G34 automatic point assignment (#16473)

This commit is contained in:
InsanityAutomation 2020-02-01 05:50:44 -05:00 committed by GitHub
parent 90b6324563
commit e58d1bf974
Signed by: GitHub
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 298 additions and 105 deletions

View file

@ -668,11 +668,37 @@
*/
//#define Z_STEPPER_AUTO_ALIGN
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
// Define probe X and Y positions for Z1, Z2 [, Z3]
#define Z_STEPPER_ALIGN_XY { { 10, 190 }, { 100, 10 }, { 190, 190 } }
// Define probe X and Y positions for Z1, Z2 [, Z3 [, Z4]]
// If not defined, probe limits will be used.
// Override with 'M422 S<index> X<pos> Y<pos>'
//#define Z_STEPPER_ALIGN_XY { { 10, 190 }, { 100, 10 }, { 190, 190 } }
/**
* Orientation for the automatically-calculated probe positions.
* Override Z stepper align points with 'M422 S<index> X<pos> Y<pos>'
*
* 2 Steppers: (0) (1)
* | | 2 |
* | 1 2 | |
* | | 1 |
*
* 3 Steppers: (0) (1) (2) (3)
* | 3 | 1 | 2 1 | 2 |
* | | 3 | | 3 |
* | 1 2 | 2 | 3 | 1 |
*
* 4 Steppers: (0) (1) (2) (3)
* | 4 3 | 1 4 | 2 1 | 3 2 |
* | | | | |
* | 1 2 | 2 3 | 3 4 | 4 1 |
*
*/
#ifndef Z_STEPPER_ALIGN_XY
//#define Z_STEPPERS_ORIENTATION 0
#endif
// Provide Z stepper positions for more rapid convergence in bed alignment.
// Currently requires triple stepper drivers.
// Requires triple stepper drivers (i.e., set NUM_Z_STEPPER_DRIVERS to 3)
//#define Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Define Stepper XY positions for Z1, Z2, Z3 corresponding to
@ -680,23 +706,16 @@
// Define one position per Z stepper in stepper driver order.
#define Z_STEPPER_ALIGN_STEPPER_XY { { 210.7, 102.5 }, { 152.6, 220.0 }, { 94.5, 102.5 } }
#else
// Amplification factor. Used to scale the correction step up or down.
// In case the stepper (spindle) position is further out than the test point.
// Use a value > 1. NOTE: This may cause instability
#define Z_STEPPER_ALIGN_AMP 1.0
// Amplification factor. Used to scale the correction step up or down in case
// the stepper (spindle) position is farther out than the test point.
#define Z_STEPPER_ALIGN_AMP 1.0 // Use a value > 1.0 NOTE: This may cause instability!
#endif
// Set number of iterations to align
#define Z_STEPPER_ALIGN_ITERATIONS 3
// Enable to restore leveling setup after operation
#define RESTORE_LEVELING_AFTER_G34
// On a 300mm bed a 5% grade would give a misalignment of ~1.5cm
#define G34_MAX_GRADE 5 // (%) Maximum incline G34 will handle
// Stop criterion. If the accuracy is better than this stop iterating early
#define Z_STEPPER_ALIGN_ACC 0.02
#define G34_MAX_GRADE 5 // (%) Maximum incline that G34 will handle
#define Z_STEPPER_ALIGN_ITERATIONS 5 // Number of iterations to apply during alignment
#define Z_STEPPER_ALIGN_ACC 0.02 // Stop iterating early if the accuracy is better than this
#define RESTORE_LEVELING_AFTER_G34 // Restore leveling after G34 is done?
#endif
// @section motion

