
|
|
|
ProbeEngage = BIT(0),
|
|
|
|
|
ProbeRetract = BIT(1),
|
|
|
|
|
ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Probe bed height at position (x,y), returns the measured z value
|
|
|
|
|
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
|
|
|
|
|
// move to right place
|
|
|
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
|
|
|
|
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
if (retract_action & ProbeEngage) engage_z_probe();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
run_z_probe();
|
|
|
|
|
float measured_z = current_position[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
if (retract_action & ProbeRetract) retract_z_probe(z_before);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
|
SERIAL_PROTOCOLPGM(MSG_BED);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(x, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(y, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(measured_z, 3);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
return measured_z;
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
|
|
|
|
|
if (bed_level[x][y] != 0.0) {
|
|
|
|
|
return; // Don't overwrite good values.
|
|
|
|
|
}
|
|
|
|
|
float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
|
|
|
|
|
float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
|
|
|
|
|
float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
|
|
|
|
|
float median = c; // Median is robust (ignores outliers).
|
|
|
|
|
if (a < b) {
|
|
|
|
|
if (b < c) median = b;
|
|
|
|
|
if (c < a) median = a;
|
|
|
|
|
} else { // b <= a
|
|
|
|
|
if (c < b) median = b;
|
|
|
|
|
if (a < c) median = a;
|
|
|
|
|
}
|
|
|
|
|
bed_level[x][y] = median;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
|
|
|
|
|
if (bed_level[x][y] != 0.0) {
|
|
|
|
|
return; // Don't overwrite good values.
|
|
|
|
|
}
|
|
|
|
|
float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
|
|
|
|
|
float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
|
|
|
|
|
float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
|
|
|
|
|
float median = c; // Median is robust (ignores outliers).
|
|
|
|
|
if (a < b) {
|
|
|
|
|
if (b < c) median = b;
|
|
|
|
|
if (c < a) median = a;
|
|
|
|
|
} else { // b <= a
|
|
|
|
|
if (c < b) median = b;
|
|
|
|
|
if (a < c) median = a;
|
|
|
|
|
}
|
|
|
|
|
bed_level[x][y] = median;
|
|
|
|
|
// Fill in the unprobed points (corners of circular print surface)
|
|
|
|
|
// using linear extrapolation, away from the center.
|
|
|
|
|
static void extrapolate_unprobed_bed_level() {
|
|
|
|
|
int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
|
|
|
|
|
for (int y = 0; y <= half; y++) {
|
|
|
|
|
for (int x = 0; x <= half; x++) {
|
|
|
|
|
if (x + y < 3) continue;
|
|
|
|
|
extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
|
|
|
|
|
extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
|
|
|
|
|
extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
|
|
|
|
|
extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Fill in the unprobed points (corners of circular print surface)
|
|
|
|
|
// using linear extrapolation, away from the center.
|
|
|
|
|
static void extrapolate_unprobed_bed_level() {
|
|
|
|
|
int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
|
|
|
|
|
for (int y = 0; y <= half; y++) {
|
|
|
|
|
for (int x = 0; x <= half; x++) {
|
|
|
|
|
if (x + y < 3) continue;
|
|
|
|
|
extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
|
|
|
|
|
extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
|
|
|
|
|
extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
|
|
|
|
|
extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Print calibration results for plotting or manual frame adjustment.
|
|
|
|
|
static void print_bed_level() {
|
|
|
|
|
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
|
|
|
|
|
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
|
|
|
|
|
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOLN("");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Print calibration results for plotting or manual frame adjustment.
|
|
|
|
|
static void print_bed_level() {
|
|
|
|
|
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
|
|
|
|
|
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
|
|
|
|
|
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOLN("");
|
|
|
|
|
}
|
|
|
|
|
// Reset calibration results to zero.
|
|
|
|
|
void reset_bed_level() {
|
|
|
|
|
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
|
|
|
|
|
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
|
|
|
|
|
bed_level[x][y] = 0.0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Reset calibration results to zero.
