Revert 06f767d..cba5692

This rolls back to commit 06f767d608.
This commit is contained in:
Chris Roadfeldt 2015-03-30 23:51:36 -05:00
parent cba5692673
commit e08f8eed05
7 changed files with 409 additions and 600 deletions

View file

@ -229,6 +229,7 @@ void refresh_cmd_timeout(void);
extern float homing_feedrate[]; extern float homing_feedrate[];
extern bool axis_relative_modes[]; extern bool axis_relative_modes[];
extern int feedmultiply; extern int feedmultiply;
extern int extrudemultiply; // Sets extrude multiply factor (in percent) for all extruders
extern bool volumetric_enabled; extern bool volumetric_enabled;
extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.

View file

@ -79,7 +79,7 @@
// G4 - Dwell S<seconds> or P<milliseconds> // G4 - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207 // G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208 // G11 - retract recover filament according to settings of M208
// G28 - Home one or more axes // G28 - Home all Axis
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location. // G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only) // G31 - Dock sled (Z_PROBE_SLED only)
@ -210,6 +210,7 @@ int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES; bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply = 100; //100->1 200->2 int feedmultiply = 100; //100->1 200->2
int saved_feedmultiply; int saved_feedmultiply;
int extrudemultiply = 100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100); int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
bool volumetric_enabled = false; bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA); float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
@ -305,7 +306,7 @@ int fanSpeed = 0;
#ifdef SCARA #ifdef SCARA
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1 float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
static float delta[3] = { 0, 0, 0 }; static float delta[3] = { 0, 0, 0 };
#endif #endif
bool cancel_heatup = false; bool cancel_heatup = false;
@ -476,6 +477,8 @@ bool enquecommand(const char *cmd)
return true; return true;
} }
void setup_killpin() void setup_killpin()
{ {
#if defined(KILL_PIN) && KILL_PIN > -1 #if defined(KILL_PIN) && KILL_PIN > -1
@ -898,7 +901,7 @@ bool code_seen(char code) {
strchr_pointer = strchr(cmdbuffer[bufindr], code); strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found return (strchr_pointer != NULL); //Return True if a character was found
} }
#define DEFINE_PGM_READ_ANY(type, reader) \ #define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \ static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); } { return pgm_read_##reader##_near(p); }
@ -929,7 +932,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
static float x_home_pos(int extruder) { static float x_home_pos(int extruder) {
if (extruder == 0) if (extruder == 0)
return base_home_pos(X_AXIS) + home_offset[X_AXIS]; return base_home_pos(X_AXIS) + home_offset[X_AXIS];
else else
// In dual carriage mode the extruder offset provides an override of the // In dual carriage mode the extruder offset provides an override of the
// second X-carriage offset when homed - otherwise X2_HOME_POS is used. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
@ -958,15 +961,15 @@ static void axis_is_at_home(int axis) {
if (axis == X_AXIS) { if (axis == X_AXIS) {
if (active_extruder != 0) { if (active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder); current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS; min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS); max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
return; return;
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
float xoff = home_offset[X_AXIS]; current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff; min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff; max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset); max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
return; return;
} }
} }
@ -1020,189 +1023,178 @@ static void axis_is_at_home(int axis) {
} }
/** /**
* Some planner shorthand inline functions * Shorthand to tell the planner our current position (in mm).
*/ */
inline void line_to_current_position() {
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
}
inline void line_to_z(float zPosition) {
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
}
inline void line_to_destination() {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
}
inline void sync_plan_position() { inline void sync_plan_position() {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID
#ifdef AUTO_BED_LEVELING_GRID #ifndef DELTA
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
#ifndef DELTA //plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) { vector_3 corrected_position = plan_get_position();
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); //corrected_position.debug("position after");
planeNormal.debug("planeNormal"); current_position[X_AXIS] = corrected_position.x;
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); current_position[Y_AXIS] = corrected_position.y;
//bedLevel.debug("bedLevel"); current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
//plan_bed_level_matrix.debug("bed level before"); sync_plan_position();
//vector_3 uncorrected_position = plan_get_position_mm(); }
//uncorrected_position.debug("position before"); #endif
vector_3 corrected_position = plan_get_position(); #else // not AUTO_BED_LEVELING_GRID
//corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
sync_plan_position(); static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
}
#endif // !DELTA plan_bed_level_matrix.set_to_identity();
#else // !AUTO_BED_LEVELING_GRID vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { if (planeNormal.z < 0) {
planeNormal.x = -planeNormal.x;
plan_bed_level_matrix.set_to_identity(); planeNormal.y = -planeNormal.y;
planeNormal.z = -planeNormal.z;
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
if (planeNormal.z < 0) {
planeNormal.x = -planeNormal.x;
planeNormal.y = -planeNormal.y;
planeNormal.z = -planeNormal.z;
}
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
sync_plan_position();
} }
#endif // !AUTO_BED_LEVELING_GRID plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
static void run_z_probe() { vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
#ifdef DELTA sync_plan_position();
}
#endif // AUTO_BED_LEVELING_GRID
static void run_z_probe() {
#ifdef DELTA
float start_z = current_position[Z_AXIS]; float start_z = current_position[Z_AXIS];
long start_steps = st_get_position(Z_AXIS); long start_steps = st_get_position(Z_AXIS);
// move down slowly until you find the bed
feedrate = homing_feedrate[Z_AXIS] / 4;
destination[Z_AXIS] = -10;
prepare_move_raw();
st_synchronize();
endstops_hit_on_purpose();
// move down slowly until you find the bed // we have to let the planner know where we are right now as it is not where we said to go.
feedrate = homing_feedrate[Z_AXIS] / 4; long stop_steps = st_get_position(Z_AXIS);
destination[Z_AXIS] = -10; float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
prepare_move_raw(); current_position[Z_AXIS] = mm;
st_synchronize(); calculate_delta(current_position);
endstops_hit_on_purpose(); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
// we have to let the planner know where we are right now as it is not where we said to go. #else
long stop_steps = st_get_position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
current_position[Z_AXIS] = mm;
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else // !DELTA
plan_bed_level_matrix.set_to_identity(); plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed // move down until you find the bed
float zPosition = -10; float zPosition = -10;
line_to_z(zPosition); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
// we have to let the planner know where we are right now as it is not where we said to go. // we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm(Z_AXIS); zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
// move up the retract distance // move up the retract distance
zPosition += home_retract_mm(Z_AXIS); zPosition += home_retract_mm(Z_AXIS);
line_to_z(zPosition); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
endstops_hit_on_purpose(); endstops_hit_on_purpose();
// move back down slowly to find bed // move back down slowly to find bed
if (homing_bump_divisor[Z_AXIS] >= 1) if (homing_bump_divisor[Z_AXIS] >= 1) {
feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
else { }
feedrate = homing_feedrate[Z_AXIS] / 10; else {
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1"); feedrate = homing_feedrate[Z_AXIS]/10;
} SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
}
zPosition -= home_retract_mm(Z_AXIS) * 2; zPosition -= home_retract_mm(Z_AXIS) * 2;
line_to_z(zPosition); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
endstops_hit_on_purpose(); endstops_hit_on_purpose();
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to // make sure the planner knows where we are as it may be a bit different than we last said to move to
sync_plan_position(); sync_plan_position();
#endif // !DELTA #endif
} }
static void do_blocking_move_to(float x, float y, float z) { static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate; float oldFeedRate = feedrate;
#ifdef DELTA #ifdef DELTA
feedrate = XY_TRAVEL_SPEED; feedrate = XY_TRAVEL_SPEED;
destination[X_AXIS] = x; destination[X_AXIS] = x;
destination[Y_AXIS] = y; destination[Y_AXIS] = y;
destination[Z_AXIS] = z; destination[Z_AXIS] = z;
prepare_move_raw(); prepare_move_raw();
st_synchronize(); st_synchronize();
#else #else
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
current_position[Z_AXIS] = z; current_position[Z_AXIS] = z;
line_to_current_position(); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
feedrate = xy_travel_speed; feedrate = xy_travel_speed;
current_position[X_AXIS] = x; current_position[X_AXIS] = x;
current_position[Y_AXIS] = y; current_position[Y_AXIS] = y;
line_to_current_position(); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
#endif #endif
feedrate = oldFeedRate; feedrate = oldFeedRate;
} }
static void setup_for_endstop_move() { static void setup_for_endstop_move() {
saved_feedrate = feedrate; saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply; saved_feedmultiply = feedmultiply;
feedmultiply = 100; feedmultiply = 100;
previous_millis_cmd = millis(); previous_millis_cmd = millis();
enable_endstops(true);
}
static void clean_up_after_endstop_move() { enable_endstops(true);
#ifdef ENDSTOPS_ONLY_FOR_HOMING }
enable_endstops(false);
#endif static void clean_up_after_endstop_move() {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate; feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply; feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis(); previous_millis_cmd = millis();
} }
<<<<<<< HEAD