View file

@ -0,0 +1,137 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* feature/z_stepper_align.cpp
*/
#include "../inc/MarlinConfigPre.h"
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
#include "z_stepper_align.h"
#include "../module/probe.h"
ZStepperAlign z_stepper_align;
xy_pos_t ZStepperAlign::xy[NUM_Z_STEPPER_DRIVERS];
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
xy_pos_t ZStepperAlign::stepper_xy[NUM_Z_STEPPER_DRIVERS];
#endif
void ZStepperAlign::reset_to_default() {
#ifdef Z_STEPPER_ALIGN_XY
constexpr xy_pos_t xy_init[] = Z_STEPPER_ALIGN_XY;
static_assert(COUNT(xy_init) == NUM_Z_STEPPER_DRIVERS,
"Z_STEPPER_ALIGN_XY requires "
#if NUM_Z_STEPPER_DRIVERS == 4
"four {X,Y} entries (Z, Z2, Z3, and Z4)."
#elif NUM_Z_STEPPER_DRIVERS == 3
"three {X,Y} entries (Z, Z2, and Z3)."
#else
"two {X,Y} entries (Z and Z2)."
#endif
);
constexpr xyz_pos_t dpo = NOZZLE_TO_PROBE_OFFSET;
#define LTEST(N) (xy_init[N].x >= _MAX(X_MIN_BED + MIN_PROBE_EDGE_LEFT, X_MIN_POS + dpo.x) - 0.00001f)
#define RTEST(N) (xy_init[N].x <= _MIN(X_MAX_BED - MIN_PROBE_EDGE_RIGHT, X_MAX_POS + dpo.x) + 0.00001f)
#define FTEST(N) (xy_init[N].y >= _MAX(Y_MIN_BED + MIN_PROBE_EDGE_FRONT, Y_MIN_POS + dpo.y) - 0.00001f)
#define BTEST(N) (xy_init[N].y <= _MIN(Y_MAX_BED - MIN_PROBE_EDGE_BACK, Y_MAX_POS + dpo.y) + 0.00001f)
static_assert(LTEST(0) && RTEST(0), "The 1st Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(0) && BTEST(0), "The 1st Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
static_assert(LTEST(1) && RTEST(1), "The 2nd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(1) && BTEST(1), "The 2nd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
#if NUM_Z_STEPPER_DRIVERS >= 3
static_assert(LTEST(2) && RTEST(2), "The 3rd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(2) && BTEST(2), "The 3rd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
#if NUM_Z_STEPPER_DRIVERS >= 4
static_assert(LTEST(3) && RTEST(3), "The 4th Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(3) && BTEST(3), "The 4th Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
#endif
#endif
#else // !defined(Z_STEPPER_ALIGN_XY)
const xy_pos_t xy_init[] = {
#if NUM_Z_STEPPER_DRIVERS >= 3 // First probe point...
#if !Z_STEPPERS_ORIENTATION
{ probe.min_x(), probe.min_y() }, // SW
#elif Z_STEPPERS_ORIENTATION == 1
{ probe.min_x(), probe.max_y() }, // NW
#elif Z_STEPPERS_ORIENTATION == 2
{ probe.max_x(), probe.max_y() }, // NE
#elif Z_STEPPERS_ORIENTATION == 3
{ probe.max_x(), probe.min_y() }, // SE
#else
#error "Z_STEPPERS_ORIENTATION must be from 0 to 3 (first point SW, NW, NE, SE)."
#endif
#if NUM_Z_STEPPER_DRIVERS == 4 // 3 more points...
#if !Z_STEPPERS_ORIENTATION
{ probe.min_x(), probe.max_y() }, { probe.max_x(), probe.max_y() }, { probe.max_x(), probe.min_y() } // SW
#elif Z_STEPPERS_ORIENTATION == 1
{ probe.max_x(), probe.max_y() }, { probe.max_x(), probe.min_y() }, { probe.min_x(), probe.min_y() } // NW
#elif Z_STEPPERS_ORIENTATION == 2
{ probe.max_x(), probe.min_y() }, { probe.min_x(), probe.min_y() }, { probe.min_x(), probe.max_y() } // NE
#elif Z_STEPPERS_ORIENTATION == 3
{ probe.min_x(), probe.min_y() }, { probe.min_x(), probe.max_y() }, { probe.max_x(), probe.max_y() } // SE
#endif
#elif !Z_STEPPERS_ORIENTATION // or 2 more points...
{ probe.max_x(), probe.min_y() }, { X_CENTER, probe.max_y() } // SW
#elif Z_STEPPERS_ORIENTATION == 1
{ probe.min_x(), probe.min_y() }, { probe.max_x(), Y_CENTER } // NW
#elif Z_STEPPERS_ORIENTATION == 2
{ probe.min_x(), probe.max_y() }, { X_CENTER, probe.min_y() } // NE
#elif Z_STEPPERS_ORIENTATION == 3
{ probe.max_x(), probe.max_y() }, { probe.min_x(), Y_CENTER } // SE
#endif
#elif Z_STEPPERS_ORIENTATION
{ X_CENTER, probe.min_y() }, { X_CENTER, probe.max_y() }
#else
{ probe.min_x(), Y_CENTER }, { probe.max_x(), Y_CENTER }
#endif
};
#endif // !defined(Z_STEPPER_ALIGN_XY)
COPY(xy, xy_init);
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
constexpr xy_pos_t stepper_xy_init[] = Z_STEPPER_ALIGN_STEPPER_XY;
static_assert(
COUNT(stepper_xy_init) == NUM_Z_STEPPER_DRIVERS,
"Z_STEPPER_ALIGN_STEPPER_XY requires "
#if NUM_Z_STEPPER_DRIVERS == 4
"four {X,Y} entries (Z, Z2, Z3, and Z4)."
#elif NUM_Z_STEPPER_DRIVERS == 3
"three {X,Y} entries (Z, Z2, and Z3)."
#endif
);
COPY(stepper_xy, stepper_xy_init);
#endif
}
#endif // Z_STEPPER_AUTO_ALIGN

