Merge branch 'Development-Marlin' into Development
Conflicts: Marlin/Configuration.h Marlin/Marlin_main.cpp
This commit is contained in:
commit
ea10601406
50 changed files with 1603 additions and 1183 deletions
9
.gitignore
vendored
9
.gitignore
vendored
|
@ -1,3 +1,12 @@
|
|||
// Our automatic versioning scheme generates the following file
|
||||
// NEVER put it in the repository
|
||||
_Version.h
|
||||
|
||||
// All of the following OS, IDE and compiler generated file
|
||||
// references should be moved from this file
|
||||
// They are needed, but they belong in your global .gitignore
|
||||
// rather than in a per-project file such as this
|
||||
|
||||
*.o
|
||||
applet/
|
||||
*~
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
compiler.cpp.extra_flags=-DHAS_AUTOMATIC_VERSIONING
|
|
@ -10,6 +10,8 @@
|
|||
|
||||
#ifndef CONFIGURATION_LCD // Get the LCD defines which are needed first
|
||||
|
||||
#define PIN_EXISTS(PN) (defined(PN##_PIN) && PN##_PIN >= 0)
|
||||
|
||||
#define CONFIGURATION_LCD
|
||||
|
||||
#if defined(MAKRPANEL)
|
||||
|
@ -189,6 +191,9 @@
|
|||
#define ENDSTOPPULLUP_YMIN
|
||||
#define ENDSTOPPULLUP_ZMIN
|
||||
#endif
|
||||
#ifndef DISABLE_Z_PROBE_ENDSTOP
|
||||
#define ENDSTOPPULLUP_ZPROBE
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
@ -276,7 +281,7 @@
|
|||
#define PS_ON_AWAKE HIGH
|
||||
#define PS_ON_ASLEEP LOW
|
||||
#endif
|
||||
#define HAS_POWER_SWITCH (POWER_SUPPLY > 0 && defined(PS_ON_PIN) && PS_ON_PIN >= 0)
|
||||
#define HAS_POWER_SWITCH (POWER_SUPPLY > 0 && PIN_EXISTS(PS_ON))
|
||||
|
||||
/**
|
||||
* Temp Sensor defines
|
||||
|
@ -347,25 +352,81 @@
|
|||
#endif
|
||||
|
||||
/**
|
||||
* Shorthand for pin tests, for temperature.cpp
|
||||
* Shorthand for pin tests, used wherever needed
|
||||
*/
|
||||
#define HAS_TEMP_0 (defined(TEMP_0_PIN) && TEMP_0_PIN >= 0 && TEMP_SENSOR_0 != 0 && TEMP_SENSOR_0 != -2)
|
||||
#define HAS_TEMP_1 (defined(TEMP_1_PIN) && TEMP_1_PIN >= 0 && TEMP_SENSOR_1 != 0)
|
||||
#define HAS_TEMP_2 (defined(TEMP_2_PIN) && TEMP_2_PIN >= 0 && TEMP_SENSOR_2 != 0)
|
||||
#define HAS_TEMP_3 (defined(TEMP_3_PIN) && TEMP_3_PIN >= 0 && TEMP_SENSOR_3 != 0)
|
||||
#define HAS_TEMP_BED (defined(TEMP_BED_PIN) && TEMP_BED_PIN >= 0 && TEMP_SENSOR_BED != 0)
|
||||
#define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && defined(FILWIDTH_PIN) && FILWIDTH_PIN >= 0)
|
||||
#define HAS_HEATER_0 (defined(HEATER_0_PIN) && HEATER_0_PIN >= 0)
|
||||
#define HAS_HEATER_1 (defined(HEATER_1_PIN) && HEATER_1_PIN >= 0)
|
||||
#define HAS_HEATER_2 (defined(HEATER_2_PIN) && HEATER_2_PIN >= 0)
|
||||
#define HAS_HEATER_3 (defined(HEATER_3_PIN) && HEATER_3_PIN >= 0)
|
||||
#define HAS_HEATER_BED (defined(HEATER_BED_PIN) && HEATER_BED_PIN >= 0)
|
||||
#define HAS_AUTO_FAN_0 (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN >= 0)
|
||||
#define HAS_AUTO_FAN_1 (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN >= 0)
|
||||
#define HAS_AUTO_FAN_2 (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN >= 0)
|
||||
#define HAS_AUTO_FAN_3 (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN >= 0)
|
||||
#define HAS_TEMP_0 (PIN_EXISTS(TEMP_0) && TEMP_SENSOR_0 != 0 && TEMP_SENSOR_0 != -2)
|
||||
#define HAS_TEMP_1 (PIN_EXISTS(TEMP_1) && TEMP_SENSOR_1 != 0)
|
||||
#define HAS_TEMP_2 (PIN_EXISTS(TEMP_2) && TEMP_SENSOR_2 != 0)
|
||||
#define HAS_TEMP_3 (PIN_EXISTS(TEMP_3) && TEMP_SENSOR_3 != 0)
|
||||
#define HAS_TEMP_BED (PIN_EXISTS(TEMP_BED) && TEMP_SENSOR_BED != 0)
|
||||
#define HAS_HEATER_0 (PIN_EXISTS(HEATER_0))
|
||||
#define HAS_HEATER_1 (PIN_EXISTS(HEATER_1))
|
||||
#define HAS_HEATER_2 (PIN_EXISTS(HEATER_2))
|
||||
#define HAS_HEATER_3 (PIN_EXISTS(HEATER_3))
|
||||
#define HAS_HEATER_BED (PIN_EXISTS(HEATER_BED))
|
||||
#define HAS_AUTO_FAN_0 (PIN_EXISTS(EXTRUDER_0_AUTO_FAN))
|
||||
#define HAS_AUTO_FAN_1 (PIN_EXISTS(EXTRUDER_1_AUTO_FAN))
|
||||
#define HAS_AUTO_FAN_2 (PIN_EXISTS(EXTRUDER_2_AUTO_FAN))
|
||||
#define HAS_AUTO_FAN_3 (PIN_EXISTS(EXTRUDER_3_AUTO_FAN))
|
||||
#define HAS_AUTO_FAN (HAS_AUTO_FAN_0 || HAS_AUTO_FAN_1 || HAS_AUTO_FAN_2 || HAS_AUTO_FAN_3)
|
||||
#define HAS_FAN (defined(FAN_PIN) && FAN_PIN >= 0)
|
||||
#define HAS_FAN (PIN_EXISTS(FAN))
|
||||
#define HAS_CONTROLLERFAN (PIN_EXISTS(CONTROLLERFAN))
|
||||
#define HAS_SERVO_0 (PIN_EXISTS(SERVO0))
|
||||
#define HAS_SERVO_1 (PIN_EXISTS(SERVO1))
|
||||
#define HAS_SERVO_2 (PIN_EXISTS(SERVO2))
|
||||
#define HAS_SERVO_3 (PIN_EXISTS(SERVO3))
|
||||
#define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && PIN_EXISTS(FILWIDTH))
|
||||
#define HAS_FILRUNOUT (PIN_EXISTS(FILRUNOUT))
|
||||
#define HAS_HOME (PIN_EXISTS(HOME))
|
||||
#define HAS_KILL (PIN_EXISTS(KILL))
|
||||
#define HAS_SUICIDE (PIN_EXISTS(SUICIDE))
|
||||
#define HAS_PHOTOGRAPH (PIN_EXISTS(PHOTOGRAPH))
|
||||
#define HAS_X_MIN (PIN_EXISTS(X_MIN))
|
||||
#define HAS_X_MAX (PIN_EXISTS(X_MAX))
|
||||
#define HAS_Y_MIN (PIN_EXISTS(Y_MIN))
|
||||
#define HAS_Y_MAX (PIN_EXISTS(Y_MAX))
|
||||
#define HAS_Z_MIN (PIN_EXISTS(Z_MIN))
|
||||
#define HAS_Z_MAX (PIN_EXISTS(Z_MAX))
|
||||
#define HAS_Z2_MIN (PIN_EXISTS(Z2_MIN))
|
||||
#define HAS_Z2_MAX (PIN_EXISTS(Z2_MAX))
|
||||
#define HAS_Z_PROBE (PIN_EXISTS(Z_PROBE))
|
||||
#define HAS_SOLENOID_1 (PIN_EXISTS(SOL1))
|
||||
#define HAS_SOLENOID_2 (PIN_EXISTS(SOL2))
|
||||
#define HAS_SOLENOID_3 (PIN_EXISTS(SOL3))
|
||||
#define HAS_MICROSTEPS (PIN_EXISTS(X_MS1))
|
||||
#define HAS_MICROSTEPS_E0 (PIN_EXISTS(E0_MS1))
|
||||
#define HAS_MICROSTEPS_E1 (PIN_EXISTS(E1_MS1))
|
||||
#define HAS_MICROSTEPS_E2 (PIN_EXISTS(E2_MS1))
|
||||
#define HAS_X_ENABLE (PIN_EXISTS(X_ENABLE))
|
||||
#define HAS_X2_ENABLE (PIN_EXISTS(X2_ENABLE))
|
||||
#define HAS_Y_ENABLE (PIN_EXISTS(Y_ENABLE))
|
||||
#define HAS_Y2_ENABLE (PIN_EXISTS(Y2_ENABLE))
|
||||
#define HAS_Z_ENABLE (PIN_EXISTS(Z_ENABLE))
|
||||
#define HAS_Z2_ENABLE (PIN_EXISTS(Z2_ENABLE))
|
||||
#define HAS_E0_ENABLE (PIN_EXISTS(E0_ENABLE))
|
||||
#define HAS_E1_ENABLE (PIN_EXISTS(E1_ENABLE))
|
||||
#define HAS_E2_ENABLE (PIN_EXISTS(E2_ENABLE))
|
||||
#define HAS_E3_ENABLE (PIN_EXISTS(E3_ENABLE))
|
||||
#define HAS_X_DIR (PIN_EXISTS(X_DIR))
|
||||
#define HAS_X2_DIR (PIN_EXISTS(X2_DIR))
|
||||
#define HAS_Y_DIR (PIN_EXISTS(Y_DIR))
|
||||
#define HAS_Y2_DIR (PIN_EXISTS(Y2_DIR))
|
||||
#define HAS_Z_DIR (PIN_EXISTS(Z_DIR))
|
||||
#define HAS_Z2_DIR (PIN_EXISTS(Z2_DIR))
|
||||
#define HAS_E0_DIR (PIN_EXISTS(E0_DIR))
|
||||
#define HAS_E1_DIR (PIN_EXISTS(E1_DIR))
|
||||
#define HAS_E2_DIR (PIN_EXISTS(E2_DIR))
|
||||
#define HAS_E3_DIR (PIN_EXISTS(E3_DIR))
|
||||
#define HAS_X_STEP (PIN_EXISTS(X_STEP))
|
||||
#define HAS_X2_STEP (PIN_EXISTS(X2_STEP))
|
||||
#define HAS_Y_STEP (PIN_EXISTS(Y_STEP))
|
||||
#define HAS_Y2_STEP (PIN_EXISTS(Y2_STEP))
|
||||
#define HAS_Z_STEP (PIN_EXISTS(Z_STEP))
|
||||
#define HAS_Z2_STEP (PIN_EXISTS(Z2_STEP))
|
||||
#define HAS_E0_STEP (PIN_EXISTS(E0_STEP))
|
||||
#define HAS_E1_STEP (PIN_EXISTS(E1_STEP))
|
||||
#define HAS_E2_STEP (PIN_EXISTS(E2_STEP))
|
||||
#define HAS_E3_STEP (PIN_EXISTS(E3_STEP))
|
||||
|
||||
/**
|
||||
* Helper Macros for heaters and extruder fan
|
||||
|
|
|
@ -31,7 +31,7 @@ Here are some standard links for getting your machine calibrated:
|
|||
//===========================================================================
|
||||
//============================= SCARA Printer ===============================
|
||||
//===========================================================================
|
||||
// For a Delta printer replace the configuration files with the files in the
|
||||
// For a Scara printer replace the configuration files with the files in the
|
||||
// example_configurations/SCARA directory.
|
||||
//
|
||||
|
||||
|
@ -319,6 +319,7 @@ your extruder heater takes 2 minutes to hit the target on heating.
|
|||
// #define ENDSTOPPULLUP_XMIN
|
||||
// #define ENDSTOPPULLUP_YMIN
|
||||
// #define ENDSTOPPULLUP_ZMIN
|
||||
// #define ENDSTOPPULLUP_ZPROBE
|
||||
#endif
|
||||
|
||||
// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
|
||||
|
@ -328,8 +329,14 @@ const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
const bool X_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
|
||||
const bool Y_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
|
||||
const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
|
||||
const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
|
||||
//#define DISABLE_MAX_ENDSTOPS
|
||||
//#define DISABLE_MIN_ENDSTOPS
|
||||
// If you want to enable the Z Probe pin, but disable its use, uncomment the line below.
|
||||
// This only affects a Z Probe Endstop if you have separate Z min endstop as well and have
|
||||
// activated Z_PROBE_ENDSTOP below. If you are using the Z Min endstop on your Z Probe,
|
||||
// this has no effect.
|
||||
//#define DISABLE_Z_PROBE_ENDSTOP
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 0
|
||||
|
@ -387,11 +394,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MANUAL_BED_LEVELING)
|
||||
#ifdef MANUAL_BED_LEVELING
|
||||
#define MBL_Z_STEP 0.025
|
||||
#endif // MANUAL_BED_LEVELING
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -496,6 +503,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -512,8 +533,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
|
||||
|
||||
// default settings
|
||||
|
@ -674,7 +697,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
|
||||
// #define PHOTOGRAPH_PIN 23
|
||||
|
||||
// SF send wrong arc g-codes when using Arc Point as fillet procedure
|
||||
// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure
|
||||
//#define SF_ARC_FIX
|
||||
|
||||
// Support for the BariCUDA Paste Extruder.