static void engage_z_probe() { static void engage_z_probe() {
// Engage Z Servo endstop if enabled // Engage Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS #ifdef SERVO_ENDSTOPS
@ -1250,59 +1242,13 @@ static void engage_z_probe() {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE"); LCD_ALERTMESSAGEPGM("Err: ZPROBE");
=======
static void engage_z_probe() {
#ifdef SERVO_ENDSTOPS
// Engage Z Servo endstop if enabled
if (servo_endstops[Z_AXIS] >= 0) {
#if SERVO_LEVELING
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
#elif defined(Z_PROBE_ALLEN_KEY)
feedrate = homing_feedrate[X_AXIS];
// Move to the start position to initiate deployment
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
prepare_move_raw();
// Home X to touch the belt
feedrate = homing_feedrate[X_AXIS]/10;
destination[X_AXIS] = 0;
prepare_move_raw();
// Home Y for safety
feedrate = homing_feedrate[X_AXIS]/2;
destination[Y_AXIS] = 0;
prepare_move_raw();
st_synchronize();
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (z_min_endstop) {
if (!Stopped) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
>>>>>>> MarlinFirmware/Development
} }
Stop(); Stop();
} }
#endif
#endif // Z_PROBE_ALLEN_KEY }
<<<<<<< HEAD
static void retract_z_probe() { static void retract_z_probe() {
// Retract Z Servo endstop if enabled // Retract Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS #ifdef SERVO_ENDSTOPS
@ -1365,216 +1311,126 @@ static void retract_z_probe() {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE"); LCD_ALERTMESSAGEPGM("Err: ZPROBE");
=======
}
static void retract_z_probe(const float z_after=Z_RAISE_AFTER_PROBING) {
#ifdef SERVO_ENDSTOPS
// Retract Z Servo endstop if enabled
if (servo_endstops[Z_AXIS] >= 0) {
if (z_after > 0) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_after);
st_synchronize();
>>>>>>> MarlinFirmware/Development
}
#if SERVO_LEVELING
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
#elif defined(Z_PROBE_ALLEN_KEY)
// Move up for safety
feedrate = homing_feedrate[X_AXIS];
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
prepare_move_raw();
// Move to the start position to initiate retraction
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
prepare_move_raw();
// Move the nozzle down to push the probe into retracted position
feedrate = homing_feedrate[Z_AXIS]/10;
destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
prepare_move_raw();
// Move up for safety
feedrate = homing_feedrate[Z_AXIS]/2;
destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
prepare_move_raw();
// Home XY for safety
feedrate = homing_feedrate[X_AXIS]/2;
destination[X_AXIS] = 0;
destination[Y_AXIS] = 0;
prepare_move_raw();
st_synchronize();
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (!z_min_endstop) {
if (!Stopped) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
} }
Stop(); Stop();
} }
#endif
#endif }
enum ProbeAction {
ProbeStay = 0,
ProbeEngage = BIT(0),
ProbeRetract = BIT(1),
ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
};
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeEngage) engage_z_probe();
#endif
run_z_probe();
float measured_z = current_position[Z_AXIS];
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeRetract) retract_z_probe();
#endif
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL;
} }
return measured_z;
}
enum ProbeAction { #ifdef DELTA
ProbeStay = 0, static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
ProbeEngage = BIT(0), if (bed_level[x][y] != 0.0) {
ProbeRetract = BIT(1), return; // Don't overwrite good values.
ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
};
// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeEngage) engage_z_probe();
#endif
run_z_probe();
float measured_z = current_position[Z_AXIS];
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeRetract) retract_z_probe(z_before);
#endif
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL;
}
return measured_z;
} }
float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
float median = c; // Median is robust (ignores outliers).
if (a < b) {
if (b < c) median = b;
if (c < a) median = a;
} else { // b <= a
if (c < b) median = b;
if (a < c) median = a;
}
bed_level[x][y] = median;
}
#ifdef DELTA // Fill in the unprobed points (corners of circular print surface)
// using linear extrapolation, away from the center.
/** static void extrapolate_unprobed_bed_level() {
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
*/ for (int y = 0; y <= half; y++) {
for (int x = 0; x <= half; x++) {
static void extrapolate_one_point(int x, int y, int xdir, int ydir) { if (x + y < 3) continue;
if (bed_level[x][y] != 0.0) { extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
return; // Don't overwrite good values. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
} extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
float median = c; // Median is robust (ignores outliers).
if (a < b) {
if (b < c) median = b;
if (c < a) median = a;
} else { // b <= a
if (c < b) median = b;
if (a < c) median = a;
}
bed_level[x][y] = median;
} }
}
}
// Fill in the unprobed points (corners of circular print surface) // Print calibration results for plotting or manual frame adjustment.
// using linear extrapolation, away from the center. static void print_bed_level() {
static void extrapolate_unprobed_bed_level() { for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2; for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
