consistency name for multiplier
replace extruder_multiply with extruder_multiplier like feedrate_multiplier or volumetric_multiplier
This commit is contained in:
parent
9c09967803
commit
e7e964432b
4 changed files with 12 additions and 12 deletions
|
@ -269,7 +269,7 @@ extern float homing_feedrate[];
|
||||||
extern bool axis_relative_modes[];
|
extern bool axis_relative_modes[];
|
||||||
extern int feedrate_multiplier;
|
extern int feedrate_multiplier;
|
||||||
extern bool volumetric_enabled;
|
extern bool volumetric_enabled;
|
||||||
extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
|
extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
|
||||||
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
|
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
|
||||||
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
|
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
|
||||||
extern float current_position[NUM_AXIS];
|
extern float current_position[NUM_AXIS];
|
||||||
|
|
|
@ -251,7 +251,7 @@ float homing_feedrate[] = HOMING_FEEDRATE;
|
||||||
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
||||||
int feedrate_multiplier = 100; //100->1 200->2
|
int feedrate_multiplier = 100; //100->1 200->2
|
||||||
int saved_feedrate_multiplier;
|
int saved_feedrate_multiplier;
|
||||||
int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
|
int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
|
||||||
bool volumetric_enabled = false;
|
bool volumetric_enabled = false;
|
||||||
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
|
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
|
||||||
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
|
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
|
||||||
|
@ -4187,10 +4187,10 @@ inline void gcode_M221() {
|
||||||
int sval = code_value();
|
int sval = code_value();
|
||||||
if (code_seen('T')) {
|
if (code_seen('T')) {
|
||||||
if (setTargetedHotend(221)) return;
|
if (setTargetedHotend(221)) return;
|
||||||
extruder_multiply[target_extruder] = sval;
|
extruder_multiplier[target_extruder] = sval;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
extruder_multiply[active_extruder] = sval;
|
extruder_multiplier[active_extruder] = sval;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -4637,7 +4637,7 @@ inline void gcode_M400() { st_synchronize(); }
|
||||||
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||||
//SERIAL_PROTOCOL(filament_width_meas);
|
//SERIAL_PROTOCOL(filament_width_meas);
|
||||||
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
||||||
//SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
|
//SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -540,7 +540,7 @@ float junction_deviation = 0.1;
|
||||||
block->steps[Z_AXIS] = labs(dz);
|
block->steps[Z_AXIS] = labs(dz);
|
||||||
block->steps[E_AXIS] = labs(de);
|
block->steps[E_AXIS] = labs(de);
|
||||||
block->steps[E_AXIS] *= volumetric_multiplier[extruder];
|
block->steps[E_AXIS] *= volumetric_multiplier[extruder];
|
||||||
block->steps[E_AXIS] *= extruder_multiply[extruder];
|
block->steps[E_AXIS] *= extruder_multiplier[extruder];
|
||||||
block->steps[E_AXIS] /= 100;
|
block->steps[E_AXIS] /= 100;
|
||||||
block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
|
block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
|
||||||
|
|
||||||
|
@ -674,7 +674,7 @@ float junction_deviation = 0.1;
|
||||||
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
||||||
#endif
|
#endif
|
||||||
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
||||||
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiply[extruder] / 100.0;
|
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
|
||||||
|
|
||||||
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
|
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
|
||||||
block->millimeters = fabs(delta_mm[E_AXIS]);
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
||||||
|
|
|
@ -488,16 +488,16 @@ static void lcd_tune_menu() {
|
||||||
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
|
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
|
||||||
#endif
|
#endif
|
||||||
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
|
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
|
||||||
MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiply[active_extruder], 10, 999);
|
MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiplier[active_extruder], 10, 999);
|
||||||
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N0, &extruder_multiply[0], 10, 999);
|
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N0, &extruder_multiplier[0], 10, 999);
|
||||||
#if TEMP_SENSOR_1 != 0
|
#if TEMP_SENSOR_1 != 0
|
||||||
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N1, &extruder_multiply[1], 10, 999);
|
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N1, &extruder_multiplier[1], 10, 999);
|
||||||
#endif
|
#endif
|
||||||
#if TEMP_SENSOR_2 != 0
|
#if TEMP_SENSOR_2 != 0
|
||||||
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N2, &extruder_multiply[2], 10, 999);
|
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N2, &extruder_multiplier[2], 10, 999);
|
||||||
#endif
|
#endif
|
||||||
#if TEMP_SENSOR_3 != 0
|
#if TEMP_SENSOR_3 != 0
|
||||||
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N3, &extruder_multiply[3], 10, 999);
|
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N3, &extruder_multiplier[3], 10, 999);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef BABYSTEPPING
|
#ifdef BABYSTEPPING
|
||||||
|
|
Reference in a new issue