|
||||
|
|
|
@ -3,7 +3,21 @@
|
|||
*
|
||||
* Configuration and EEPROM storage
|
||||
*
|
||||
* V16 EEPROM Layout:
|
||||
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
|
||||
* in the functions below, also increment the version number. This makes sure that
|
||||
* the default values are used whenever there is a change to the data, to prevent
|
||||
* wrong data being written to the variables.
|
||||
*
|
||||
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
|
||||
* If a feature is disabled, some data must still be written that, when read,
|
||||
* either sets a Sane Default, or results in No Change to the existing value.
|
||||
*
|
||||
*/
|
||||
|
||||
#define EEPROM_VERSION "V19"
|
||||
|
||||
/**
|
||||
* V19 EEPROM Layout:
|
||||
*
|
||||
* ver
|
||||
* axis_steps_per_unit (x4)
|
||||
|
@ -47,6 +61,9 @@
|
|||
* Kp[2], Ki[2], Kd[2], Kc[2]
|
||||
* Kp[3], Ki[3], Kd[3], Kc[3]
|
||||
*
|
||||
* PIDTEMPBED:
|
||||
* bedKp, bedKi, bedKd
|
||||
*
|
||||
* DOGLCD:
|
||||
* lcd_contrast
|
||||
*
|
||||
|
@ -78,7 +95,7 @@
|
|||
#include "ultralcd.h"
|
||||
#include "ConfigurationStore.h"
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#include "mesh_bed_leveling.h"
|
||||
#endif // MESH_BED_LEVELING
|
||||
|
||||
|
@ -111,15 +128,6 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
|
|||
|
||||
#define EEPROM_OFFSET 100
|
||||
|
||||
|
||||
// IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
|
||||
// in the functions below, also increment the version number. This makes sure that
|
||||
// the default values are used whenever there is a change to the data, to prevent
|
||||
// wrong data being written to the variables.
|
||||
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
|
||||
|
||||
#define EEPROM_VERSION "V18"
|
||||
|
||||
#ifdef EEPROM_SETTINGS
|
||||
|
||||
void Config_StoreSettings() {
|
||||
|
@ -194,7 +202,6 @@ void Config_StoreSettings() {
|
|||
EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
|
||||
EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
|
||||
|
||||
|
||||
for (int e = 0; e < 4; e++) {
|
||||
|
||||
#ifdef PIDTEMP
|
||||
|
@ -209,12 +216,10 @@ void Config_StoreSettings() {
|
|||
EEPROM_WRITE_VAR(i, dummy);
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
#else // !PIDTEMP
|
||||
{
|
||||
else
|
||||
#endif // !PIDTEMP
|
||||
|
||||
dummy = DUMMY_PID_VALUE;
|
||||
{
|
||||
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
||||
EEPROM_WRITE_VAR(i, dummy);
|
||||
dummy = 0.0f;
|
||||
for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
|
||||
|
@ -222,6 +227,14 @@ void Config_StoreSettings() {
|
|||
|
||||
} // Extruders Loop
|
||||
|
||||
#ifndef PIDTEMPBED
|
||||
float bedKp = DUMMY_PID_VALUE, bedKi = DUMMY_PID_VALUE, bedKd = DUMMY_PID_VALUE;
|
||||
#endif
|
||||
|
||||
EEPROM_WRITE_VAR(i, bedKp);
|
||||
EEPROM_WRITE_VAR(i, bedKi);
|
||||
EEPROM_WRITE_VAR(i, bedKd);
|
||||
|
||||
#ifndef DOGLCD
|
||||
int lcd_contrast = 32;
|
||||
#endif
|
||||
|
@ -308,7 +321,7 @@ void Config_RetrieveSettings() {
|
|||
|
||||
uint8_t mesh_num_x = 0;
|
||||
uint8_t mesh_num_y = 0;
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
EEPROM_READ_VAR(i, mbl.active);
|
||||
EEPROM_READ_VAR(i, mesh_num_x);
|
||||
EEPROM_READ_VAR(i, mesh_num_y);
|
||||
|
@ -364,7 +377,7 @@ void Config_RetrieveSettings() {
|
|||
|
||||
#ifdef PIDTEMP
|
||||
for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
|
||||
EEPROM_READ_VAR(i, dummy);
|
||||
EEPROM_READ_VAR(i, dummy); // Kp
|
||||
if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
|
||||
// do not need to scale PID values as the values in EEPROM are already scaled
|
||||
PID_PARAM(Kp, e) = dummy;
|
||||
|
@ -385,6 +398,20 @@ void Config_RetrieveSettings() {
|
|||
for (int q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
|
||||
#endif // !PIDTEMP
|
||||
|
||||
#ifndef PIDTEMPBED
|
||||
float bedKp, bedKi, bedKd;
|
||||
#endif
|
||||
|
||||
EEPROM_READ_VAR(i, dummy); // bedKp
|
||||
if (dummy != DUMMY_PID_VALUE) {
|
||||
bedKp = dummy;
|
||||
EEPROM_READ_VAR(i, bedKi);
|
||||
EEPROM_READ_VAR(i, bedKd);
|
||||
}
|
||||
else {
|
||||
for (int q=2; q--;) EEPROM_READ_VAR(i, dummy); // bedKi, bedKd
|
||||
}
|
||||
|
||||
#ifndef DOGLCD
|
||||
int lcd_contrast;
|
||||
#endif
|
||||
|
@ -517,6 +544,12 @@ void Config_ResetDefault() {
|
|||
updatePID();
|
||||
#endif // PIDTEMP
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
bedKp = DEFAULT_bedKp;
|
||||
bedKi = scalePID_i(DEFAULT_bedKi);
|
||||
bedKd = scalePID_d(DEFAULT_bedKd);
|
||||
#endif
|
||||
|
||||
#ifdef FWRETRACT
|
||||
autoretract_enabled = false;
|
||||
retract_length = RETRACT_LENGTH;
|
||||
|
@ -660,17 +693,28 @@ void Config_PrintSettings(bool forReplay) {
|
|||
SERIAL_EOL;
|
||||
#endif // DELTA
|
||||
|
||||
#ifdef PIDTEMP
|
||||
#if defined(PIDTEMP) || defined(PIDTEMPBED)
|
||||
SERIAL_ECHO_START;
|
||||
if (!forReplay) {
|
||||
SERIAL_ECHOLNPGM("PID settings:");
|
||||
SERIAL_ECHO_START;
|
||||
}
|
||||
#if defined(PIDTEMP) && defined(PIDTEMPBED)
|
||||
SERIAL_EOL;
|
||||
#endif
|
||||
#ifdef PIDTEMP
|
||||
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0
|
||||
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
|
||||
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
|
||||
SERIAL_EOL;
|
||||
#endif // PIDTEMP
|
||||
#endif
|
||||
#ifdef PIDTEMPBED
|
||||
SERIAL_ECHOPAIR(" M304 P", bedKp); // for compatibility with hosts, only echos values for E0
|
||||
SERIAL_ECHOPAIR(" I", unscalePID_i(bedKi));
|
||||
SERIAL_ECHOPAIR(" D", unscalePID_d(bedKd));
|
||||
SERIAL_EOL;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef FWRETRACT
|
||||
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 2
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 2
|
||||
#define HOMING_BUMP_DIVISOR {2, 2, 4} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -62,31 +62,33 @@
|
|||
#define MYSERIAL MSerial
|
||||
#endif
|
||||
|
||||
#define SERIAL_PROTOCOL(x) (MYSERIAL.print(x))
|
||||
#define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y))
|
||||
#define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x)))
|
||||
#define SERIAL_PROTOCOLLN(x) (MYSERIAL.print(x),MYSERIAL.write('\n'))
|
||||
#define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x)),MYSERIAL.write('\n'))
|
||||
#define SERIAL_CHAR(x) MYSERIAL.write(x)
|
||||
#define SERIAL_EOL SERIAL_CHAR('\n')
|
||||
|
||||
#define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x)
|
||||
#define SERIAL_PROTOCOL(x) MYSERIAL.print(x)
|
||||
#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y)
|
||||
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x))
|
||||
#define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x),MYSERIAL.write('\n'); }while(0)
|
||||
#define SERIAL_PROTOCOLLNPGM(x) do{ serialprintPGM(PSTR(x)),MYSERIAL.write('\n'); }while(0)
|
||||
|
||||
|
||||
extern const char errormagic[] PROGMEM;
|
||||
extern const char echomagic[] PROGMEM;
|
||||
|
||||
#define SERIAL_ERROR_START (serialprintPGM(errormagic))
|
||||
#define SERIAL_ERROR_START serialprintPGM(errormagic)
|
||||
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
|
||||
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
|
||||
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
|
||||
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
|
||||
|
||||
#define SERIAL_ECHO_START (serialprintPGM(echomagic))
|
||||
#define SERIAL_ECHO_START serialprintPGM(echomagic)
|
||||
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
|
||||
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
|
||||
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
|
||||
#define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
|
||||
|
||||
#define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value)))
|
||||
|
||||
#define SERIAL_EOL MYSERIAL.write('\n')
|
||||
#define SERIAL_ECHOPAIR(name,value) do{ serial_echopair_P(PSTR(name),(value)); }while(0)
|
||||
|
||||
void serial_echopair_P(const char *s_P, float v);
|
||||
void serial_echopair_P(const char *s_P, double v);
|
||||
|
@ -94,27 +96,23 @@ void serial_echopair_P(const char *s_P, unsigned long v);
|
|||
|
||||
|
||||
// Things to write to serial from Program memory. Saves 400 to 2k of RAM.