for (int y = 0; y <= half; y++) { SERIAL_PROTOCOL_F(bed_level[x][y], 2);
for (int x = 0; x <= half; x++) { SERIAL_PROTOCOLPGM(" ");
if (x + y < 3) continue;
extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
}
}
} }
SERIAL_ECHOLN("");
}
}
// Print calibration results for plotting or manual frame adjustment. // Reset calibration results to zero.
static void print_bed_level() { void reset_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
SERIAL_PROTOCOL_F(bed_level[x][y], 2); bed_level[x][y] = 0.0;
SERIAL_PROTOCOLPGM(" ");
}
SERIAL_ECHOLN("");
}
} }
}
}
// Reset calibration results to zero. #endif // DELTA
void reset_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
bed_level[x][y] = 0.0;
}
}
}
#endif // DELTA
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING
static void homeaxis(int axis) { static void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \ #define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if (axis == X_AXIS ? HOMEAXIS_DO(X) : if (axis==X_AXIS ? HOMEAXIS_DO(X) :
axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis==Y_AXIS ? HOMEAXIS_DO(Y) :
axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) { axis==Z_AXIS ? HOMEAXIS_DO(Z) :
0) {
int axis_home_dir; int axis_home_dir = home_dir(axis);
#ifdef DUAL_X_CARRIAGE
#ifdef DUAL_X_CARRIAGE if (axis == X_AXIS)
if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder); axis_home_dir = x_home_dir(active_extruder);
#else #endif
axis_home_dir = home_dir(axis);
#endif
current_position[axis] = 0; current_position[axis] = 0;
sync_plan_position(); sync_plan_position();
#ifndef Z_PROBE_SLED
// Engage Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
#if SERVO_LEVELING
if (axis == Z_AXIS) {
engage_z_probe();
}
else
#endif // SERVO_LEVELING
if (servo_endstops[axis] > -1)
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
#endif // SERVO_ENDSTOPS
#endif // Z_PROBE_SLED
<<<<<<< HEAD
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
// Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING // Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING
#ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP)) #ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP))
@ -1589,33 +1445,33 @@ static void homeaxis(int axis) {
} }
#endif #endif
#endif // Z_PROBE_SLED #endif // Z_PROBE_SLED
=======
>>>>>>> MarlinFirmware/Development
#ifdef Z_DUAL_ENDSTOPS #ifdef Z_DUAL_ENDSTOPS
if (axis == Z_AXIS) In_Homing_Process(true); if (axis==Z_AXIS) In_Homing_Process(true);
#endif #endif
destination[axis] = 1.5 * max_length(axis) * axis_home_dir; destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis]; feedrate = homing_feedrate[axis];
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
current_position[axis] = 0; current_position[axis] = 0;
sync_plan_position(); sync_plan_position();
destination[axis] = -home_retract_mm(axis) * axis_home_dir; destination[axis] = -home_retract_mm(axis) * axis_home_dir;
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir; destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
if (homing_bump_divisor[axis] >= 1) if (homing_bump_divisor[axis] >= 1)
feedrate = homing_feedrate[axis] / homing_bump_divisor[axis]; {
else { feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
feedrate = homing_feedrate[axis] / 10; }
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1"); else
{
feedrate = homing_feedrate[axis]/10;
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
} }
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
#ifdef Z_DUAL_ENDSTOPS #ifdef Z_DUAL_ENDSTOPS
if (axis==Z_AXIS) if (axis==Z_AXIS)
@ -1630,7 +1486,7 @@ static void homeaxis(int axis) {
destination[axis] = fabs(z_endstop_adj); destination[axis] = fabs(z_endstop_adj);
if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true); if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
} }
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
Lock_z_motor(false); Lock_z_motor(false);
Lock_z2_motor(false); Lock_z2_motor(false);
@ -1643,7 +1499,7 @@ static void homeaxis(int axis) {
if (endstop_adj[axis] * axis_home_dir < 0) { if (endstop_adj[axis] * axis_home_dir < 0) {
sync_plan_position(); sync_plan_position();
destination[axis] = endstop_adj[axis]; destination[axis] = endstop_adj[axis];
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
} }
#endif #endif
@ -1688,7 +1544,7 @@ void refresh_cmd_timeout(void)
} }
plan_set_e_position(current_position[E_AXIS]); plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate; float oldFeedrate = feedrate;
feedrate = retract_feedrate * 60; feedrate=retract_feedrate*60;
retracted[active_extruder]=true; retracted[active_extruder]=true;
prepare_move(); prepare_move();
if(retract_zlift > 0.01) { if(retract_zlift > 0.01) {
@ -1724,8 +1580,8 @@ void refresh_cmd_timeout(void)
} }
plan_set_e_position(current_position[E_AXIS]); plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate; float oldFeedrate = feedrate;
feedrate = retract_recover_feedrate * 60; feedrate=retract_recover_feedrate*60;
retracted[active_extruder] = false; retracted[active_extruder]=false;
prepare_move(); prepare_move();
feedrate = oldFeedrate; feedrate = oldFeedrate;
} }
@ -1879,16 +1735,17 @@ inline void gcode_G4() {
*/ */
inline void gcode_G28() { inline void gcode_G28() {
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#ifdef DELTA #ifdef DELTA
reset_bed_level(); reset_bed_level();
#else
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#endif #endif