|
|
|
|
|
void reset_bed_level() {
|
|
|
|
|
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
|
|
|
|
|
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
|
|
|
|
|
bed_level[x][y] = 0.0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
static void homeaxis(int axis) {
|
|
|
|
|
#define HOMEAXIS_DO(LETTER) \
|
|
|
|
|
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
|
|
|
|
#define HOMEAXIS_DO(LETTER) \
|
|
|
|
|
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
|
|
|
|
|
|
|
|
|
if (axis == X_AXIS ? HOMEAXIS_DO(X) :
|
|
|
|
|
axis == Y_AXIS ? HOMEAXIS_DO(Y) :
|
|
|
|
|
axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
|
|
|
|
|
|
|
|
|
|
int axis_home_dir;
|
|
|
|
|
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
|
if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
|
|
|
|
|
#else
|
|
|
|
|
axis_home_dir = home_dir(axis);
|
|
|
|
|
#endif
|
|
|
|
|
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
|
|
|
|
|
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
|
|
|
|
|
axis==Z_AXIS ? HOMEAXIS_DO(Z) :
|
|
|
|
|
0) {
|
|
|
|
|
int axis_home_dir = home_dir(axis);
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
|
if (axis == X_AXIS)
|
|
|
|
|
axis_home_dir = x_home_dir(active_extruder);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
current_position[axis] = 0;
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
|
|
|
// Engage Servo endstop if enabled
|
|
|
|
|
#ifdef SERVO_ENDSTOPS
|
|
|
|
|
#if SERVO_LEVELING
|
|
|
|
|
if (axis == Z_AXIS) {
|
|
|
|
|
engage_z_probe();
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif // SERVO_LEVELING
|
|
|
|
|
|
|
|
|
|
if (servo_endstops[axis] > -1)
|
|
|
|
|
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
|
|
|
|
|
|
|
|
|
|
#endif // SERVO_ENDSTOPS
|
|
|
|
|
|
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
|
|
|
|
|
|
<<<<<<< HEAD
|
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
|
|
|
// Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING
|
|
|
|
|
#ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP))
|
|
|
|
@ -1589,33 +1445,33 @@ static void homeaxis(int axis) {
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
|
=======
|
|
|
|
|
>>>>>>> MarlinFirmware/Development
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
|
|
|
if (axis == Z_AXIS) In_Homing_Process(true);
|
|
|
|
|
if (axis==Z_AXIS) In_Homing_Process(true);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
|
|
|
|
feedrate = homing_feedrate[axis];
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
current_position[axis] = 0;
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
|
|
|
|
|
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
|
|
|
|
|
|
|
|
|
|
if (homing_bump_divisor[axis] >= 1)
|
|
|
|
|
feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
|
|
|
|
|
else {
|
|
|
|
|
feedrate = homing_feedrate[axis] / 10;
|
|
|
|
|
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
|
|
|
|
|
{
|
|
|
|
|
feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
feedrate = homing_feedrate[axis]/10;
|
|
|
|
|
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
|
|
|
if (axis==Z_AXIS)
|
|
|
|
@ -1630,7 +1486,7 @@ static void homeaxis(int axis) {
|
|
|
|
|
destination[axis] = fabs(z_endstop_adj);
|
|
|
|
|
if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
|
|
|
|
|
}
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
Lock_z_motor(false);
|
|
|
|
|
Lock_z2_motor(false);
|
|
|
|
@ -1643,7 +1499,7 @@ static void homeaxis(int axis) {
|
|
|
|
|
if (endstop_adj[axis] * axis_home_dir < 0) {
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
destination[axis] = endstop_adj[axis];
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
@ -1688,7 +1544,7 @@ void refresh_cmd_timeout(void)
|
|
|
|
|
}
|
|
|
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
|
float oldFeedrate = feedrate;
|
|
|
|
|
feedrate = retract_feedrate * 60;
|
|
|
|
|
feedrate=retract_feedrate*60;
|
|
|
|
|
retracted[active_extruder]=true;
|
|
|
|
|
prepare_move();
|
|
|
|
|
if(retract_zlift > 0.01) {
|
|
|
|
@ -1724,8 +1580,8 @@ void refresh_cmd_timeout(void)
|
|
|
|
|
}
|
|
|
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
|
float oldFeedrate = feedrate;
|
|
|
|
|
feedrate = retract_recover_feedrate * 60;
|
|
|
|
|
retracted[active_extruder] = false;
|
|
|
|
|
feedrate=retract_recover_feedrate*60;
|
|
|
|
|