|
||||
FORCE_INLINE void serialprintPGM(const char *str)
|
||||
{
|
||||
char ch=pgm_read_byte(str);
|
||||
while(ch)
|
||||
{
|
||||
FORCE_INLINE void serialprintPGM(const char *str) {
|
||||
char ch;
|
||||
while ((ch = pgm_read_byte(str))) {
|
||||
MYSERIAL.write(ch);
|
||||
ch=pgm_read_byte(++str);
|
||||
str++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void get_command();
|
||||
void process_commands();
|
||||
|
||||
void manage_inactivity(bool ignore_stepper_queue=false);
|
||||
|
||||
#if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \
|
||||
&& defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
||||
#if defined(DUAL_X_CARRIAGE) && HAS_X_ENABLE && HAS_X2_ENABLE
|
||||
#define enable_x() do { X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); } while (0)
|
||||
#define disable_x() do { X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0)
|
||||
#elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
|
||||
#elif HAS_X_ENABLE
|
||||
#define enable_x() X_ENABLE_WRITE( X_ENABLE_ON)
|
||||
#define disable_x() { X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }
|
||||
#else
|
||||
|
@ -122,7 +120,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
|
|||
#define disable_x() ;
|
||||
#endif
|
||||
|
||||
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
|
||||
#if HAS_Y_ENABLE
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
#define enable_y() { Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }
|
||||
#define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
|
||||
|
@ -135,7 +133,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
|
|||
#define disable_y() ;
|
||||
#endif
|
||||
|
||||
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
|
||||
#if HAS_Z_ENABLE
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
#define enable_z() { Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }
|
||||
#define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
|
||||
|
@ -148,7 +146,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
|
|||
#define disable_z() ;
|
||||
#endif
|
||||
|
||||
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
|
||||
#if HAS_E0_ENABLE
|
||||
#define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON)
|
||||
#define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON)
|
||||
#else
|
||||
|
@ -156,7 +154,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
|
|||
#define disable_e0() /* nothing */
|
||||
#endif
|
||||
|
||||
#if (EXTRUDERS > 1) && defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
|
||||
#if (EXTRUDERS > 1) && HAS_E1_ENABLE
|
||||
#define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON)
|
||||
#define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON)
|
||||
#else
|
||||
|
@ -164,7 +162,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
|
|||
#define disable_e1() /* nothing */
|
||||
#endif
|
||||
|
||||
#if (EXTRUDERS > 2) && defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
|
||||
#if (EXTRUDERS > 2) && HAS_E2_ENABLE
|
||||
#define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON)
|
||||
#define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON)
|
||||
#else
|
||||
|
@ -172,7 +170,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
|
|||
#define disable_e2() /* nothing */
|
||||
#endif
|
||||
|
||||
#if (EXTRUDERS > 3) && defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
|
||||
#if (EXTRUDERS > 3) && HAS_E3_ENABLE
|
||||
#define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON)
|
||||
#define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON)
|
||||
#else
|
||||
|
@ -180,8 +178,21 @@ void manage_inactivity(bool ignore_stepper_queue=false);
|
|||
#define disable_e3() /* nothing */
|
||||
#endif
|
||||
|
||||
/**
|
||||
* The axis order in all axis related arrays is X, Y, Z, E
|
||||
*/
|
||||
#define NUM_AXIS 4
|
||||
|
||||
/**
|
||||
* Axis indices as enumerated constants
|
||||
*
|
||||
* A_AXIS and B_AXIS are used by COREXY printers
|
||||
* X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
|
||||
*/
|
||||
enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
|
||||
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
|
||||
|
||||
void enable_all_steppers();
|
||||
void disable_all_steppers();
|
||||
|
||||
void FlushSerialRequestResend();
|
||||
void ClearToSend();
|
||||
|
@ -194,7 +205,6 @@ void get_coordinates();
|
|||
void adjust_delta(float cartesian[3]);
|
||||
#endif
|
||||
extern float delta[3];
|
||||
void prepare_move_raw();
|
||||
#endif
|
||||
#ifdef SCARA
|
||||
void calculate_delta(float cartesian[3]);
|
||||
|
@ -217,7 +227,8 @@ void enquecommands_P(const char *cmd); //put one or many ASCII commands at the e
|
|||
void prepare_arc_move(char isclockwise);
|
||||
void clamp_to_software_endstops(float target[3]);
|
||||
|
||||
void refresh_cmd_timeout(void);
|
||||
extern unsigned long previous_millis_cmd;
|
||||
inline void refresh_cmd_timeout() { previous_millis_cmd = millis(); }
|
||||
|
||||
#ifdef FAST_PWM_FAN
|
||||
void setPwmFrequency(uint8_t pin, int val);
|
||||
|
@ -226,7 +237,7 @@ void refresh_cmd_timeout(void);
|
|||
#ifndef CRITICAL_SECTION_START
|
||||
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
|
||||
#define CRITICAL_SECTION_END SREG = _sreg;
|
||||
#endif //CRITICAL_SECTION_START
|
||||
#endif
|
||||
|
||||
extern float homing_feedrate[];
|
||||
extern bool axis_relative_modes[];
|
||||
|
@ -237,6 +248,7 @@ extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in m
|
|||
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
|
||||
extern float current_position[NUM_AXIS];
|
||||
extern float home_offset[3];
|
||||
|
||||
#ifdef DELTA
|
||||
extern float endstop_adj[3];
|
||||
extern float delta_radius;
|
||||
|
@ -246,16 +258,21 @@ extern float home_offset[3];
|
|||
#elif defined(Z_DUAL_ENDSTOPS)
|
||||
extern float z_endstop_adj;
|
||||
#endif
|
||||
|
||||
#ifdef SCARA
|
||||
extern float axis_scaling[3]; // Build size scaling
|
||||
#endif
|
||||
|
||||
extern float min_pos[3];
|
||||
extern float max_pos[3];
|
||||
extern bool axis_known_position[3];
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
extern float zprobe_zoffset;
|
||||
#endif
|
||||
|
||||
extern int fanSpeed;
|
||||
|
||||
#ifdef BARICUDA
|
||||
extern int ValvePressure;
|
||||
extern int EtoPPressure;
|
||||
|
|
|
@ -268,8 +268,7 @@ void MarlinSerial::printFloat(double number, uint8_t digits) {
|
|||
print(int_part);
|
||||
|
||||
// Print the decimal point, but only if there are digits beyond
|
||||
if (digits > 0)
|
||||
print(".");
|
||||
if (digits > 0) print('.');
|
||||
|
||||
// Extract digits from the remainder one at a time
|
||||
while (digits-- > 0) {
|
||||
|
@ -291,4 +290,3 @@ MarlinSerial MSerial;
|
|||
#if defined(AT90USB) && defined(BTENABLED)
|
||||
HardwareSerial bt;
|
||||
#endif
|
||||
|
||||
|
|
|
@ -36,11 +36,11 @@
|
|||
#endif
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
#define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
|
||||
#define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#include "mesh_bed_leveling.h"
|
||||
#endif // MESH_BED_LEVELING
|
||||
#endif
|
||||
|
||||
#include "ultralcd.h"
|
||||
#include "planner.h"
|
||||
|
@ -110,6 +110,7 @@
|
|||
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
|
||||
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
||||
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
|
||||
// M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
|
||||
// M80 - Turn on Power Supply
|
||||
// M81 - Turn off Power Supply
|
||||
// M82 - Set E codes absolute (default)
|
||||
|
@ -202,10 +203,6 @@
|
|||
#endif
|
||||
|
||||
float homing_feedrate[] = HOMING_FEEDRATE;
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
int xy_travel_speed = XY_TRAVEL_SPEED;
|
||||
float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
#endif
|
||||
int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
|
||||
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
||||
int feedmultiply = 100; //100->1 200->2
|
||||
|
@ -216,15 +213,49 @@ float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA
|
|||
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
|
||||
float current_position[NUM_AXIS] = { 0.0 };
|
||||
float home_offset[3] = { 0 };
|
||||
#ifdef DELTA
|
||||
float endstop_adj[3] = { 0 };
|
||||
#elif defined(Z_DUAL_ENDSTOPS)
|
||||
float z_endstop_adj = 0;
|
||||
#endif
|
||||
|
||||
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
||||
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
||||
bool axis_known_position[3] = { false };
|
||||
uint8_t active_extruder = 0;
|
||||
int fanSpeed = 0;
|
||||
bool cancel_heatup = false;
|
||||
const char errormagic[] PROGMEM = "Error:";
|
||||
const char echomagic[] PROGMEM = "echo:";
|
||||
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
||||
static float destination[NUM_AXIS] = { 0 };
|
||||
static float offset[3] = { 0 };
|
||||
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
||||
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
||||
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
||||
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
|
||||
static int bufindr = 0;
|
||||
static int bufindw = 0;
|
||||
static int buflen = 0;
|
||||
static char serial_char;
|
||||
static int serial_count = 0;
|
||||
static boolean comment_mode = false;
|
||||
static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
|
||||
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
|
||||
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
|
||||
// Inactivity shutdown
|
||||
unsigned long previous_millis_cmd = 0;
|
||||
static unsigned long max_inactive_time = 0;
|
||||
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
|
||||
unsigned long starttime = 0; ///< Print job start time
|
||||
unsigned long stoptime = 0; ///< Print job stop time
|
||||
static uint8_t target_extruder;
|
||||
bool Stopped = false;
|
||||
bool CooldownNoWait = true;
|
||||
bool target_direction;
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
int xy_travel_speed = XY_TRAVEL_SPEED;
|
||||
float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
#endif
|
||||
|
||||
#if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
|
||||
float z_endstop_adj = 0;
|
||||
#endif
|
||||
|
||||
// Extruder offsets
|
||||
#if EXTRUDERS > 1
|
||||
|
@ -243,9 +274,6 @@ bool axis_known_position[3] = { false };
|
|||
};
|
||||
#endif
|
||||
|
||||
uint8_t active_extruder = 0;
|
||||
int fanSpeed = 0;
|
||||
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
int servo_endstops[] = SERVO_ENDSTOPS;
|
||||
int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
|
||||
|
@ -283,9 +311,10 @@ int fanSpeed = 0;
|
|||
#endif
|
||||
|
||||
#ifdef DELTA
|
||||
float delta[3] = { 0, 0, 0 };
|
||||
float delta[3] = { 0 };
|
||||
#define SIN_60 0.8660254037844386
|
||||
#define COS_60 0.5
|
||||
float endstop_adj[3] = { 0 };
|
||||
// these are the default values, can be overriden with M665
|
||||
float delta_radius = DELTA_RADIUS;
|
||||
float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
|
||||
|
@ -298,17 +327,18 @@ int fanSpeed = 0;
|
|||
float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
|
||||
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
int delta_grid_spacing[2] = { 0, 0 };
|
||||
float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
|
||||
#endif
|
||||
#else
|
||||
static bool home_all_axis = true;
|
||||
#endif
|
||||
|
||||
#ifdef SCARA
|
||||
static float delta[3] = { 0 };
|
||||
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
|
||||
static float delta[3] = { 0, 0, 0 };
|
||||
#endif
|
||||
|
||||
bool cancel_heatup = false;
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
//Variables for Filament Sensor input
|
||||
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
|
||||
|
@ -325,67 +355,21 @@ bool cancel_heatup = false;
|
|||
static bool filrunoutEnqued = false;
|
||||
#endif
|
||||
|
||||
const char errormagic[] PROGMEM = "Error:";
|
||||
const char echomagic[] PROGMEM = "echo:";
|
||||
|
||||
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
||||
static float destination[NUM_AXIS] = { 0 };
|
||||
|
||||
static float offset[3] = { 0 };
|
||||
|
||||
#ifndef DELTA
|
||||
static bool home_all_axis = true;
|
||||
#endif
|
||||
|
||||
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
||||
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
||||
|
||||
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
||||
|
||||
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
|
||||
#ifdef SDSUPPORT
|
||||
static bool fromsd[BUFSIZE];
|
||||
#endif
|
||||
static int bufindr = 0;
|
||||
static int bufindw = 0;
|
||||
static int buflen = 0;
|
||||
|
||||
static char serial_char;
|
||||
static int serial_count = 0;
|
||||
static boolean comment_mode = false;
|
||||
static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
|
||||
|
||||
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
|
||||
|
||||
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
|
||||
|
||||
// Inactivity shutdown
|
||||
static unsigned long previous_millis_cmd = 0;
|
||||
static unsigned long max_inactive_time = 0;
|
||||
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
|
||||
|
||||
unsigned long starttime = 0; ///< Print job start time
|
||||
unsigned long stoptime = 0; ///< Print job stop time
|
||||
|
||||
static uint8_t tmp_extruder;
|
||||
|
||||
|
||||
bool Stopped = false;
|
||||
|
||||
#if NUM_SERVOS > 0
|
||||
Servo servos[NUM_SERVOS];
|
||||
#endif
|
||||
|
||||
bool CooldownNoWait = true;
|
||||
bool target_direction;
|
||||
|
||||
#ifdef CHDK
|
||||
unsigned long chdkHigh = 0;
|
||||
boolean chdkActive = false;
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//=============================Routines======================================
|
||||
//================================ Functions ================================
|
||||
//===========================================================================
|
||||
|
||||
void get_arc_coordinates();
|
||||
|
@ -422,22 +406,20 @@ void serial_echopair_P(const char *s_P, unsigned long v)
|
|||
|
||||
//Injects the next command from the pending sequence of commands, when possible
|
||||
//Return false if and only if no command was pending
|
||||
static bool drain_queued_commands_P()
|
||||
{
|
||||
char cmd[30];
|
||||
if(!queued_commands_P)
|
||||
return false;
|
||||
static bool drain_queued_commands_P() {
|
||||
if (!queued_commands_P) return false;
|
||||
|
||||
// Get the next 30 chars from the sequence of gcodes to run
|
||||
char cmd[30];
|
||||
strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
|
||||
cmd[sizeof(cmd)-1]= 0;
|
||||
cmd[sizeof(cmd) - 1] = '\0';
|
||||
|
||||
// Look for the end of line, or the end of sequence
|
||||
size_t i = 0;
|
||||
char c;
|
||||
while( (c= cmd[i]) && c!='\n' )
|
||||
++i; // look for the end of this gcode command
|
||||
cmd[i]= 0;
|
||||
if(enquecommand(cmd)) // buffer was not full (else we will retry later)
|
||||
{
|
||||
while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
|
||||
cmd[i] = '\0';
|
||||
if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
|
||||
if (c)
|
||||
queued_commands_P += i + 1; // move to next command
|
||||
else
|
||||
|
@ -449,10 +431,9 @@ static bool drain_queued_commands_P()
|
|||
//Record one or many commands to run from program memory.
|
||||
//Aborts the current queue, if any.