View file

@ -0,0 +1,41 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* feature/z_stepper_align.h
*/
#include "../inc/MarlinConfig.h"
class ZStepperAlign {
public:
static xy_pos_t xy[NUM_Z_STEPPER_DRIVERS];
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
static xy_pos_t stepper_xy[NUM_Z_STEPPER_DRIVERS];
#endif
static void reset_to_default();
};
extern ZStepperAlign z_stepper_align;

View file

@ -707,7 +707,7 @@ void GcodeSuite::G26() {
if (location.valid()) {
const xy_pos_t circle = _GET_MESH_POS(location.pos);
// If this mesh location is outside the printable_radius, skip it.
// If this mesh location is outside the printable radius, skip it.
if (!position_is_reachable(circle)) continue;
// Determine where to start and end the circle,

View file

@ -24,6 +24,8 @@
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
#include "../../feature/z_stepper_align.h"
#include "../gcode.h"
#include "../../module/planner.h"
#include "../../module/stepper.h"
@ -45,68 +47,6 @@
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
#include "../../core/debug_out.h"
//
// Sanity check G34 / M422 settings
//
constexpr xy_pos_t test_z_stepper_align_xy[] = Z_STEPPER_ALIGN_XY;
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
static_assert(COUNT(test_z_stepper_align_xy) >= NUM_Z_STEPPER_DRIVERS,
"Z_STEPPER_ALIGN_XY requires at least three {X,Y} entries (Z, Z2, Z3, ...)."
);
constexpr float test_z_stepper_align_stepper_xy[][XY] = Z_STEPPER_ALIGN_STEPPER_XY;
static_assert(
COUNT(test_z_stepper_align_stepper_xy) == NUM_Z_STEPPER_DRIVERS,
"Z_STEPPER_ALIGN_STEPPER_XY requires three {X,Y} entries (one per Z stepper)."
);
#else
static_assert(COUNT(test_z_stepper_align_xy) == NUM_Z_STEPPER_DRIVERS,
#if NUM_Z_STEPPER_DRIVERS == 4
"Z_STEPPER_ALIGN_XY requires four {X,Y} entries (Z, Z2, Z3, and Z4)."
#elif NUM_Z_STEPPER_DRIVERS == 3
"Z_STEPPER_ALIGN_XY requires three {X,Y} entries (Z, Z2, and Z3)."
#else
"Z_STEPPER_ALIGN_XY requires two {X,Y} entries (Z and Z2)."
#endif
);
#endif
constexpr xyz_pos_t dpo = NOZZLE_TO_PROBE_OFFSET;
#define LTEST(N) (test_z_stepper_align_xy[N].x >= _MAX(X_MIN_BED + MIN_PROBE_EDGE_LEFT, X_MIN_POS + dpo.x) - 0.00001f)
#define RTEST(N) (test_z_stepper_align_xy[N].x <= _MIN(X_MAX_BED - MIN_PROBE_EDGE_RIGHT, X_MAX_POS + dpo.x) + 0.00001f)
#define FTEST(N) (test_z_stepper_align_xy[N].y >= _MAX(Y_MIN_BED + MIN_PROBE_EDGE_FRONT, Y_MIN_POS + dpo.y) - 0.00001f)
#define BTEST(N) (test_z_stepper_align_xy[N].y <= _MIN(Y_MAX_BED - MIN_PROBE_EDGE_BACK, Y_MAX_POS + dpo.y) + 0.00001f)
static_assert(LTEST(0) && RTEST(0), "The 1st Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(0) && BTEST(0), "The 1st Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
static_assert(LTEST(1) && RTEST(1), "The 2nd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(1) && BTEST(1), "The 2nd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
#if NUM_Z_STEPPER_DRIVERS >= 3
static_assert(LTEST(2) && RTEST(2), "The 3rd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(2) && BTEST(2), "The 3rd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
#if NUM_Z_STEPPER_DRIVERS >= 4
static_assert(LTEST(3) && RTEST(3), "The 4th Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
static_assert(FTEST(3) && BTEST(3), "The 4th Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
#endif
#endif
//
// G34 / M422 shared data
//
static xy_pos_t z_stepper_align_pos[] = Z_STEPPER_ALIGN_XY;