retracted[active_extruder]=false;
|
|
|
|
|
prepare_move();
|
|
|
|
|
feedrate = oldFeedrate;
|
|
|
|
|
}
|
|
|
|
@ -1879,16 +1735,17 @@ inline void gcode_G4() {
|
|
|
|
|
*/
|
|
|
|
|
inline void gcode_G28() {
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
reset_bed_level();
|
|
|
|
|
#else
|
|
|
|
|
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING)
|
|
|
|
|
uint8_t mbl_was_active = mbl.active;
|
|
|
|
|
mbl.active = 0;
|
|
|
|
|
#endif
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
saved_feedrate = feedrate;
|
|
|
|
|
saved_feedmultiply = feedmultiply;
|
|
|
|
@ -1911,7 +1768,7 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
|
|
|
|
|
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
|
|
|
|
@ -1959,7 +1816,7 @@ inline void gcode_G28() {
|
|
|
|
|
} else {
|
|
|
|
|
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
|
|
|
|
|
}
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
axis_is_at_home(X_AXIS);
|
|
|
|
@ -1967,7 +1824,7 @@ inline void gcode_G28() {
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
|
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
feedrate = 0.0;
|
|
|
|
|
st_synchronize();
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
@ -2035,7 +1892,7 @@ inline void gcode_G28() {
|
|
|
|
|
#ifndef Z_PROBE_AND_ENDSTOP
|
|
|
|
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
|
|
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
@ -2048,11 +1905,11 @@ inline void gcode_G28() {
|
|
|
|
|
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
|
|
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
|
|
|
feedrate = XY_TRAVEL_SPEED / 60;
|
|
|
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
|
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
|
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
@ -2074,7 +1931,7 @@ inline void gcode_G28() {
|
|
|
|
|
plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
|
|
|
|
feedrate = max_feedrate[Z_AXIS];
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
HOMEAXIS(Z);
|
|
|
|
|
}
|
|
|
|
@ -2127,7 +1984,7 @@ inline void gcode_G28() {
|
|
|
|
|
destination[Z_AXIS] = current_position[Z_AXIS];
|
|
|
|
|
destination[E_AXIS] = current_position[E_AXIS];
|
|
|
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
|
|
|
sync_plan_position();
|
|
|
|
@ -2141,19 +1998,6 @@ inline void gcode_G28() {
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
|
|
|
|
|
|
|
|
|
|
// Check for known positions in X and Y
|
|
|
|
|
inline bool can_run_bed_leveling() {
|
|
|
|
|
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
|
|
|
|
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -2168,10 +2012,6 @@ inline void gcode_G28() {
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
inline void gcode_G29() {
|
|
|
|
|
|
|
|
|
|
// Prevent leveling without first homing in X and Y
|
|
|
|
|
if (!can_run_bed_leveling()) return;
|
|
|
|
|
|
|
|
|
|
static int probe_point = -1;
|
|
|
|
|
int state = 0;
|
|
|
|
|
if (code_seen('S') || code_seen('s')) {
|
|
|
|
@ -2288,8 +2128,13 @@ inline void gcode_G28() {
|
|
|
|
|
*/
|
|
|
|
|
inline void gcode_G29() {
|
|
|
|
|
|
|
|
|
|
// Prevent leveling without first homing in X and Y
|
|
|
|
|
if (!can_run_bed_leveling()) return;
|
|
|
|
|
// Prevent user from running a G29 without first homing in X and Y
|
|
|
|
|
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
|
|
|
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int verbose_level = 1;
|
|
|
|
|
|
|
|
|
@ -2371,15 +2216,16 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
st_synchronize();
|
|
|
|
|
|
|
|
|
|
if (!dryrun) {
|
|
|
|
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
|
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
|
|
|
|
|
|
if (!dryrun)
|
|
|
|
|
{
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
reset_bed_level();
|
|
|
|
|
#else //!DELTA
|
|
|
|
|
|
|
|
|
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
|
|
|
|
//vector_3 corrected_position = plan_get_position_mm();
|
|
|
|
|
//corrected_position.debug("position before G29");
|
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
|
vector_3 uncorrected_position = plan_get_position();
|
|
|
|
|
//uncorrected_position.debug("position during G29");
|
|
|
|
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
|
|
@ -2387,7 +2233,7 @@ inline void gcode_G28() {
|
|
|