|
||||
//Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
|
||||
void enquecommands_P(const char* pgcode)
|
||||
{
|
||||
void enquecommands_P(const char* pgcode) {
|
||||
queued_commands_P = pgcode;
|
||||
drain_queued_commands_P(); // first command exectuted asap (when possible)
|
||||
drain_queued_commands_P(); // first command executed asap (when possible)
|
||||
}
|
||||
|
||||
//adds a single command to the main command buffer, from RAM
|
||||
|
@ -478,7 +459,7 @@ bool enquecommand(const char *cmd)
|
|||
|
||||
void setup_killpin()
|
||||
{
|
||||
#if defined(KILL_PIN) && KILL_PIN > -1
|
||||
#if HAS_KILL
|
||||
SET_INPUT(KILL_PIN);
|
||||
WRITE(KILL_PIN, HIGH);
|
||||
#endif
|
||||
|
@ -486,9 +467,9 @@ void setup_killpin()
|
|||
|
||||
void setup_filrunoutpin()
|
||||
{
|
||||
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
|
||||
#if HAS_FILRUNOUT
|
||||
pinMode(FILRUNOUT_PIN, INPUT);
|
||||
#if defined(ENDSTOPPULLUP_FIL_RUNOUT)
|
||||
#ifdef ENDSTOPPULLUP_FIL_RUNOUT
|
||||
WRITE(FILLRUNOUT_PIN, HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
@ -497,7 +478,7 @@ void setup_filrunoutpin()
|
|||
// Set home pin
|
||||
void setup_homepin(void)
|
||||
{
|
||||
#if defined(HOME_PIN) && HOME_PIN > -1
|
||||
#if HAS_HOME
|
||||
SET_INPUT(HOME_PIN);
|
||||
WRITE(HOME_PIN, HIGH);
|
||||
#endif
|
||||
|
@ -506,14 +487,14 @@ void setup_homepin(void)
|
|||
|
||||
void setup_photpin()
|
||||
{
|
||||
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
||||
#if HAS_PHOTOGRAPH
|
||||
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
|
||||
#endif
|
||||
}
|
||||
|
||||
void setup_powerhold()
|
||||
{
|
||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||
#if HAS_SUICIDE
|
||||
OUT_WRITE(SUICIDE_PIN, HIGH);
|
||||
#endif
|
||||
#if HAS_POWER_SWITCH
|
||||
|
@ -527,37 +508,31 @@ void setup_powerhold()
|
|||
|
||||
void suicide()
|
||||
{
|
||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||
#if HAS_SUICIDE
|
||||
OUT_WRITE(SUICIDE_PIN, LOW);
|
||||
#endif
|
||||
}
|
||||
|
||||
void servo_init()
|
||||
{
|
||||
#if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
|
||||
#if NUM_SERVOS >= 1 && HAS_SERVO_0
|
||||
servos[0].attach(SERVO0_PIN);
|
||||
#endif
|
||||
#if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
|
||||
#if NUM_SERVOS >= 2 && HAS_SERVO_1
|
||||
servos[1].attach(SERVO1_PIN);
|
||||
#endif
|
||||
#if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
|
||||
#if NUM_SERVOS >= 3 && HAS_SERVO_2
|
||||
servos[2].attach(SERVO2_PIN);
|
||||
#endif
|
||||
#if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
|
||||
#if NUM_SERVOS >= 4 && HAS_SERVO_3
|
||||
servos[3].attach(SERVO3_PIN);
|
||||
#endif
|
||||
#if (NUM_SERVOS >= 5)
|
||||
#error "TODO: enter initalisation code for more servos"
|
||||
#endif
|
||||
|
||||
// Set position of Servo Endstops that are defined
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
for(int8_t i = 0; i < 3; i++)
|
||||
{
|
||||
if(servo_endstops[i] > -1) {
|
||||
for (int i = 0; i < 3; i++)
|
||||
if (servo_endstops[i] >= 0)
|
||||
servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if SERVO_LEVELING
|
||||
|
@ -624,7 +599,7 @@ void setup()
|
|||
lcd_init();
|
||||
_delay_ms(1000); // wait 1sec to display the splash screen
|
||||
|
||||
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
||||
#if HAS_CONTROLLERFAN
|
||||
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
||||
#endif
|
||||
|
||||
|
@ -648,47 +623,37 @@ void setup()
|
|||
}
|
||||
|
||||
|
||||
void loop()
|
||||
{
|
||||
if(buflen < (BUFSIZE-1))
|
||||
get_command();
|
||||
void loop() {
|
||||
if (buflen < BUFSIZE - 1) get_command();
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
card.checkautostart(false);
|
||||
#endif
|
||||
if(buflen)
|
||||
{
|
||||
|
||||
if (buflen) {
|
||||
#ifdef SDSUPPORT
|
||||
if(card.saving)
|
||||
{
|
||||
if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
|
||||
{
|
||||
if (card.saving) {
|
||||
if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
|
||||
card.write_command(cmdbuffer[bufindr]);
|
||||
if (card.logging)
|
||||
{
|
||||
process_commands();
|
||||
}
|
||||
else
|
||||
{
|
||||
SERIAL_PROTOCOLLNPGM(MSG_OK);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
else {
|
||||
card.closefile();
|
||||
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
process_commands();
|
||||
}
|
||||
#else
|
||||
process_commands();
|
||||
#endif // SDSUPPORT
|
||||
buflen = (buflen-1);
|
||||
buflen--;
|
||||
bufindr = (bufindr + 1) % BUFSIZE;
|
||||
}
|
||||
//check heater every n milliseconds
|
||||
// Check heater every n milliseconds
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
checkHitEndstops();
|
||||
|
@ -892,7 +857,9 @@ float code_value() {
|
|||
return ret;
|
||||
}
|
||||
|
||||
long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
|
||||
long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
|
||||
|
||||
int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
|
||||
|
||||
bool code_seen(char code) {
|
||||
strchr_pointer = strchr(cmdbuffer[bufindr], code);
|
||||
|
@ -916,7 +883,7 @@ XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|||
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
||||
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
||||
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
||||
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
|
||||
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
|
||||
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
||||
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
|
@ -1040,9 +1007,23 @@ inline void sync_plan_position() {
|
|||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
}
|
||||
#endif
|
||||
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
||||
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
#ifdef DELTA
|
||||
/**
|
||||
* Calculate delta, start a line, and set current_position to destination
|
||||
*/
|
||||
void prepare_move_raw() {
|
||||
refresh_cmd_timeout();
|
||||
calculate_delta(destination);
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
||||
set_current_to_destination();
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
#ifndef DELTA
|
||||
|
@ -1132,7 +1113,7 @@ inline void sync_plan_position() {
|
|||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
||||
|
||||
// move up the retract distance
|
||||
zPosition += home_retract_mm(Z_AXIS);
|
||||
zPosition += home_bump_mm(Z_AXIS);
|
||||
line_to_z(zPosition);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
|
@ -1145,7 +1126,7 @@ inline void sync_plan_position() {
|
|||
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
|
||||
}
|
||||
|
||||
zPosition -= home_retract_mm(Z_AXIS) * 2;
|
||||
zPosition -= home_bump_mm(Z_AXIS) * 2;
|
||||
line_to_z(zPosition);
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
|
@ -1157,6 +1138,9 @@ inline void sync_plan_position() {
|
|||
#endif // !DELTA
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
static void do_blocking_move_to(float x, float y, float z) {
|
||||
float oldFeedRate = feedrate;
|
||||
|
||||
|
@ -1194,7 +1178,7 @@ inline void sync_plan_position() {
|
|||
saved_feedrate = feedrate;
|
||||
saved_feedmultiply = feedmultiply;
|
||||
feedmultiply = 100;
|
||||
previous_millis_cmd = millis();
|
||||
refresh_cmd_timeout();
|
||||
enable_endstops(true);
|
||||
}
|
||||
|
||||
|
@ -1204,10 +1188,10 @@ inline void sync_plan_position() {
|
|||
#endif
|
||||
feedrate = saved_feedrate;
|
||||
feedmultiply = saved_feedmultiply;
|
||||
previous_millis_cmd = millis();
|
||||
refresh_cmd_timeout();
|
||||
}
|
||||
|
||||
static void engage_z_probe() {
|
||||
static void deploy_z_probe() {
|
||||
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
|
||||
|
@ -1245,8 +1229,14 @@ inline void sync_plan_position() {
|
|||
|
||||
st_synchronize();
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
||||
if (z_probe_endstop)
|
||||
#else
|
||||
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
if (z_min_endstop) {
|
||||
if (z_min_endstop)
|
||||
#endif
|
||||
{
|
||||
if (!Stopped) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
|
||||
|
@ -1259,7 +1249,7 @@ inline void sync_plan_position() {
|
|||
|
||||
}
|
||||
|
||||
static void retract_z_probe() {
|
||||
static void stow_z_probe() {
|
||||
|
||||
#ifdef SERVO_ENDSTOPS
|
||||
|
||||
|
@ -1291,19 +1281,19 @@ inline void sync_plan_position() {
|
|||
prepare_move_raw();
|
||||
|
||||
// Move to the start position to initiate retraction
|
||||
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
|
||||
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
|
||||
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
|
||||
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
|
||||
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
|
||||
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
|
||||
prepare_move_raw();
|
||||
|
||||
// Move the nozzle down to push the probe into retracted position
|
||||
feedrate = homing_feedrate[Z_AXIS]/10;
|
||||
destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
|
||||
destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
|
||||
prepare_move_raw();
|
||||
|
||||
// Move up for safety
|
||||
feedrate = homing_feedrate[Z_AXIS]/2;
|
||||
destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
|
||||
destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
|
||||
prepare_move_raw();
|
||||
|
||||
// Home XY for safety
|
||||
|
@ -1314,8 +1304,14 @@ inline void sync_plan_position() {
|
|||
|
||||
st_synchronize();
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
||||
if (!z_probe_endstop)
|
||||
#else
|
||||
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
if (!z_min_endstop) {
|
||||
if (!z_min_endstop)
|
||||
#endif
|
||||
{
|
||||
if (!Stopped) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
|
||||
|
@ -1330,19 +1326,19 @@ inline void sync_plan_position() {
|
|||
|
||||
enum ProbeAction {
|
||||
ProbeStay = 0,
|
||||
ProbeEngage = BIT(0),
|
||||
ProbeRetract = BIT(1),
|
||||
ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
|
||||
ProbeDeploy = BIT(0),
|
||||
ProbeStow = BIT(1),
|
||||
ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
|
||||
};
|
||||
|
||||
// Probe bed height at position (x,y), returns the measured z value
|
||||
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
|
||||
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
|
||||
// move to right place
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
||||
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
||||
|
||||
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
||||
if (retract_action & ProbeEngage) engage_z_probe();
|
||||
if (retract_action & ProbeDeploy) deploy_z_probe();
|
||||
#endif
|
||||
|
||||
run_z_probe();
|
||||
|
@ -1356,7 +1352,7 @@ inline void sync_plan_position() {
|
|||
#endif
|
||||
|
||||
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
||||
if (retract_action & ProbeRetract) retract_z_probe();
|
||||
if (retract_action & ProbeStow) stow_z_probe();
|
||||
#endif
|
||||
|
||||
if (verbose_level > 2) {
|
||||
|
@ -1416,9 +1412,9 @@ inline void sync_plan_position() {
|
|||
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
|
||||
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
|
||||
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
SERIAL_PROTOCOLCHAR(' ');
|
||||
}
|
||||
SERIAL_ECHOLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1460,10 +1456,10 @@ static void homeaxis(int axis) {
|
|||
sync_plan_position();
|
||||
|
||||
// Engage Servo endstop if enabled
|
||||
#ifdef SERVO_ENDSTOPS && !defined(Z_PROBE_SLED)
|
||||
#if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
|
||||
|
||||
#if SERVO_LEVELING
|
||||
if (axis == Z_AXIS) engage_z_probe(); else
|
||||
if (axis == Z_AXIS) deploy_z_probe(); else
|
||||
#endif
|
||||
{
|
||||
if (servo_endstops[axis] > -1)
|
||||
|
@ -1486,8 +1482,8 @@ static void homeaxis(int axis) {
|
|||
current_position[axis] = 0;
|
||||
sync_plan_position();
|
||||
|
||||
// Move away from the endstop by the axis HOME_RETRACT_MM
|
||||
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
||||
// Move away from the endstop by the axis HOME_BUMP_MM
|
||||
destination[axis] = -home_bump_mm(axis) * axis_home_dir;
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
|
||||
|
@ -1500,7 +1496,7 @@ static void homeaxis(int axis) {
|
|||
}
|
||||
|
||||
// Move slowly towards the endstop until triggered
|
||||
destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
|
||||
destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
|
||||
|
@ -1554,14 +1550,12 @@ static void homeaxis(int axis) {
|
|||
#endif
|
||||
|
||||
#if SERVO_LEVELING && !defined(Z_PROBE_SLED)
|
||||
if (axis == Z_AXIS) retract_z_probe();
|
||||
if (axis == Z_AXIS) stow_z_probe();
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void refresh_cmd_timeout(void) { previous_millis_cmd = millis(); }
|
||||
|
||||
#ifdef FWRETRACT
|
||||
|
||||
void retract(bool retracting, bool swapretract = false) {
|
||||
|
@ -1570,7 +1564,7 @@ void refresh_cmd_timeout(void) { previous_millis_cmd = millis(); }
|
|||
|
||||
float oldFeedrate = feedrate;
|
||||
|
||||
for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
|
||||
set_destination_to_current();
|
||||
|
||||
if (retracting) {
|
||||
|
||||
|
@ -1701,7 +1695,7 @@ inline void gcode_G4() {
|
|||
if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
|
||||
|
||||
st_synchronize();
|
||||
previous_millis_cmd = millis();
|
||||
refresh_cmd_timeout();
|
||||
codenum += previous_millis_cmd; // keep track of when we started waiting
|
||||
while (millis() < codenum) {
|
||||
manage_heater();
|
||||
|
@ -1719,7 +1713,7 @@ inline void gcode_G4() {
|
|||
inline void gcode_G10_G11(bool doRetract=false) {
|
||||
#if EXTRUDERS > 1
|
||||
if (doRetract) {
|
||||
retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
|
||||
retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
|
||||
}
|
||||
#endif
|
||||
retract(doRetract
|
||||
|
@ -1753,14 +1747,17 @@ inline void gcode_G4() {
|
|||
* Zn Home Z, setting Z to n + home_offset[Z_AXIS]
|
||||
*/
|
||||
inline void gcode_G28() {
|
||||
|
||||
// For auto bed leveling, clear the level matrix
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
|
||||
plan_bed_level_matrix.set_to_identity();
|
||||
#ifdef DELTA
|
||||
reset_bed_level();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
// For manual bed leveling deactivate the matrix temporarily
|
||||
#ifdef MESH_BED_LEVELING
|
||||
uint8_t mbl_was_active = mbl.active;
|
||||
mbl.active = 0;
|
||||
#endif
|
||||
|
@ -1768,11 +1765,11 @@ inline void gcode_G28() {
|
|||
saved_feedrate = feedrate;
|
||||
saved_feedmultiply = feedmultiply;
|
||||
feedmultiply = 100;
|
||||
previous_millis_cmd = millis();
|
||||
refresh_cmd_timeout();
|
||||
|
||||
enable_endstops(true);
|
||||
|
||||
for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
|
||||
set_destination_to_current();
|
||||
|
||||
feedrate = 0.0;
|
||||
|
||||
|
@ -1780,10 +1777,11 @@ inline void gcode_G28() {
|
|||
// A delta can only safely home all axis at the same time
|
||||
// all axis have to home at the same time
|
||||
|
||||
// Move all carriages up together until the first endstop is hit.
|
||||
// Pretend the current position is 0,0,0
|
||||
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
|
||||
sync_plan_position();
|
||||
|
||||
// Move all carriages up together until the first endstop is hit.
|
||||
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
|
||||
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
||||
line_to_destination();
|
||||
|
@ -1817,7 +1815,7 @@ inline void gcode_G28() {
|
|||
// Raise Z before homing any other axes
|
||||
if (home_all_axis || homeZ) {
|
||||
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
feedrate = max_feedrate[Z_AXIS] * 60;
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
}
|
||||
|
@ -1950,7 +1948,7 @@ inline void gcode_G28() {
|
|||
current_position[Z_AXIS] = 0;
|
||||
plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
|
||||
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
||||
feedrate = max_feedrate[Z_AXIS];
|
||||
feedrate = max_feedrate[Z_AXIS] * 60; // max_feedrate is in mm/s. line_to_destination is feedrate/60.