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
static xy_pos_t z_stepper_align_stepper_pos[] = Z_STEPPER_ALIGN_STEPPER_XY;
#endif
#define G34_PROBE_COUNT COUNT(z_stepper_align_pos)
inline void set_all_z_lock(const bool lock) {
stepper.set_z_lock(lock);
stepper.set_z2_lock(lock);
@ -201,11 +141,11 @@ void GcodeSuite::G34() {
// iteration this will be re-calculated based on the actual bed position
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * (
#if NUM_Z_STEPPER_DRIVERS == 3
SQRT(_MAX(HYPOT2(z_stepper_align_pos[0].x - z_stepper_align_pos[0].y, z_stepper_align_pos[1].x - z_stepper_align_pos[1].y),
HYPOT2(z_stepper_align_pos[1].x - z_stepper_align_pos[1].y, z_stepper_align_pos[2].x - z_stepper_align_pos[2].y),
HYPOT2(z_stepper_align_pos[2].x - z_stepper_align_pos[2].y, z_stepper_align_pos[0].x - z_stepper_align_pos[0].y)))
SQRT(_MAX(HYPOT2(z_stepper_align.xy[0].x - z_stepper_align.xy[0].y, z_stepper_align.xy[1].x - z_stepper_align.xy[1].y),
HYPOT2(z_stepper_align.xy[1].x - z_stepper_align.xy[1].y, z_stepper_align.xy[2].x - z_stepper_align.xy[2].y),
HYPOT2(z_stepper_align.xy[2].x - z_stepper_align.xy[2].y, z_stepper_align.xy[0].x - z_stepper_align.xy[0].y)))
#else
HYPOT(z_stepper_align_pos[0].x - z_stepper_align_pos[0].y, z_stepper_align_pos[1].x - z_stepper_align_pos[1].y)
HYPOT(z_stepper_align.xy[0].x - z_stepper_align.xy[0].y, z_stepper_align.xy[1].x - z_stepper_align.xy[1].y)
#endif
);
@ -216,31 +156,39 @@ void GcodeSuite::G34() {
current_position.z -= z_probe * 0.5f;
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f),
z_measured[G34_PROBE_COUNT] = { 0 },
z_measured[NUM_Z_STEPPER_DRIVERS] = { 0 },
z_maxdiff = 0.0f,
amplification = z_auto_align_amplification;
uint8_t iteration;
bool err_break = false;
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
bool adjustment_reverse = false;
#endif
for (iteration = 0; iteration < z_auto_align_iterations; ++iteration) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions.");
SERIAL_ECHOLNPAIR("\nITERATION: ", int(iteration + 1));
// Initialize minimum value
float z_measured_min = 100000.0f,
float z_measured_min = 100000.0f,
z_measured_max = -100000.0f;
// Probe all positions (one per Z-Stepper)
for (uint8_t i = 0; i < G34_PROBE_COUNT; ++i) {
for (uint8_t i = 0; i < NUM_Z_STEPPER_DRIVERS; ++i) {
// iteration odd/even --> downward / upward stepper sequence
const uint8_t iprobe = (iteration & 1) ? G34_PROBE_COUNT - 1 - i : i;
const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPER_DRIVERS - 1 - i : i;
// Safe clearance even on an incline
if (iteration == 0 || i > 0) do_blocking_move_to_z(z_probe);
if (DEBUGGING(LEVELING))
DEBUG_ECHOLNPAIR_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y);
// Probe a Z height for each stepper.
const float z_probed_height = probe.probe_at_point(z_stepper_align_pos[iprobe], raise_after, 0, true);
const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true);
if (isnan(z_probed_height)) {
SERIAL_ECHOLNPGM("Probing failed.");
err_break = true;
@ -279,15 +227,15 @@ void GcodeSuite::G34() {
// This allows the actual adjustment logic to be shared by both algorithms.
linear_fit_data lfd;
incremental_LSF_reset(&lfd);
for (uint8_t i = 0; i < G34_PROBE_COUNT; ++i) {
SERIAL_ECHOLNPAIR("PROBEPT_", int(i + 1), ": ", z_measured[i]);
incremental_LSF(&lfd, z_stepper_align_pos[i], z_measured[i]);
for (uint8_t i = 0; i < NUM_Z_STEPPER_DRIVERS; ++i) {