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
|
|
|
sync_plan_position();
|
|
|
|
|
|
|
|
|
|
#endif // !DELTA
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
setup_for_endstop_move();
|
|
|
|
@ -2448,12 +2294,13 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
// raise extruder
|
|
|
|
|
float measured_z,
|
|
|
|
|
z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
|
|
|
|
|
z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
|
|
|
|
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
|
|
|
|
|
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
|
|
|
|
|
if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
|
|
|
|
|
if (distance_from_center > DELTA_PROBABLE_RADIUS)
|
|
|
|
|
continue;
|
|
|
|
|
#endif //DELTA
|
|
|
|
|
|
|
|
|
|
// Enhanced G29 - Do not retract servo between probes
|
|
|
|
@ -2481,11 +2328,6 @@ inline void gcode_G28() {
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
probePointCounter++;
|
|
|
|
|
|
|
|
|
|
manage_heater();
|
|
|
|
|
manage_inactivity();
|
|
|
|
|
lcd_update();
|
|
|
|
|
|
|
|
|
|
} //xProbe
|
|
|
|
|
} //yProbe
|
|
|
|
|
|
|
|
|
@ -2572,14 +2414,16 @@ inline void gcode_G28() {
|
|
|
|
|
if (verbose_level > 0)
|
|
|
|
|
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
|
|
|
|
|
|
|
|
|
if (!dryrun) {
|
|
|
|
|
// Correct the Z height difference from z-probe position and hotend tip position.
|
|
|
|
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
|
|
|
// When the bed is uneven, this height must be corrected.
|
|
|
|
|
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
|
|
|
|
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
|
|
|
|
z_tmp = current_position[Z_AXIS],
|
|
|
|
|
real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
|
|
|
// Correct the Z height difference from z-probe position and hotend tip position.
|
|
|
|
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
|
|
|
// When the bed is uneven, this height must be corrected.
|
|
|
|
|
if (!dryrun)
|
|
|
|
|
{
|
|
|
|
|
float x_tmp, y_tmp, z_tmp, real_z;
|
|
|
|
|
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
|
|
|
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
|
z_tmp = current_position[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
|
|
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
|
|
@ -3947,7 +3791,7 @@ inline void gcode_M221() {
|
|
|
|
|
extruder_multiply[tmp_extruder] = sval;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
extruder_multiply[active_extruder] = sval;
|
|
|
|
|
extrudemultiply = sval;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -4384,7 +4228,7 @@ inline void gcode_M400() { st_synchronize(); }
|
|
|
|
|
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
|
|
|
//SERIAL_PROTOCOL(filament_width_meas);
|
|
|
|
|
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
|
|
|
//SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
|
|
|
|
|
//SERIAL_PROTOCOL(extrudemultiply);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -4857,14 +4701,18 @@ void process_commands() {
|
|
|
|
|
gcode_G28();
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
|
|
|
|
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
|
|
|
#if defined(MESH_BED_LEVELING)
|
|
|
|
|
case 29: // G29 Handle mesh based leveling
|
|
|
|
|
gcode_G29();
|
|
|
|
|
break;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
|
|
|
gcode_G29();
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
|
|
|
|
|
|
|
|
case 30: // G30 Single Z Probe
|
|
|
|
@ -5559,72 +5407,69 @@ void prepare_move()
|
|
|
|
|
|
|
|
|
|
#ifdef SCARA //for now same as delta-code
|
|
|
|
|
|
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
|
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
|
difference[i] = destination[i] - current_position[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
|
|
|
|
|
sq(difference[Y_AXIS]) +
|
|
|
|
|
sq(difference[Z_AXIS]));
|
|
|
|
|
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
|
|
|
|
if (cartesian_mm < 0.000001) { return; }
|
|
|
|
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
|
|
|
|
int steps = max(1, int(scara_segments_per_second * seconds));
|
|
|
|
|
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
|
|
|
|
|
sq(difference[Y_AXIS]) +
|
|
|
|
|
sq(difference[Z_AXIS]));
|
|
|
|
|
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
|
|
|
|
if (cartesian_mm < 0.000001) { return; }
|
|
|
|