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
HOMEAXIS(Z);
|
||||
|
@ -1994,14 +1992,12 @@ inline void gcode_G28() {
|
|||
enable_endstops(false);
|
||||
#endif
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
// For manual leveling move back to 0,0
|
||||
#ifdef MESH_BED_LEVELING
|
||||
if (mbl_was_active) {
|
||||
current_position[X_AXIS] = mbl.get_x(0);
|
||||
current_position[Y_AXIS] = mbl.get_y(0);
|
||||
destination[X_AXIS] = current_position[X_AXIS];
|
||||
destination[Y_AXIS] = current_position[Y_AXIS];
|
||||
destination[Z_AXIS] = current_position[Z_AXIS];
|
||||
destination[E_AXIS] = current_position[E_AXIS];
|
||||
set_destination_to_current();
|
||||
feedrate = homing_feedrate[X_AXIS];
|
||||
line_to_destination();
|
||||
st_synchronize();
|
||||
|
@ -2013,25 +2009,14 @@ inline void gcode_G28() {
|
|||
|
||||
feedrate = saved_feedrate;
|
||||
feedmultiply = saved_feedmultiply;
|
||||
previous_millis_cmd = millis();
|
||||
refresh_cmd_timeout();
|
||||
endstops_hit_on_purpose(); // clear endstop hit flags
|
||||
}
|
||||
|
||||
#if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
|
||||
|
||||
// Check for known positions in X and Y
|
||||
inline bool can_run_bed_leveling() {
|
||||
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
|
||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
#ifdef MESH_BED_LEVELING
|
||||
|
||||
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
|
||||
|
||||
/**
|
||||
* G29: Mesh-based Z-Probe, probes a grid and produces a
|
||||
* mesh to compensate for variable bed height
|
||||
|
@ -2053,28 +2038,23 @@ inline void gcode_G28() {
|
|||
*/
|
||||
inline void gcode_G29() {
|
||||
|
||||
// Prevent leveling without first homing in X and Y
|
||||
if (!can_run_bed_leveling()) return;
|
||||
|
||||
static int probe_point = -1;
|
||||
int state = 0;
|
||||
if (code_seen('S') || code_seen('s')) {
|
||||
state = code_value_long();
|
||||
MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
|
||||
if (state < 0 || state > 3) {
|
||||
SERIAL_PROTOCOLPGM("S out of range (0-3).\n");
|
||||
SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (state == 0) { // Produce a mesh report
|
||||
switch(state) {
|
||||
case MeshReport:
|
||||
if (mbl.active) {
|
||||
SERIAL_PROTOCOLPGM("Num X,Y: ");
|
||||
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
|
||||
SERIAL_PROTOCOLPGM(",");
|
||||
SERIAL_PROTOCOLCHAR(',');
|
||||
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
|
||||
SERIAL_PROTOCOLPGM("\nZ search height: ");
|
||||
SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
|
||||
SERIAL_PROTOCOLPGM("\nMeasured points:\n");
|
||||
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
||||
for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
|
||||
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
|
@ -2082,28 +2062,30 @@ inline void gcode_G28() {
|
|||
}
|
||||
SERIAL_EOL;
|
||||
}
|
||||
} else {
|
||||
SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
|
||||
}
|
||||
else
|
||||
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
|
||||
break;
|
||||
|
||||
} else if (state == 1) { // Start probing mesh points
|
||||
|
||||
case MeshStart:
|
||||
mbl.reset();
|
||||
probe_point = 0;
|
||||
enquecommands_P(PSTR("G28"));
|
||||
enquecommands_P(PSTR("G29 S2"));
|
||||
|
||||
} else if (state == 2) { // Probe the next mesh point
|
||||
enquecommands_P(PSTR("G28\nG29 S2"));
|
||||
break;
|
||||
|
||||
case MeshNext:
|
||||
if (probe_point < 0) {
|
||||
SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
|
||||
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
|
||||
return;
|
||||
}
|
||||
int ix, iy;
|
||||
if (probe_point == 0) {
|
||||
// Set Z to a positive value before recording the first Z.
|
||||
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
||||
sync_plan_position();
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
// For others, save the Z of the previous point, then raise Z again.
|
||||
ix = (probe_point - 1) % MESH_NUM_X_POINTS;
|
||||
iy = (probe_point - 1) / MESH_NUM_X_POINTS;
|
||||
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
|
||||
|
@ -2112,13 +2094,8 @@ inline void gcode_G28() {
|
|||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
}
|
||||
if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
|
||||
SERIAL_PROTOCOLPGM("Mesh probing done.\n");
|
||||
probe_point = -1;
|
||||
mbl.active = 1;
|
||||
enquecommands_P(PSTR("G28"));
|
||||
return;
|
||||
}
|
||||
// Is there another point to sample? Move there.
|
||||
if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
|
||||
ix = probe_point % MESH_NUM_X_POINTS;
|
||||
iy = probe_point / MESH_NUM_X_POINTS;
|
||||
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
|
||||
|
@ -2127,7 +2104,17 @@ inline void gcode_G28() {
|
|||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
probe_point++;
|
||||
} else if (state == 3) { // Manually modify a single point
|
||||
}
|
||||
else {
|
||||
// After recording the last point, activate the mbl and home
|
||||
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
|
||||
probe_point = -1;
|
||||
mbl.active = 1;
|
||||
enquecommands_P(PSTR("G28"));
|
||||
}
|
||||
break;
|
||||
|
||||
case MeshSet:
|
||||
int ix, iy;
|
||||
float z;
|
||||
if (code_seen('X') || code_seen('x')) {
|
||||
|
@ -2157,7 +2144,8 @@ inline void gcode_G28() {
|
|||
return;
|
||||
}
|
||||
mbl.z_values[iy][ix] = z;
|
||||
}
|
||||
|
||||
} // switch(state)
|
||||
}
|
||||
|
||||
#elif defined(ENABLE_AUTO_BED_LEVELING)
|
||||
|
@ -2202,21 +2190,22 @@ inline void gcode_G28() {
|
|||
*/
|
||||
inline void gcode_G29() {
|
||||
|
||||
// Prevent leveling without first homing in X and Y
|
||||
if (!can_run_bed_leveling()) return;
|
||||
|
||||
int verbose_level = 1;
|
||||
|
||||
if (code_seen('V') || code_seen('v')) {
|
||||
verbose_level = code_value_long();
|
||||
if (verbose_level < 0 || verbose_level > 4) {
|
||||
SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
|
||||
// Don't allow auto-leveling without homing first
|
||||
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||
return;
|
||||
}
|
||||
|
||||
int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
|
||||
if (verbose_level < 0 || verbose_level > 4) {
|
||||
SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
|
||||
return;
|
||||
}
|
||||
|
||||
bool dryrun = code_seen('D') || code_seen('d');
|
||||
bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
|
||||
bool dryrun = code_seen('D') || code_seen('d'),
|
||||
deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
|
||||
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
|
@ -2226,24 +2215,24 @@ inline void gcode_G28() {
|
|||
|
||||
if (verbose_level > 0) {
|
||||
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
|
||||
if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
|
||||
if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
|
||||
}
|
||||
|
||||
int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
|
||||
#ifndef DELTA
|
||||
if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
|
||||
if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
|
||||
if (auto_bed_leveling_grid_points < 2) {
|
||||
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
|
||||
xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
|
||||
|
||||
int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
|
||||
right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
|
||||
front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
|
||||
back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
|
||||
int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
|
||||
right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
|
||||
front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
|
||||
back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
|
||||
|
||||
bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
|
||||
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
|
||||
|
@ -2279,7 +2268,7 @@ inline void gcode_G28() {
|
|||
#ifdef Z_PROBE_SLED
|
||||
dock_sled(false); // engage (un-dock) the probe
|
||||
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
|
||||
engage_z_probe();
|
||||
deploy_z_probe();
|
||||
#endif
|
||||
|
||||
st_synchronize();
|
||||
|
@ -2360,7 +2349,7 @@ inline void gcode_G28() {
|
|||
|
||||
// raise extruder
|
||||
float measured_z,
|
||||
z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
|
||||
z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
|
||||
|
||||
#ifdef DELTA
|
||||
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
|
||||
|
@ -2368,14 +2357,13 @@ inline void gcode_G28() {
|
|||
if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
|
||||
#endif //DELTA
|
||||
|
||||
// Enhanced G29 - Do not retract servo between probes
|
||||
ProbeAction act;
|
||||
if (engage_probe_for_each_reading)
|
||||
act = ProbeEngageAndRetract;
|
||||
else if (yProbe == front_probe_bed_position && xCount == 0)
|
||||
act = ProbeEngage;
|
||||
else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
|
||||
act = ProbeRetract;
|
||||
if (deploy_probe_for_each_reading) // G29 E - Stow between probes
|
||||
act = ProbeDeployAndStow;
|
||||
else if (yCount == 0 && xCount == 0)
|
||||
act = ProbeDeploy;
|
||||
else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == auto_bed_leveling_grid_points - 1)
|
||||
act = ProbeStow;
|
||||
else
|
||||
act = ProbeStay;
|
||||
|
||||
|
@ -2447,7 +2435,7 @@ inline void gcode_G28() {
|
|||
if (diff >= 0.0)
|
||||
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
||||
else
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
SERIAL_PROTOCOLCHAR(' ');
|
||||
SERIAL_PROTOCOL_F(diff, 5);
|
||||
} // xx
|
||||
SERIAL_EOL;
|
||||
|
@ -2466,10 +2454,10 @@ inline void gcode_G28() {
|
|||
|
||||
// Actions for each probe
|
||||
ProbeAction p1, p2, p3;
|
||||
if (engage_probe_for_each_reading)
|
||||
p1 = p2 = p3 = ProbeEngageAndRetract;
|
||||
if (deploy_probe_for_each_reading)
|
||||
p1 = p2 = p3 = ProbeDeployAndStow;
|
||||
else
|
||||
p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
|
||||
p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
|
||||
|
||||
// Probe at 3 arbitrary points
|
||||
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
|
||||
|
@ -2502,7 +2490,7 @@ inline void gcode_G28() {
|
|||
#ifdef Z_PROBE_SLED
|
||||
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
||||
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
|
||||
retract_z_probe();
|
||||
stow_z_probe();
|
||||
#endif
|
||||
|
||||
#ifdef Z_PROBE_END_SCRIPT
|
||||
|
@ -2514,7 +2502,7 @@ inline void gcode_G28() {
|
|||
#ifndef Z_PROBE_SLED
|
||||
|
||||
inline void gcode_G30() {
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
deploy_z_probe(); // Engage Z Servo endstop if available
|
||||
st_synchronize();
|
||||
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
||||
setup_for_endstop_move();
|
||||
|
@ -2532,7 +2520,7 @@ inline void gcode_G28() {
|
|||
SERIAL_EOL;
|
||||
|
||||
clean_up_after_endstop_move();
|
||||
retract_z_probe(); // Retract Z Servo endstop if available
|
||||
stow_z_probe(); // Retract Z Servo endstop if available
|
||||
}
|
||||
|
||||
#endif //!Z_PROBE_SLED
|
||||
|
@ -2571,11 +2559,11 @@ inline void gcode_G92() {
|
|||
unsigned long codenum = 0;
|
||||
bool hasP = false, hasS = false;
|
||||
if (code_seen('P')) {
|
||||
codenum = code_value(); // milliseconds to wait
|
||||
codenum = code_value_short(); // milliseconds to wait
|
||||
hasP = codenum > 0;
|
||||
}
|
||||
if (code_seen('S')) {
|
||||
codenum = code_value() * 1000; // seconds to wait
|
||||
codenum = code_value_short() * 1000UL; // seconds to wait
|
||||
hasS = codenum > 0;
|
||||
}
|
||||
char* starpos = strchr(src, '*');
|
||||
|
@ -2592,7 +2580,7 @@ inline void gcode_G92() {
|
|||
|
||||
lcd_ignore_click();
|
||||
st_synchronize();
|
||||
previous_millis_cmd = millis();
|
||||
refresh_cmd_timeout();
|
||||
if (codenum > 0) {
|
||||
codenum += previous_millis_cmd; // keep track of when we started waiting
|
||||
while(millis() < codenum && !lcd_clicked()) {
|
||||
|
@ -2623,13 +2611,7 @@ inline void gcode_G92() {
|
|||
*/
|
||||
inline void gcode_M17() {
|
||||
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
||||
enable_x();
|
||||
enable_y();
|
||||
enable_z();
|
||||
enable_e0();
|
||||
enable_e1();
|
||||
enable_e2();
|
||||
enable_e3();
|
||||
enable_all_steppers();
|
||||
}
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
|
@ -2687,7 +2669,7 @@ inline void gcode_M17() {
|
|||
*/
|
||||
inline void gcode_M26() {
|
||||