#endif #endif
#if defined(MESH_BED_LEVELING) #if defined(MESH_BED_LEVELING)
uint8_t mbl_was_active = mbl.active; uint8_t mbl_was_active = mbl.active;
mbl.active = 0; mbl.active = 0;
#endif #endif // MESH_BED_LEVELING
saved_feedrate = feedrate; saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply; saved_feedmultiply = feedmultiply;
@ -1911,7 +1768,7 @@ inline void gcode_G28() {
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH; for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS]; feedrate = 1.732 * homing_feedrate[X_AXIS];
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
endstops_hit_on_purpose(); endstops_hit_on_purpose();
@ -1959,7 +1816,7 @@ inline void gcode_G28() {
} else { } else {
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1); feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
} }
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
axis_is_at_home(X_AXIS); axis_is_at_home(X_AXIS);
@ -1967,7 +1824,7 @@ inline void gcode_G28() {
sync_plan_position(); sync_plan_position();
destination[X_AXIS] = current_position[X_AXIS]; destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS];
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
feedrate = 0.0; feedrate = 0.0;
st_synchronize(); st_synchronize();
endstops_hit_on_purpose(); endstops_hit_on_purpose();
@ -2035,7 +1892,7 @@ inline void gcode_G28() {
#ifndef Z_PROBE_AND_ENDSTOP #ifndef Z_PROBE_AND_ENDSTOP
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS]; feedrate = max_feedrate[Z_AXIS];
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
#endif #endif
#endif #endif
@ -2048,11 +1905,11 @@ inline void gcode_G28() {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED; feedrate = XY_TRAVEL_SPEED / 60;
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
sync_plan_position(); sync_plan_position();
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
current_position[X_AXIS] = destination[X_AXIS]; current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS];
@ -2074,7 +1931,7 @@ inline void gcode_G28() {
plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS]; feedrate = max_feedrate[Z_AXIS];
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
HOMEAXIS(Z); HOMEAXIS(Z);
} }
@ -2127,7 +1984,7 @@ inline void gcode_G28() {
destination[Z_AXIS] = current_position[Z_AXIS]; destination[Z_AXIS] = current_position[Z_AXIS];
destination[E_AXIS] = current_position[E_AXIS]; destination[E_AXIS] = current_position[E_AXIS];
feedrate = homing_feedrate[X_AXIS]; feedrate = homing_feedrate[X_AXIS];
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
sync_plan_position(); sync_plan_position();
@ -2141,19 +1998,6 @@ inline void gcode_G28() {
endstops_hit_on_purpose(); endstops_hit_on_purpose();
} }
#if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
// Check for known positions in X and Y
inline bool can_run_bed_leveling() {
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
return false;
}
#endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
#ifdef MESH_BED_LEVELING #ifdef MESH_BED_LEVELING
/** /**
@ -2168,10 +2012,6 @@ inline void gcode_G28() {
* *
*/ */
inline void gcode_G29() { inline void gcode_G29() {
// Prevent leveling without first homing in X and Y
if (!can_run_bed_leveling()) return;
static int probe_point = -1; static int probe_point = -1;
int state = 0; int state = 0;
if (code_seen('S') || code_seen('s')) { if (code_seen('S') || code_seen('s')) {
@ -2288,8 +2128,13 @@ inline void gcode_G28() {
*/ */
inline void gcode_G29() { inline void gcode_G29() {
// Prevent leveling without first homing in X and Y // Prevent user from running a G29 without first homing in X and Y
if (!can_run_bed_leveling()) return; if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
return;
}
int verbose_level = 1; int verbose_level = 1;
@ -2371,15 +2216,16 @@ inline void gcode_G28() {
st_synchronize(); st_synchronize();
if (!dryrun) { if (!dryrun)
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong {
plan_bed_level_matrix.set_to_identity();
#ifdef DELTA #ifdef DELTA
reset_bed_level(); reset_bed_level();
#else //!DELTA #else //!DELTA
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm(); //vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29"); //corrected_position.debug("position before G29");
plan_bed_level_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position(); vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position during G29"); //uncorrected_position.debug("position during G29");
current_position[X_AXIS] = uncorrected_position.x; current_position[X_AXIS] = uncorrected_position.x;
@ -2387,7 +2233,7 @@ inline void gcode_G28() {
current_position[Z_AXIS] = uncorrected_position.z; current_position[Z_AXIS] = uncorrected_position.z;
sync_plan_position(); sync_plan_position();
#endif // !DELTA #endif
} }
setup_for_endstop_move(); setup_for_endstop_move();
@ -2448,12 +2294,13 @@ inline void gcode_G28() {
// raise extruder // raise extruder
float measured_z, float measured_z,
z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0); z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
#ifdef DELTA #ifdef DELTA
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe); float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
if (distance_from_center > DELTA_PROBABLE_RADIUS) continue; if (distance_from_center > DELTA_PROBABLE_RADIUS)
continue;
#endif //DELTA #endif //DELTA
// Enhanced G29 - Do not retract servo between probes // Enhanced G29 - Do not retract servo between probes