SERIAL_ECHOLNPAIR("PROBEPT_", i + '1', ": ", z_measured[i]);
incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
}
finish_incremental_LSF(&lfd);
z_measured_min = 100000.0f;
for (uint8_t i = 0; i < NUM_Z_STEPPER_DRIVERS; ++i) {
z_measured[i] = -(lfd.A * z_stepper_align_stepper_pos[i].x + lfd.B * z_stepper_align_stepper_pos[i].y);
z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y);
z_measured_min = _MIN(z_measured_min, z_measured[i]);
}
@ -309,8 +257,8 @@ void GcodeSuite::G34() {
// Correct the individual stepper offsets
for (uint8_t zstepper = 0; zstepper < NUM_Z_STEPPER_DRIVERS; ++zstepper) {
// Calculate current stepper move
const float z_align_move = z_measured[zstepper] - z_measured_min,
z_align_abs = ABS(z_align_move);
float z_align_move = z_measured[zstepper] - z_measured_min;
const float z_align_abs = ABS(z_align_move);
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Optimize one iteration's correction based on the first measurements
@ -318,10 +266,14 @@ void GcodeSuite::G34() {
#endif
// Check for less accuracy compared to last move
if (last_z_align_move[zstepper] < z_align_abs - 1.0) {
if (last_z_align_move[zstepper] < z_align_abs * 0.7f) {
SERIAL_ECHOLNPGM("Decreasing accuracy detected.");
err_break = true;
break;
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
adjustment_reverse = !adjustment_reverse;
#else
err_break = true;
break;
#endif
}
// Remember the alignment for the next iteration
@ -342,6 +294,13 @@ void GcodeSuite::G34() {
#endif
}
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
// Decreasing accuracy was detected so move was inverted.
// Will match reversed Z steppers on dual steppers. Triple will need more work to map.
if (adjustment_reverse)
z_align_move = -z_align_move;
#endif
// Do a move to correct part of the misalignment for the current stepper
do_blocking_move_to_z(amplification * z_align_move + current_position.z);
} // for (zstepper)
@ -406,12 +365,13 @@ void GcodeSuite::G34() {
* Y<pos> : Y position to set (Unchanged if omitted)
*/
void GcodeSuite::M422() {
if (!parser.seen_any()) {
for (uint8_t i = 0; i < G34_PROBE_COUNT; ++i)
SERIAL_ECHOLNPAIR_P(PSTR("M422 S"), i + 1, SP_X_STR, z_stepper_align_pos[i].x, SP_Y_STR, z_stepper_align_pos[i].y);
for (uint8_t i = 0; i < NUM_Z_STEPPER_DRIVERS; ++i)
SERIAL_ECHOLNPAIR_P(PSTR("M422 S"), i + '1', SP_X_STR, z_stepper_align.xy[i].x, SP_Y_STR, z_stepper_align.xy[i].y);
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
for (uint8_t i = 0; i < NUM_Z_STEPPER_DRIVERS; ++i)
SERIAL_ECHOLNPAIR_P(PSTR("M422 W"), i + 1, SP_X_STR, z_stepper_align_stepper_pos[i].x, SP_Y_STR, z_stepper_align_stepper_pos[i].y);
SERIAL_ECHOLNPAIR_P(PSTR("M422 W"), i + '1', SP_X_STR, z_stepper_align.stepper_xy[i].x, SP_Y_STR, z_stepper_align.stepper_xy[i].y);
#endif
return;
}
@ -427,9 +387,9 @@ void GcodeSuite::M422() {
xy_pos_t *pos_dest = (
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
!is_probe_point ? z_stepper_align_stepper_pos :
!is_probe_point ? z_stepper_align.stepper_xy :
#endif
z_stepper_align_pos
z_stepper_align.xy
);
if (!is_probe_point
@ -451,7 +411,7 @@ void GcodeSuite::M422() {
int8_t position_index;
if (is_probe_point) {
position_index = parser.intval('S') - 1;
if (!WITHIN(position_index, 0, int8_t(G34_PROBE_COUNT) - 1)) {
if (!WITHIN(position_index, 0, int8_t(NUM_Z_STEPPER_DRIVERS) - 1)) {
SERIAL_ECHOLNPGM("?(S) Z-ProbePosition index invalid.");
return;
}