if (card.cardOK && code_seen('S'))
|
||||
card.setIndex(code_value_long());
|
||||
card.setIndex(code_value_short());
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -2778,7 +2760,7 @@ inline void gcode_M31() {
|
|||
card.openFile(namestartpos, true, !call_procedure);
|
||||
|
||||
if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
|
||||
card.setIndex(code_value_long());
|
||||
card.setIndex(code_value_short());
|
||||
|
||||
card.startFileprint();
|
||||
if (!call_procedure)
|
||||
|
@ -2806,11 +2788,11 @@ inline void gcode_M31() {
|
|||
*/
|
||||
inline void gcode_M42() {
|
||||
if (code_seen('S')) {
|
||||
int pin_status = code_value(),
|
||||
int pin_status = code_value_short(),
|
||||
pin_number = LED_PIN;
|
||||
|
||||
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
||||
pin_number = code_value();
|
||||
pin_number = code_value_short();
|
||||
|
||||
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
|
||||
if (sensitive_pins[i] == pin_number) {
|
||||
|
@ -2819,7 +2801,7 @@ inline void gcode_M42() {
|
|||
}
|
||||
}
|
||||
|
||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||
#if HAS_FAN
|
||||
if (pin_number == FAN_PIN) fanSpeed = pin_status;
|
||||
#endif
|
||||
|
||||
|
@ -2831,11 +2813,15 @@ inline void gcode_M42() {
|
|||
} // code_seen('S')
|
||||
}
|
||||
|
||||
|
||||
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
|
||||
|
||||
#if Z_MIN_PIN == -1
|
||||
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
|
||||
// This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
#if !HAS_Z_PROBE
|
||||
#error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
|
||||
#endif
|
||||
#elif !HAS_Z_MIN
|
||||
#error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
@ -2865,7 +2851,7 @@ inline void gcode_M42() {
|
|||
int verbose_level = 1, n_samples = 10, n_legs = 0;
|
||||
|
||||
if (code_seen('V') || code_seen('v')) {
|
||||
verbose_level = code_value();
|
||||
verbose_level = code_value_short();
|
||||
if (verbose_level < 0 || verbose_level > 4 ) {
|
||||
SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
|
||||
return;
|
||||
|
@ -2876,7 +2862,7 @@ inline void gcode_M42() {
|
|||
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
|
||||
|
||||
if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
|
||||
n_samples = code_value();
|
||||
n_samples = code_value_short();
|
||||
if (n_samples < 4 || n_samples > 50) {
|
||||
SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
|
||||
return;
|
||||
|
@ -2890,7 +2876,7 @@ inline void gcode_M42() {
|
|||
Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
|
||||
ext_position = st_get_position_mm(E_AXIS);
|
||||
|
||||
bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
|
||||
bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
|
||||
|
||||
if (code_seen('X') || code_seen('x')) {
|
||||
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
|
@ -2909,7 +2895,7 @@ inline void gcode_M42() {
|
|||
}
|
||||
|
||||
if (code_seen('L') || code_seen('l')) {
|
||||
n_legs = code_value();
|
||||
n_legs = code_value_short();
|
||||
if (n_legs == 1) n_legs = 2;
|
||||
if (n_legs < 0 || n_legs > 15) {
|
||||
SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
|
||||
|
@ -2953,7 +2939,7 @@ inline void gcode_M42() {
|
|||
// Then retrace the right amount and use that in subsequent probes
|
||||
//
|
||||
|
||||
engage_z_probe();
|
||||
deploy_z_probe();
|
||||
|
||||
setup_for_endstop_move();
|
||||
run_z_probe();
|
||||
|
@ -2968,7 +2954,7 @@ inline void gcode_M42() {
|
|||
st_synchronize();
|
||||
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
||||
|
||||
if (engage_probe_for_each_reading) retract_z_probe();
|
||||
if (deploy_probe_for_each_reading) stow_z_probe();
|
||||
|
||||
for (uint16_t n=0; n < n_samples; n++) {
|
||||
|
||||
|
@ -3010,8 +2996,8 @@ inline void gcode_M42() {
|
|||
|
||||
} // n_legs
|
||||
|
||||
if (engage_probe_for_each_reading) {
|
||||
engage_z_probe();
|
||||
if (deploy_probe_for_each_reading) {
|
||||
deploy_z_probe();
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
|
@ -3057,14 +3043,14 @@ inline void gcode_M42() {
|
|||
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
||||
st_synchronize();
|
||||
|
||||
if (engage_probe_for_each_reading) {
|
||||
retract_z_probe();
|
||||
if (deploy_probe_for_each_reading) {
|
||||
stow_z_probe();
|
||||
delay(1000);
|
||||
}
|
||||
}
|
||||
|
||||
if (!engage_probe_for_each_reading) {
|
||||
retract_z_probe();
|
||||
if (!deploy_probe_for_each_reading) {
|
||||
stow_z_probe();
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
|
@ -3091,13 +3077,16 @@ inline void gcode_M42() {
|
|||
inline void gcode_M104() {
|
||||
if (setTargetedHotend(104)) return;
|
||||
|
||||
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
|
||||
if (code_seen('S')) {
|
||||
float temp = code_value();
|
||||
setTargetHotend(temp, target_extruder);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
||||
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
|
||||
#endif
|
||||
setWatch();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M105: Read hot end and bed temperature
|
||||
|
@ -3105,48 +3094,51 @@ inline void gcode_M104() {
|
|||
inline void gcode_M105() {
|
||||
if (setTargetedHotend(105)) return;
|
||||
|
||||
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
||||
SERIAL_PROTOCOLPGM("ok T:");
|
||||
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
||||
#if HAS_TEMP_0 || HAS_TEMP_BED
|
||||
SERIAL_PROTOCOLPGM("ok");
|
||||
#if HAS_TEMP_0
|
||||
SERIAL_PROTOCOLPGM(" T:");
|
||||
SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
|
||||
SERIAL_PROTOCOLPGM(" /");
|
||||
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
|
||||
#endif
|
||||
#if HAS_TEMP_BED
|
||||
SERIAL_PROTOCOLPGM(" B:");
|
||||
SERIAL_PROTOCOL_F(degBed(), 1);
|
||||
SERIAL_PROTOCOLPGM(" /");
|
||||
SERIAL_PROTOCOL_F(degTargetBed(), 1);
|
||||
#endif //TEMP_BED_PIN
|
||||
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
||||
#endif
|
||||
for (int8_t e = 0; e < EXTRUDERS; ++e) {
|
||||
SERIAL_PROTOCOLPGM(" T");
|
||||
SERIAL_PROTOCOL(cur_extruder);
|
||||
SERIAL_PROTOCOLPGM(":");
|
||||
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
||||
SERIAL_PROTOCOL(e);
|
||||
SERIAL_PROTOCOLCHAR(':');
|
||||
SERIAL_PROTOCOL_F(degHotend(e), 1);
|
||||
SERIAL_PROTOCOLPGM(" /");
|
||||
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
|
||||
SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
|
||||
}
|
||||
#else
|
||||
#else // !HAS_TEMP_0 && !HAS_TEMP_BED
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLPGM(" @:");
|
||||
#ifdef EXTRUDER_WATTS
|
||||
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
|
||||
SERIAL_PROTOCOLPGM("W");
|
||||
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
|
||||
SERIAL_PROTOCOLCHAR('W');
|
||||
#else
|
||||
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
|
||||
SERIAL_PROTOCOL(getHeaterPower(target_extruder));
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLPGM(" B@:");
|
||||
#ifdef BED_WATTS
|
||||
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
||||
SERIAL_PROTOCOLPGM("W");
|
||||
SERIAL_PROTOCOLCHAR('W');
|
||||
#else
|
||||
SERIAL_PROTOCOL(getHeaterPower(-1));
|
||||
#endif
|
||||
|
||||
#ifdef SHOW_TEMP_ADC_VALUES
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
#if HAS_TEMP_BED
|
||||
SERIAL_PROTOCOLPGM(" ADC B:");
|
||||
SERIAL_PROTOCOL_F(degBed(),1);
|
||||
SERIAL_PROTOCOLPGM("C->");
|
||||
|
@ -3155,29 +3147,29 @@ inline void gcode_M105() {
|
|||
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
||||
SERIAL_PROTOCOLPGM(" T");
|
||||
SERIAL_PROTOCOL(cur_extruder);
|
||||
SERIAL_PROTOCOLPGM(":");
|
||||
SERIAL_PROTOCOLCHAR(':');
|
||||
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
||||
SERIAL_PROTOCOLPGM("C->");
|
||||
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
|
||||
}
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||
#if HAS_FAN
|
||||
|
||||
/**
|
||||
* M106: Set Fan Speed
|
||||
*/
|
||||
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
||||
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
|
||||
|
||||
/**
|
||||
* M107: Fan Off
|
||||
*/
|
||||
inline void gcode_M107() { fanSpeed = 0; }
|
||||
|
||||
#endif //FAN_PIN
|
||||
#endif // HAS_FAN
|
||||
|
||||
/**
|
||||
* M109: Wait for extruder(s) to reach temperature
|
||||
|
@ -3189,10 +3181,11 @@ inline void gcode_M109() {
|
|||
|
||||
CooldownNoWait = code_seen('S');
|
||||
if (CooldownNoWait || code_seen('R')) {
|
||||
setTargetHotend(code_value(), tmp_extruder);
|
||||
float temp = code_value();
|
||||
setTargetHotend(temp, target_extruder);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
|
||||
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
||||
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -3208,7 +3201,7 @@ inline void gcode_M109() {
|
|||
unsigned long timetemp = millis();
|
||||
|
||||
/* See if we are heating up or cooling down */
|
||||
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
|
||||
target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
|
||||
|
||||
cancel_heatup = false;
|
||||
|
||||
|
@ -3219,15 +3212,15 @@ inline void gcode_M109() {
|
|||
while((!cancel_heatup)&&((residencyStart == -1) ||
|
||||
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
|
||||
#else
|
||||
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
|
||||
while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) )
|
||||
#endif //TEMP_RESIDENCY_TIME
|
||||
|
||||
{ // while loop
|
||||
if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
|
||||
SERIAL_PROTOCOLPGM("T:");
|
||||
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
|
||||
SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
|
||||
SERIAL_PROTOCOLPGM(" E:");
|
||||
SERIAL_PROTOCOL((int)tmp_extruder);
|
||||
SERIAL_PROTOCOL((int)target_extruder);
|
||||
#ifdef TEMP_RESIDENCY_TIME
|
||||
SERIAL_PROTOCOLPGM(" W:");
|
||||
if (residencyStart > -1) {
|
||||
|
@ -3235,10 +3228,10 @@ inline void gcode_M109() {
|
|||
SERIAL_PROTOCOLLN( timetemp );
|
||||
}
|
||||
else {
|
||||
SERIAL_PROTOCOLLN( "?" );
|
||||
SERIAL_PROTOCOLLNPGM("?");
|
||||
}
|
||||
#else
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
#endif
|
||||
timetemp = millis();
|
||||
}
|
||||
|
@ -3248,9 +3241,9 @@ inline void gcode_M109() {
|
|||
#ifdef TEMP_RESIDENCY_TIME
|
||||
// start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
||||
// or when current temp falls outside the hysteresis after target temp was reached
|
||||
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
|
||||
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
|
||||
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
|
||||
if ((residencyStart == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
|
||||
(residencyStart == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
|
||||
(residencyStart > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
|
||||
{
|
||||
residencyStart = millis();
|
||||
}
|
||||
|
@ -3258,10 +3251,11 @@ inline void gcode_M109() {
|
|||
}
|
||||
|
||||
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
||||
starttime = previous_millis_cmd = millis();
|
||||
refresh_cmd_timeout();
|
||||
starttime = previous_millis_cmd;
|
||||
}
|
||||
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
#if HAS_TEMP_BED
|
||||
|
||||
/**
|
||||
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
||||
|
@ -3289,17 +3283,17 @@ inline void gcode_M109() {
|
|||
SERIAL_PROTOCOL((int)active_extruder);
|
||||
SERIAL_PROTOCOLPGM(" B:");
|
||||
SERIAL_PROTOCOL_F(degBed(), 1);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
LCD_MESSAGEPGM(MSG_BED_DONE);
|
||||
previous_millis_cmd = millis();
|
||||
refresh_cmd_timeout();
|
||||
}
|
||||
|
||||
#endif // TEMP_BED_PIN > -1
|
||||
#endif // HAS_TEMP_BED
|
||||
|
||||
/**
|
||||
* M112: Emergency Stop
|
||||
|
@ -3310,7 +3304,7 @@ inline void gcode_M112() {
|
|||
|
||||
#ifdef BARICUDA
|
||||
|
||||
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
||||
#if HAS_HEATER_1
|
||||
/**
|
||||
* M126: Heater 1 valve open
|
||||
*/
|
||||
|
@ -3321,7 +3315,7 @@ inline void gcode_M112() {
|
|||
inline void gcode_M127() { ValvePressure = 0; }
|
||||
#endif
|
||||
|
||||
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
||||
#if HAS_HEATER_2
|
||||
/**
|
||||
* M128: Heater 2 valve open
|
||||
*/
|
||||
|
@ -3352,7 +3346,7 @@ inline void gcode_M140() {
|
|||
// If you have a switch on suicide pin, this is useful
|
||||
// if you want to start another print with suicide feature after
|
||||
// a print without suicide...