@ -2481,11 +2328,6 @@ inline void gcode_G28() {
#endif #endif
probePointCounter++; probePointCounter++;
manage_heater();
manage_inactivity();
lcd_update();
} //xProbe } //xProbe
} //yProbe } //yProbe
@ -2572,14 +2414,16 @@ inline void gcode_G28() {
if (verbose_level > 0) if (verbose_level > 0)
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
if (!dryrun) { // Correct the Z height difference from z-probe position and hotend tip position.
// Correct the Z height difference from z-probe position and hotend tip position. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. // When the bed is uneven, this height must be corrected.
// When the bed is uneven, this height must be corrected. if (!dryrun)
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, {
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, float x_tmp, y_tmp, z_tmp, real_z;
z_tmp = current_position[Z_AXIS], real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
z_tmp = current_position[Z_AXIS];
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
@ -3947,7 +3791,7 @@ inline void gcode_M221() {
extruder_multiply[tmp_extruder] = sval; extruder_multiply[tmp_extruder] = sval;
} }
else { else {
extruder_multiply[active_extruder] = sval; extrudemultiply = sval;
} }
} }
} }
@ -4384,7 +4228,7 @@ inline void gcode_M400() { st_synchronize(); }
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas); //SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extruder_multiply[active_extruder]); //SERIAL_PROTOCOL(extrudemultiply);
} }
/** /**
@ -4857,14 +4701,18 @@ void process_commands() {
gcode_G28(); gcode_G28();
break; break;
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING) #if defined(MESH_BED_LEVELING)
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. case 29: // G29 Handle mesh based leveling
gcode_G29(); gcode_G29();
break; break;
#endif #endif
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
gcode_G29();
break;
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe case 30: // G30 Single Z Probe
@ -5559,72 +5407,69 @@ void prepare_move()
#ifdef SCARA //for now same as delta-code #ifdef SCARA //for now same as delta-code
float difference[NUM_AXIS]; float difference[NUM_AXIS];
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; for (int8_t i=0; i < NUM_AXIS; i++) {
difference[i] = destination[i] - current_position[i];
}
float cartesian_mm = sqrt( sq(difference[X_AXIS]) + float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) + sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS])); sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); } if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; } if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(scara_segments_per_second * seconds)); int steps = max(1, int(scara_segments_per_second * seconds));
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
}
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i = 0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
}
calculate_delta(destination); calculate_delta(destination);
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]); //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]); //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]); //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]); //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]); //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0, destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder); active_extruder);
} }
#endif // SCARA
#endif // SCARA
#ifdef DELTA #ifdef DELTA
float difference[NUM_AXIS];
float difference[NUM_AXIS]; for (int8_t i=0; i < NUM_AXIS; i++) {
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; difference[i] = destination[i] - current_position[i];
}
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) + sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS])); sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) return; if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply; float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(delta_segments_per_second * seconds)); int steps = max(1, int(delta_segments_per_second * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for (int s = 1; s <= steps; s++) { for(int8_t i=0; i < NUM_AXIS; i++) {
float fraction = float(s) / float(steps); destination[i] = current_position[i] + difference[i] * fraction;
for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
calculate_delta(destination);
#ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta(destination);
#endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
} }
calculate_delta(destination);
#endif // DELTA plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#endif // DELTA
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (active_extruder_parked) if (active_extruder_parked)
@ -5670,13 +5515,13 @@ void prepare_move()
#if ! (defined DELTA || defined SCARA) #if ! (defined DELTA || defined SCARA)
// Do not use feedmultiply for E or Z only moves // Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
line_to_destination(); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
} else { } else {
#if defined(MESH_BED_LEVELING) #if defined(MESH_BED_LEVELING)
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder); mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
return; return;
#else #else
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
} }
#endif // !(DELTA || SCARA) #endif // !(DELTA || SCARA)