View file

@ -37,7 +37,7 @@
*/
// Change EEPROM version if the structure changes
#define EEPROM_VERSION "V75"
#define EEPROM_VERSION "V76"
#define EEPROM_OFFSET 100
// Check the integrity of data offsets.
@ -66,6 +66,10 @@
#include "../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
#include "../feature/z_stepper_align.h"
#endif
#if ENABLED(EXTENSIBLE_UI)
#include "../lcd/extensible_ui/ui_api.h"
#endif
@ -251,6 +255,16 @@ typedef struct SettingsDataStruct {
z4_endstop_adj; // M666 (S4) Z
#endif
//
// Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
//
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
#endif
#endif
//
// ULTIPANEL
//
@ -801,6 +815,13 @@ void MarlinSettings::postprocess() {
#endif
}
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
EEPROM_WRITE(z_stepper_align.xy);
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
EEPROM_WRITE(z_stepper_align.stepper_xy);
#endif
#endif
//
// LCD Preheat settings
//
@ -1669,6 +1690,13 @@ void MarlinSettings::postprocess() {
#endif
}
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
EEPROM_READ(z_stepper_align.xy);
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
EEPROM_READ(z_stepper_align.stepper_xy);
#endif
#endif
//
// LCD Preheat settings
//
@ -2473,6 +2501,14 @@ void MarlinSettings::reset() {
#endif
#endif
//
// Z Stepper Auto-alignment points
//
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
z_stepper_align.reset_to_default();
#endif
//
// Servo Angles
//