|
||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||
#if HAS_SUICIDE
|
||||
OUT_WRITE(SUICIDE_PIN, HIGH);
|
||||
#endif
|
||||
|
||||
|
@ -3380,7 +3374,7 @@ inline void gcode_M81() {
|
|||
finishAndDisableSteppers();
|
||||
fanSpeed = 0;
|
||||
delay(1000); // Wait 1 second before switching off
|
||||
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
|
||||
#if HAS_SUICIDE
|
||||
st_synchronize();
|
||||
suicide();
|
||||
#elif HAS_POWER_SWITCH
|
||||
|
@ -3490,27 +3484,26 @@ inline void gcode_M114() {
|
|||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
||||
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
|
||||
#ifdef SCARA
|
||||
SERIAL_PROTOCOLPGM("SCARA Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
||||
SERIAL_PROTOCOL(delta[Y_AXIS]);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
|
||||
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
|
||||
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
|
||||
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
||||
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL; SERIAL_EOL;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -3536,35 +3529,38 @@ inline void gcode_M117() {
|
|||
*/
|
||||
inline void gcode_M119() {
|
||||
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||
#if HAS_X_MIN
|
||||
SERIAL_PROTOCOLPGM(MSG_X_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||
#if HAS_X_MAX
|
||||
SERIAL_PROTOCOLPGM(MSG_X_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
||||
#if HAS_Y_MIN
|
||||
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
||||
#if HAS_Y_MAX
|
||||
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
||||
#if HAS_Z_MIN
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
||||
#if HAS_Z_MAX
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
#if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
|
||||
#if HAS_Z2_MAX
|
||||
SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
|
||||
SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
|
||||
#if HAS_Z_PROBE
|
||||
SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
|
||||
SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -3584,9 +3580,9 @@ inline void gcode_M121() { enable_endstops(true); }
|
|||
*/
|
||||
inline void gcode_M150() {
|
||||
SendColors(
|
||||
code_seen('R') ? (byte)code_value() : 0,
|
||||
code_seen('U') ? (byte)code_value() : 0,
|
||||
code_seen('B') ? (byte)code_value() : 0
|
||||
code_seen('R') ? (byte)code_value_short() : 0,
|
||||
code_seen('U') ? (byte)code_value_short() : 0,
|
||||
code_seen('B') ? (byte)code_value_short() : 0
|
||||
);
|
||||
}
|
||||
|
||||
|
@ -3598,9 +3594,9 @@ inline void gcode_M121() { enable_endstops(true); }
|
|||
* D<millimeters>
|
||||
*/
|
||||
inline void gcode_M200() {
|
||||
tmp_extruder = active_extruder;
|
||||
int tmp_extruder = active_extruder;
|
||||
if (code_seen('T')) {
|
||||
tmp_extruder = code_value();
|
||||
tmp_extruder = code_value_short();
|
||||
if (tmp_extruder >= EXTRUDERS) {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
||||
|
@ -3671,27 +3667,23 @@ inline void gcode_M203() {
|
|||
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
||||
*/
|
||||
inline void gcode_M204() {
|
||||
if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
|
||||
{
|
||||
if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
|
||||
acceleration = code_value();
|
||||
travel_acceleration = acceleration;
|
||||
SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
|
||||
SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
|
||||
SERIAL_EOL;
|
||||
}
|
||||
if (code_seen('P'))
|
||||
{
|
||||
if (code_seen('P')) {
|
||||
acceleration = code_value();
|
||||
SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
|
||||
SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
|
||||
SERIAL_EOL;
|
||||
}
|
||||
if (code_seen('R'))
|
||||
{
|
||||
if (code_seen('R')) {
|
||||
retract_acceleration = code_value();
|
||||
SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
|
||||
SERIAL_EOL;
|
||||
}
|
||||
if (code_seen('T'))
|
||||
{
|
||||
if (code_seen('T')) {
|
||||
travel_acceleration = code_value();
|
||||
SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
|
||||
SERIAL_EOL;
|
||||
|
@ -3794,7 +3786,7 @@ inline void gcode_M206() {
|
|||
*/
|
||||
inline void gcode_M209() {
|
||||
if (code_seen('S')) {
|
||||
int t = code_value();
|
||||
int t = code_value_short();
|
||||
switch(t) {
|
||||
case 0:
|
||||
autoretract_enabled = false;
|
||||
|
@ -3823,23 +3815,23 @@ inline void gcode_M206() {
|
|||
inline void gcode_M218() {
|
||||
if (setTargetedHotend(218)) return;
|
||||
|
||||
if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
|
||||
if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
|
||||
if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
|
||||
if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
|
||||
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
|
||||
if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
|
||||
#endif
|
||||
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||
for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
|
||||
SERIAL_ECHO(" ");
|
||||
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
|
||||
for (int e = 0; e < EXTRUDERS; e++) {
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_ECHO(extruder_offset[X_AXIS][e]);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
|
||||
#endif
|
||||
}
|
||||
SERIAL_EOL;
|
||||
|
@ -3862,7 +3854,7 @@ inline void gcode_M221() {
|
|||
int sval = code_value();
|
||||
if (code_seen('T')) {
|
||||
if (setTargetedHotend(221)) return;
|
||||
extruder_multiply[tmp_extruder] = sval;
|
||||
extruder_multiply[target_extruder] = sval;
|
||||
}
|
||||
else {
|
||||
extruder_multiply[active_extruder] = sval;
|
||||
|
@ -3953,7 +3945,7 @@ inline void gcode_M226() {
|
|||
SERIAL_PROTOCOL(servo_index);
|
||||
SERIAL_PROTOCOL(": ");
|
||||
SERIAL_PROTOCOL(servos[servo_index].read());
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -4021,7 +4013,7 @@ inline void gcode_M226() {
|
|||
//Kc does not have scaling applied above, or in resetting defaults
|
||||
SERIAL_PROTOCOL(PID_PARAM(Kc, e));
|
||||
#endif
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHO_START;
|
||||
|
@ -4046,12 +4038,12 @@ inline void gcode_M226() {
|
|||
SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
||||
SERIAL_PROTOCOL(" d:");
|
||||
SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
#endif // PIDTEMPBED
|
||||
|
||||
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
|
||||
#if defined(CHDK) || HAS_PHOTOGRAPH
|
||||
|
||||
/**
|
||||
* M240: Trigger a camera by emulating a Canon RC-1
|
||||
|
@ -4064,7 +4056,7 @@ inline void gcode_M226() {
|
|||
chdkHigh = millis();
|
||||
chdkActive = true;
|
||||
|
||||
#elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
||||
#elif HAS_PHOTOGRAPH
|
||||
|
||||
const uint8_t NUM_PULSES = 16;
|
||||
const float PULSE_LENGTH = 0.01524;
|
||||
|
@ -4082,7 +4074,7 @@ inline void gcode_M226() {
|
|||
_delay_ms(PULSE_LENGTH);
|
||||
}
|
||||
|
||||
#endif // !CHDK && PHOTOGRAPH_PIN > -1
|
||||
#endif // !CHDK && HAS_PHOTOGRAPH
|
||||
}
|
||||
|
||||
#endif // CHDK || PHOTOGRAPH_PIN
|
||||
|
@ -4093,10 +4085,10 @@ inline void gcode_M226() {
|
|||
* M250: Read and optionally set the LCD contrast
|
||||
*/
|
||||
inline void gcode_M250() {
|
||||
if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
|
||||
if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
|
||||
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
||||
SERIAL_PROTOCOL(lcd_contrast);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
#endif // DOGLCD
|
||||
|
@ -4119,8 +4111,8 @@ inline void gcode_M226() {
|
|||
* C<cycles>
|
||||
*/
|
||||
inline void gcode_M303() {
|
||||
int e = code_seen('E') ? code_value_long() : 0;
|
||||
int c = code_seen('C') ? code_value_long() : 5;
|
||||
int e = code_seen('E') ? code_value_short() : 0;
|
||||
int c = code_seen('C') ? code_value_short() : 5;
|
||||
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
|
||||
PID_autotune(temp, e, c);
|
||||
}
|
||||
|
@ -4203,17 +4195,17 @@ inline void gcode_M303() {
|
|||
case 0:
|
||||
OUT_WRITE(SOL0_PIN, HIGH);
|
||||
break;
|
||||
#if defined(SOL1_PIN) && SOL1_PIN > -1
|
||||
#if HAS_SOLENOID_1
|
||||
case 1:
|
||||
OUT_WRITE(SOL1_PIN, HIGH);
|
||||
break;
|
||||
#endif
|
||||
#if defined(SOL2_PIN) && SOL2_PIN > -1
|
||||
#if HAS_SOLENOID_2
|
||||
case 2:
|
||||
OUT_WRITE(SOL2_PIN, HIGH);
|
||||
break;
|
||||
#endif
|
||||
#if defined(SOL3_PIN) && SOL3_PIN > -1
|
||||
#if HAS_SOLENOID_3
|
||||
case 3:
|
||||
OUT_WRITE(SOL3_PIN, HIGH);
|
||||
break;
|
||||
|
@ -4256,11 +4248,11 @@ inline void gcode_M400() { st_synchronize(); }
|
|||
/**
|
||||
* M401: Engage Z Servo endstop if available
|
||||
*/
|
||||
inline void gcode_M401() { engage_z_probe(); }
|
||||
inline void gcode_M401() { deploy_z_probe(); }
|
||||
/**
|
||||
* M402: Retract Z Servo endstop if enabled
|
||||
*/
|
||||
inline void gcode_M402() { retract_z_probe(); }
|
||||
inline void gcode_M402() { stow_z_probe(); }
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -4270,7 +4262,7 @@ inline void gcode_M400() { st_synchronize(); }
|
|||
* M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
|
||||
*/
|
||||
inline void gcode_M404() {
|
||||
#if FILWIDTH_PIN > -1
|
||||
#if HAS_FILWIDTH
|
||||
if (code_seen('W')) {
|
||||
filament_width_nominal = code_value();
|
||||
}
|
||||
|
@ -4369,7 +4361,7 @@ inline void gcode_M503() {
|
|||
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHO_START;
|
||||
|
@ -4378,14 +4370,14 @@ inline void gcode_M503() {
|
|||
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
||||
SERIAL_ECHOPGM(MSG_Z_MAX);
|
||||
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
|
||||
SERIAL_ECHO(-zprobe_zoffset);
|
||||
SERIAL_PROTOCOLLN("");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -4529,13 +4521,13 @@ inline void gcode_M503() {
|
|||
if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||
SERIAL_ECHO(" ");
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
|
||||
SERIAL_ECHO(" ");
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_ECHO(duplicate_extruder_x_offset);
|
||||
SERIAL_ECHO(",");
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
|
||||
break;
|
||||
case DXC_FULL_CONTROL_MODE:
|
||||
|
@ -4593,14 +4585,14 @@ inline void gcode_M907() {
|
|||
|
||||
#endif // HAS_DIGIPOTSS
|
||||
|
||||
#if HAS_MICROSTEPS
|
||||
|
||||
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
inline void gcode_M350() {
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
||||
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
||||
if(code_seen('B')) microstep_mode(4,code_value());
|
||||
microstep_readings();
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -4608,8 +4600,7 @@ inline void gcode_M350() {
|
|||
* S# determines MS1 or MS2, X# sets the pin high/low.
|
||||
*/
|
||||
inline void gcode_M351() {
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||
if (code_seen('S')) switch(code_value_long()) {
|
||||
if (code_seen('S')) switch(code_value_short()) {
|
||||
case 1:
|
||||
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
|
||||
if (code_seen('B')) microstep_ms(4, code_value(), -1);
|
||||
|
@ -4620,9 +4611,10 @@ inline void gcode_M351() {
|
|||
break;
|
||||
}
|
||||
microstep_readings();
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // HAS_MICROSTEPS
|
||||
|
||||
/**
|
||||
* M999: Restart after being stopped
|
||||
*/
|
||||
|
@ -4634,28 +4626,33 @@ inline void gcode_M999() {
|
|||
}
|
||||
|
||||
inline void gcode_T() {
|
||||
tmp_extruder = code_value();
|
||||
int tmp_extruder = code_value();
|
||||
if (tmp_extruder >= EXTRUDERS) {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO("T");
|
||||
SERIAL_CHAR('T');
|
||||
SERIAL_ECHO(tmp_extruder);
|
||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||
}
|
||||
else {
|
||||
target_extruder = tmp_extruder;
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
bool make_move = false;
|
||||
#endif
|
||||
|
||||
if (code_seen('F')) {
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
make_move = true;
|
||||
#endif
|
||||
|
||||
next_feedrate = code_value();
|
||||
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
||||
}
|
||||
#if EXTRUDERS > 1
|
||||
if (tmp_extruder != active_extruder) {
|
||||
// Save current position to return to after applying extruder offset
|
||||
memcpy(destination, current_position, sizeof(destination));
|
||||
set_destination_to_current();
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
|
||||
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
|
||||
|
@ -4733,11 +4730,12 @@ inline void gcode_T() {
|
|||
|
||||
/**
|
||||
* Process Commands and dispatch them to handlers
|
||||
* This is called from the main loop()
|
||||
*/
|
||||
void process_commands() {
|
||||
if (code_seen('G')) {
|
||||
|
||||
int gCode = code_value_long();
|
||||
int gCode = code_value_short();
|
||||
|
||||
switch(gCode) {
|
||||
|
||||
|
@ -4812,7 +4810,7 @@ void process_commands() {
|
|||
}
|
||||
|
||||
else if (code_seen('M')) {
|
||||
switch( code_value_long() ) {
|
||||
switch(code_value_short()) {
|
||||
#ifdef ULTIPANEL
|
||||
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
||||
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
||||
|
@ -4890,41 +4888,41 @@ void process_commands() {
|
|||
gcode_M109();
|
||||
break;
|
||||
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
#if HAS_TEMP_BED
|
||||
case 190: // M190 - Wait for bed heater to reach target.