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
|
|
|
|
int steps = max(1, int(scara_segments_per_second * seconds));
|
|
|
|
|
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
|
|
|
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
|
|
|
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
|
|
|
for (int s = 1; s <= steps; s++) {
|
|
|
|
|
float fraction = float(s) / float(steps);
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
|
destination[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
|
|
|
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
|
|
|
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
|
|
|
|
|
|
|
|
for (int s = 1; s <= steps; s++) {
|
|
|
|
|
float fraction = float(s) / float(steps);
|
|
|
|
|
for(int8_t i = 0; i < NUM_AXIS; i++) {
|
|
|
|
|
destination[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
calculate_delta(destination);
|
|
|
|
|
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
|
|
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
|
|
|
active_extruder);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // SCARA
|
|
|
|
|
calculate_delta(destination);
|
|
|
|
|
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
|
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
|
|
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
|
|
|
active_extruder);
|
|
|
|
|
}
|
|
|
|
|
#endif // SCARA
|
|
|
|
|
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
|
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
|
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
|
|
|
|
|
|
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
|
|
|
|
|
sq(difference[Y_AXIS]) +
|
|
|
|
|
sq(difference[Z_AXIS]));
|
|
|
|
|
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
|
|
|
|
|
if (cartesian_mm < 0.000001) return;
|
|
|
|
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
|
|
|
|
int steps = max(1, int(delta_segments_per_second * seconds));
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
|
|
|
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
|
|
|
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
|
|
|
|
|
|
|
|
for (int s = 1; s <= steps; s++) {
|
|
|
|
|
float fraction = float(s) / float(steps);
|
|
|
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
|
calculate_delta(destination);
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
adjust_delta(destination);
|
|
|
|
|
#endif
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
|
|
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
|
|
|
active_extruder);
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
|
difference[i] = destination[i] - current_position[i];
|
|
|
|
|
}
|
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
|
|
|
|
|
sq(difference[Y_AXIS]) +
|
|
|
|
|
sq(difference[Z_AXIS]));
|
|
|
|
|
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
|
|
|
|
if (cartesian_mm < 0.000001) { return; }
|
|
|
|
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
|
|
|
|
int steps = max(1, int(delta_segments_per_second * seconds));
|
|
|
|
|
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
|
|
|
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
|
|
|
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
|
|
|
for (int s = 1; s <= steps; s++) {
|
|
|
|
|
float fraction = float(s) / float(steps);
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
|
destination[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
calculate_delta(destination);
|
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
|
|
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
|
|
|
active_extruder);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
|
if (active_extruder_parked)
|
|
|
|
@ -5670,13 +5515,13 @@ void prepare_move()
|
|
|
|
|
#if ! (defined DELTA || defined SCARA)
|
|
|
|
|
// Do not use feedmultiply for E or Z only moves
|
|
|
|
|
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
|
|
|
|
line_to_destination();
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
|
|
|
} else {
|
|
|
|
|
#if defined(MESH_BED_LEVELING)
|
|
|
|
|
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
|
|
|
|
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
|
|
|
|
|
return;
|
|
|
|
|
#else
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
|
|
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
}
|
|
|
|
|
#endif // !(DELTA || SCARA)
|
|
|
|
|