View file

@ -369,7 +369,7 @@ static void lcd_implementation_status_screen() {
lcd_printPGM(PSTR("dia:")); lcd_printPGM(PSTR("dia:"));
lcd_print(ftostr12ns(filament_width_meas)); lcd_print(ftostr12ns(filament_width_meas));
lcd_printPGM(PSTR(" factor:")); lcd_printPGM(PSTR(" factor:"));
lcd_print(itostr3(volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM])); lcd_print(itostr3(extrudemultiply));
lcd_print('%'); lcd_print('%');
} }
#endif #endif

View file

@ -545,7 +545,7 @@ float junction_deviation = 0.1;
block->steps[Z_AXIS] = labs(dz); block->steps[Z_AXIS] = labs(dz);
block->steps[E_AXIS] = labs(de); block->steps[E_AXIS] = labs(de);
block->steps[E_AXIS] *= volumetric_multiplier[active_extruder]; block->steps[E_AXIS] *= volumetric_multiplier[active_extruder];
block->steps[E_AXIS] *= extruder_multiply[active_extruder]; block->steps[E_AXIS] *= extrudemultiply;
block->steps[E_AXIS] /= 100; block->steps[E_AXIS] /= 100;
block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS]))); block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
@ -679,7 +679,7 @@ float junction_deviation = 0.1;
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS]; delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
#endif #endif
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extruder_multiply[active_extruder] / 100.0; delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extrudemultiply / 100.0;
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
block->millimeters = fabs(delta_mm[E_AXIS]); block->millimeters = fabs(delta_mm[E_AXIS]);

View file

@ -515,36 +515,31 @@ ISR(TIMER1_COMPA_vect) {
} }
if (TEST(out_bits, Z_AXIS)) { // -direction if (TEST(out_bits, Z_AXIS)) { // -direction
Z_APPLY_DIR(INVERT_Z_DIR,0); Z_APPLY_DIR(INVERT_Z_DIR,0);
count_direction[Z_AXIS] = -1; count_direction[Z_AXIS] = -1;
if (check_endstops)
if (check_endstops) { {
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
#if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0 #ifndef Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(z, Z, min, MIN);
#ifdef Z_DUAL_ENDSTOPS #else
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING, #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1
z2_min_endstop = bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING);
#if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0 #else
READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING bool z2_min_endstop=z_min_endstop;
#else #endif
z_min_endstop if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0))
#endif {
;
bool z_min_both = z_min_endstop && old_z_min_endstop,
z2_min_both = z2_min_endstop && old_z2_min_endstop;
if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit = true; endstop_z_hit=true;
if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing... if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing...
{
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
}
} }
old_z_min_endstop = z_min_endstop; old_z_min_endstop = z_min_endstop;
old_z2_min_endstop = z2_min_endstop; old_z2_min_endstop = z2_min_endstop;
<<<<<<< HEAD
#endif #endif
#endif #endif
@ -561,55 +556,37 @@ ISR(TIMER1_COMPA_vect) {
old_z_probe_endstop = z_probe_endstop; old_z_probe_endstop = z_probe_endstop;
#endif #endif
} }
=======
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(z, Z, min, MIN);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MIN_PIN
} // check_endstops
>>>>>>> MarlinFirmware/Development
} }
else { // +direction else { // +direction
Z_APPLY_DIR(!INVERT_Z_DIR,0); Z_APPLY_DIR(!INVERT_Z_DIR,0);
count_direction[Z_AXIS] = 1; count_direction[Z_AXIS] = 1;
if (check_endstops) { if (check_endstops) {
#if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0 #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
#ifndef Z_DUAL_ENDSTOPS
#ifdef Z_DUAL_ENDSTOPS UPDATE_ENDSTOP(z, Z, max, MAX);
#else
bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING, bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
z2_max_endstop = #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
#if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0 bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING);
READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING #else
#else bool z2_max_endstop=z_max_endstop;
z_max_endstop #endif
#endif if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0))
; {
bool z_max_both = z_max_endstop && old_z_max_endstop,
z2_max_both = z2_max_endstop && old_z2_max_endstop;
if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit = true; endstop_z_hit=true;
// if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true"); // if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true");
// if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true"); // if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true");
if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing...
{
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
}
} }
old_z_max_endstop = z_max_endstop; old_z_max_endstop = z_max_endstop;
old_z2_max_endstop = z2_max_endstop; old_z2_max_endstop = z2_max_endstop;
<<<<<<< HEAD
#endif #endif
#endif #endif
@ -626,34 +603,20 @@ ISR(TIMER1_COMPA_vect) {
#endif #endif
} }
} }
=======
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(z, Z, max, MAX);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN
} // check_endstops
} // +direction
>>>>>>> MarlinFirmware/Development
#ifndef ADVANCE #ifndef ADVANCE
if (TEST(out_bits, E_AXIS)) { // -direction if (TEST(out_bits, E_AXIS)) { // -direction
REV_E_DIR(); REV_E_DIR();
count_direction[E_AXIS] = -1; count_direction[E_AXIS]=-1;
} }
else { // +direction else { // +direction
NORM_E_DIR(); NORM_E_DIR();
count_direction[E_AXIS] = 1; count_direction[E_AXIS]=1;
} }
#endif //!ADVANCE #endif //!ADVANCE
// Take multiple steps per interrupt (For high speed moves) // Take multiple steps per interrupt (For high speed moves)
for (int8_t i = 0; i < step_loops; i++) { for (int8_t i=0; i < step_loops; i++) {
#ifndef AT90USB #ifndef AT90USB
MSerial.checkRx(); // Check for serial chars. MSerial.checkRx(); // Check for serial chars.
#endif #endif

View file

@ -485,7 +485,7 @@ static void lcd_tune_menu() {
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif #endif
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiply[active_extruder], 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F0, &extruder_multiply[0], 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F0, &extruder_multiply[0], 10, 999);
#if TEMP_SENSOR_1 != 0 #if TEMP_SENSOR_1 != 0
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F1, &extruder_multiply[1], 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F1, &extruder_multiply[1], 10, 999);

View file

@ -624,7 +624,7 @@ static void lcd_implementation_status_screen()
static void lcd_implementation_drawmenu_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char post_char) { static void lcd_implementation_drawmenu_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char post_char) {
char c; char c;
uint8_t n = LCD_WIDTH - 2; uint8_t n = LCD_WIDTH - 1 - (LCD_WIDTH < 20 ? 1 : 2);
lcd.setCursor(0, row); lcd.setCursor(0, row);
lcd.print(sel ? pre_char : ' '); lcd.print(sel ? pre_char : ' ');
while ((c = pgm_read_byte(pstr)) && n > 0) { while ((c = pgm_read_byte(pstr)) && n > 0) {
@ -633,11 +633,12 @@ static void lcd_implementation_drawmenu_generic(bool sel, uint8_t row, const cha
} }
while(n--) lcd.print(' '); while(n--) lcd.print(' ');
lcd.print(post_char); lcd.print(post_char);
lcd.print(' ');
} }
static void lcd_implementation_drawmenu_setting_edit_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char* data) { static void lcd_implementation_drawmenu_setting_edit_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char* data) {
char c; char c;
uint8_t n = LCD_WIDTH - 2 - lcd_strlen(data); uint8_t n = LCD_WIDTH - 1 - (LCD_WIDTH < 20 ? 1 : 2) - lcd_strlen(data);
lcd.setCursor(0, row); lcd.setCursor(0, row);
lcd.print(sel ? pre_char : ' '); lcd.print(sel ? pre_char : ' ');
while ((c = pgm_read_byte(pstr)) && n > 0) { while ((c = pgm_read_byte(pstr)) && n > 0) {
@ -650,7 +651,7 @@ static void lcd_implementation_drawmenu_setting_edit_generic(bool sel, uint8_t r
} }
static void lcd_implementation_drawmenu_setting_edit_generic_P(bool sel, uint8_t row, const char* pstr, char pre_char, const char* data) { static void lcd_implementation_drawmenu_setting_edit_generic_P(bool sel, uint8_t row, const char* pstr, char pre_char, const char* data) {
char c; char c;
uint8_t n = LCD_WIDTH - 2 - lcd_strlen_P(data); uint8_t n = LCD_WIDTH - 1 - (LCD_WIDTH < 20 ? 1 : 2) - lcd_strlen_P(data);
lcd.setCursor(0, row); lcd.setCursor(0, row);
lcd.print(sel ? pre_char : ' '); lcd.print(sel ? pre_char : ' ');
while ((c = pgm_read_byte(pstr)) && n > 0) { while ((c = pgm_read_byte(pstr)) && n > 0) {
@ -687,11 +688,11 @@ void lcd_implementation_drawedit(const char* pstr, char* value) {
lcd.setCursor(1, 1); lcd.setCursor(1, 1);
lcd_printPGM(pstr); lcd_printPGM(pstr);
lcd.print(':'); lcd.print(':');
lcd.setCursor(LCD_WIDTH - lcd_strlen(value), 1); lcd.setCursor(LCD_WIDTH - (LCD_WIDTH < 20 ? 0 : 1) - lcd_strlen(value), 1);
lcd_print(value); lcd_print(value);
} }
static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename, uint8_t concat, char post_char) { static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename, uint8_t concat) {
char c; char c;
uint8_t n = LCD_WIDTH - concat; uint8_t n = LCD_WIDTH - concat;
lcd.setCursor(0, row); lcd.setCursor(0, row);
@ -705,15 +706,14 @@ static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* ps
filename++; filename++;
} }
while (n--) lcd.print(' '); while (n--) lcd.print(' ');
lcd.print(post_char);
} }
static void lcd_implementation_drawmenu_sdfile(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) { static void lcd_implementation_drawmenu_sdfile(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) {
lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, ' '); lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 1);
} }
static void lcd_implementation_drawmenu_sddirectory(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) { static void lcd_implementation_drawmenu_sddirectory(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) {
lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, LCD_STR_FOLDER[0]); lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2);
} }
#define lcd_implementation_drawmenu_back(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, LCD_STR_UPLEVEL[0], LCD_STR_UPLEVEL[0]) #define lcd_implementation_drawmenu_back(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, LCD_STR_UPLEVEL[0], LCD_STR_UPLEVEL[0])