|
||||
gcode_M190();
|
||||
break;
|
||||
#endif //TEMP_BED_PIN
|
||||
#endif // HAS_TEMP_BED
|
||||
|
||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||
#if HAS_FAN
|
||||
case 106: //M106 Fan On
|
||||
gcode_M106();
|
||||
break;
|
||||
case 107: //M107 Fan Off
|
||||
gcode_M107();
|
||||
break;
|
||||
#endif //FAN_PIN
|
||||
#endif // HAS_FAN
|
||||
|
||||
#ifdef BARICUDA
|
||||
// PWM for HEATER_1_PIN
|
||||
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
||||
#if HAS_HEATER_1
|
||||
case 126: // M126 valve open
|
||||
gcode_M126();
|
||||
break;
|
||||
case 127: // M127 valve closed
|
||||
gcode_M127();
|
||||
break;
|
||||
#endif //HEATER_1_PIN
|
||||
#endif // HAS_HEATER_1
|
||||
|
||||
// PWM for HEATER_2_PIN
|
||||
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
||||
#if HAS_HEATER_2
|
||||
case 128: // M128 valve open
|
||||
gcode_M128();
|
||||
break;
|
||||
case 129: // M129 valve closed
|
||||
gcode_M129();
|
||||
break;
|
||||
#endif //HEATER_2_PIN
|
||||
#endif // HAS_HEATER_2
|
||||
#endif // BARICUDA
|
||||
|
||||
#if HAS_POWER_SWITCH
|
||||
|
@ -5073,7 +5071,7 @@ void process_commands() {
|
|||
break;
|
||||
#endif // PIDTEMPBED
|
||||
|
||||
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
|
||||
#if defined(CHDK) || HAS_PHOTOGRAPH
|
||||
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
||||
gcode_M240();
|
||||
break;
|
||||
|
@ -5191,6 +5189,8 @@ void process_commands() {
|
|||
break;
|
||||
#endif // HAS_DIGIPOTSS
|
||||
|
||||
#if HAS_MICROSTEPS
|
||||
|
||||
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
gcode_M350();
|
||||
break;
|
||||
|
@ -5199,6 +5199,8 @@ void process_commands() {
|
|||
gcode_M351();
|
||||
break;
|
||||
|
||||
#endif // HAS_MICROSTEPS
|
||||
|
||||
case 999: // M999: Restart after being Stopped
|
||||
gcode_M999();
|
||||
break;
|
||||
|
@ -5219,8 +5221,7 @@ void process_commands() {
|
|||
ClearToSend();
|
||||
}
|
||||
|
||||
void FlushSerialRequestResend()
|
||||
{
|
||||
void FlushSerialRequestResend() {
|
||||
//char cmdbuffer[bufindr][100]="Resend:";
|
||||
MYSERIAL.flush();
|
||||
SERIAL_PROTOCOLPGM(MSG_RESEND);
|
||||
|
@ -5228,13 +5229,11 @@ void FlushSerialRequestResend()
|
|||
ClearToSend();
|
||||
}
|
||||
|
||||
void ClearToSend()
|
||||
{
|
||||
previous_millis_cmd = millis();
|
||||
void ClearToSend() {
|
||||
refresh_cmd_timeout();
|
||||
#ifdef SDSUPPORT
|
||||
if(fromsd[bufindr])
|
||||
return;
|
||||
#endif //SDSUPPORT
|
||||
if (fromsd[bufindr]) return;
|
||||
#endif
|
||||
SERIAL_PROTOCOLLNPGM(MSG_OK);
|
||||
}
|
||||
|
||||
|
@ -5251,8 +5250,7 @@ void get_coordinates() {
|
|||
}
|
||||
}
|
||||
|
||||
void get_arc_coordinates()
|
||||
{
|
||||
void get_arc_coordinates() {
|
||||
#ifdef SF_ARC_FIX
|
||||
bool relative_mode_backup = relative_mode;
|
||||
relative_mode = true;
|
||||
|
@ -5262,18 +5260,8 @@ void get_arc_coordinates()
|
|||
relative_mode = relative_mode_backup;
|
||||
#endif
|
||||
|
||||
if(code_seen('I')) {
|
||||
offset[0] = code_value();
|
||||
}
|
||||
else {
|
||||
offset[0] = 0.0;
|
||||
}
|
||||
if(code_seen('J')) {
|
||||
offset[1] = code_value();
|
||||
}
|
||||
else {
|
||||
offset[1] = 0.0;
|
||||
}
|
||||
offset[0] = code_seen('I') ? code_value() : 0;
|
||||
offset[1] = code_seen('J') ? code_value() : 0;
|
||||
}
|
||||
|
||||
void clamp_to_software_endstops(float target[3])
|
||||
|
@ -5337,7 +5325,6 @@ void clamp_to_software_endstops(float target[3])
|
|||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// Adjust print surface height by linear interpolation over the bed_level array.
|
||||
int delta_grid_spacing[2] = { 0, 0 };
|
||||
void adjust_delta(float cartesian[3]) {
|
||||
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
|
||||
|
||||
|
@ -5377,16 +5364,9 @@ void clamp_to_software_endstops(float target[3])
|
|||
}
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
void prepare_move_raw() {
|
||||
previous_millis_cmd = millis();
|
||||
calculate_delta(destination);
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
||||
for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
|
||||
}
|
||||
|
||||
#endif // DELTA
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
|
||||
#if !defined(MIN)
|
||||
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
|
||||
|
@ -5397,9 +5377,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|||
{
|
||||
if (!mbl.active) {
|
||||
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
set_current_to_destination();
|
||||
return;
|
||||
}
|
||||
int pix = mbl.select_x_index(current_position[X_AXIS]);
|
||||
|
@ -5413,9 +5391,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|||
if (pix == ix && piy == iy) {
|
||||
// Start and end on same mesh square
|
||||
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
set_current_to_destination();
|
||||
return;
|
||||
}
|
||||
float nx, ny, ne, normalized_dist;
|
||||
|
@ -5446,9 +5422,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|||
} else {
|
||||
// Already split on a border
|
||||
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
set_current_to_destination();
|
||||
return;
|
||||
}
|
||||
// Do the split and look for more borders
|
||||
|
@ -5465,7 +5439,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
|
|||
|
||||
void prepare_move() {
|
||||
clamp_to_software_endstops(destination);
|
||||
previous_millis_cmd = millis();
|
||||
refresh_cmd_timeout();
|
||||
|
||||
#ifdef SCARA //for now same as delta-code
|
||||
|
||||
|
@ -5537,10 +5511,8 @@ void prepare_move() {
|
|||
#endif // DELTA
|
||||
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (active_extruder_parked)
|
||||
{
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
|
||||
{
|
||||
if (active_extruder_parked) {
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
|
||||
// move duplicate extruder into correct duplication position.
|
||||
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
|
||||
|
@ -5550,15 +5522,12 @@ void prepare_move() {
|
|||
extruder_duplication_enabled = true;
|
||||
active_extruder_parked = false;
|
||||
}
|
||||
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
|
||||
{
|
||||
if (current_position[E_AXIS] == destination[E_AXIS])
|
||||
{
|
||||
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
|
||||
if (current_position[E_AXIS] == destination[E_AXIS]) {
|
||||
// this is a travel move - skit it but keep track of current position (so that it can later
|
||||
// be used as start of first non-travel move)
|
||||
if (delayed_move_time != 0xFFFFFFFFUL)
|
||||
{
|
||||
memcpy(current_position, destination, sizeof(current_position));
|
||||
if (delayed_move_time != 0xFFFFFFFFUL) {
|
||||
set_current_to_destination();
|
||||
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
|
||||
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
|
||||
delayed_move_time = millis();
|
||||
|
@ -5581,8 +5550,9 @@ void prepare_move() {
|
|||
// Do not use feedmultiply for E or Z only moves
|
||||
if ( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
||||
line_to_destination();
|
||||
} else {
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
}
|
||||
else {
|
||||
#ifdef MESH_BED_LEVELING
|
||||
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
||||
return;
|
||||
#else
|
||||
|
@ -5591,9 +5561,7 @@ void prepare_move() {
|
|||
}
|
||||
#endif // !(DELTA || SCARA)
|
||||
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
set_current_to_destination();
|
||||
}
|
||||
|
||||
void prepare_arc_move(char isclockwise) {
|
||||
|
@ -5605,19 +5573,11 @@ void prepare_arc_move(char isclockwise) {
|
|||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
// in any intermediate location.
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
previous_millis_cmd = millis();
|
||||
set_current_to_destination();
|
||||
refresh_cmd_timeout();
|
||||
}
|
||||
|
||||
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
||||
|
||||
#if defined(FAN_PIN)
|
||||
#if CONTROLLERFAN_PIN == FAN_PIN
|
||||
#error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_CONTROLLERFAN
|
||||
|
||||
unsigned long lastMotor = 0; // Last time a motor was turned on
|
||||
unsigned long lastMotorCheck = 0; // Last time the state was checked
|
||||
|
@ -5630,7 +5590,7 @@ void controllerFan() {
|
|||
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
|
||||
#if EXTRUDERS > 1
|
||||
|| E1_ENABLE_READ == E_ENABLE_ON
|
||||
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
||||
#if HAS_X2_ENABLE
|
||||
|| X2_ENABLE_READ == X_ENABLE_ON
|
||||
#endif
|
||||
#if EXTRUDERS > 2
|
||||
|
@ -5742,7 +5702,7 @@ void handle_status_leds(void) {
|
|||
max_temp = max(max_temp, degHotend(cur_extruder));
|
||||
max_temp = max(max_temp, degTargetHotend(cur_extruder));
|
||||
}
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
#if HAS_TEMP_BED
|
||||
max_temp = max(max_temp, degTargetBed());
|
||||
max_temp = max(max_temp, degBed());
|
||||
#endif
|
||||
|
@ -5762,36 +5722,17 @@ void handle_status_leds(void) {
|
|||
}
|
||||
#endif
|
||||
|
||||
void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
|
||||
{
|
||||
void enable_all_steppers() {
|
||||
enable_x();
|
||||
enable_y();
|
||||
enable_z();
|
||||
enable_e0();
|
||||
enable_e1();
|
||||
enable_e2();
|
||||
enable_e3();
|
||||
}
|
||||
|
||||
#if defined(KILL_PIN) && KILL_PIN > -1
|
||||
static int killCount = 0; // make the inactivity button a bit less responsive
|
||||
const int KILL_DELAY = 750;
|
||||
#endif
|
||||
|
||||
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
|
||||
if(card.sdprinting) {
|
||||
if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
|
||||
filrunout(); }
|
||||
#endif
|
||||
|
||||
#if defined(HOME_PIN) && HOME_PIN > -1
|
||||
static int homeDebounceCount = 0; // poor man's debouncing count
|
||||
const int HOME_DEBOUNCE_DELAY = 750;
|
||||
#endif
|
||||
|
||||
|
||||
if(buflen < (BUFSIZE-1))
|
||||
get_command();
|
||||
|
||||
if( (millis() - previous_millis_cmd) > max_inactive_time )
|
||||
if(max_inactive_time)
|
||||
kill();
|
||||
if(stepper_inactive_time) {
|
||||
if( (millis() - previous_millis_cmd) > stepper_inactive_time )
|
||||
{
|
||||
if(blocks_queued() == false && ignore_stepper_queue == false) {
|
||||
void disable_all_steppers() {
|
||||
disable_x();
|
||||
disable_y();
|
||||
disable_z();
|
||||
|
@ -5800,96 +5741,156 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
|
|||
disable_e2();
|
||||
disable_e3();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Manage several activities:
|
||||
* - Check for Filament Runout
|
||||
* - Keep the command buffer full
|
||||
* - Check for maximum inactive time between commands
|
||||
* - Check for maximum inactive time between stepper commands
|
||||
* - Check if pin CHDK needs to go LOW
|
||||
* - Check for KILL button held down
|
||||
* - Check for HOME button held down
|
||||
* - Check if cooling fan needs to be switched on
|
||||
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
|
||||
*/
|
||||
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
||||
|
||||
#if HAS_FILRUNOUT
|
||||
if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
|
||||
filrunout();
|
||||
#endif
|
||||
|
||||
if (buflen < BUFSIZE - 1) get_command();
|
||||
|
||||
unsigned long ms = millis();
|
||||
|
||||
if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
|
||||
|
||||
if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
|
||||
&& !ignore_stepper_queue && !blocks_queued())
|
||||
disable_all_steppers();
|
||||
|
||||
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
|
||||
if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
|
||||
{
|
||||
if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
|
||||
chdkActive = false;
|
||||
WRITE(CHDK, LOW);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(KILL_PIN) && KILL_PIN > -1
|
||||
#if HAS_KILL
|
||||
|
||||
// Check if the kill button was pressed and wait just in case it was an accidental
|
||||
// key kill key press
|
||||
// -------------------------------------------------------------------------------
|
||||
if( 0 == READ(KILL_PIN) )
|
||||
{
|
||||
static int killCount = 0; // make the inactivity button a bit less responsive
|
||||
const int KILL_DELAY = 750;
|
||||
if (!READ(KILL_PIN))
|
||||
killCount++;
|
||||
}
|
||||
else if (killCount > 0)
|
||||
{
|
||||
killCount--;
|
||||
}
|
||||
|
||||
// Exceeded threshold and we can confirm that it was not accidental
|
||||
// KILL the machine
|
||||
// ----------------------------------------------------------------
|
||||
if ( killCount >= KILL_DELAY)
|
||||
{
|
||||
kill();
|
||||
}
|
||||
if (killCount >= KILL_DELAY) kill();
|
||||
#endif
|
||||
|
||||
#if defined(HOME_PIN) && HOME_PIN > -1
|
||||
#if HAS_HOME
|
||||
// Check to see if we have to home, use poor man's debouncer
|
||||
// ---------------------------------------------------------
|
||||
if ( 0 == READ(HOME_PIN) )
|
||||
{
|
||||
if (homeDebounceCount == 0)
|
||||
{
|
||||
enquecommands_P((PSTR("G28")));
|
||||
homeDebounceCount++;
|
||||
static int homeDebounceCount = 0; // poor man's debouncing count
|
||||
const int HOME_DEBOUNCE_DELAY = 750;
|
||||
if (!READ(HOME_PIN)) {
|
||||
if (!homeDebounceCount) {
|
||||
enquecommands_P(PSTR("G28"));
|
||||
LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
|
||||
}
|
||||
else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
|
||||
{
|
||||
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
|
||||
homeDebounceCount++;
|
||||
}
|
||||
else
|
||||
{
|
||||
homeDebounceCount = 0;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
||||
#if HAS_CONTROLLERFAN
|
||||
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
|
||||
#endif
|
||||
|
||||
#ifdef EXTRUDER_RUNOUT_PREVENT
|
||||
if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
|
||||
if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
|
||||
{
|
||||
bool oldstatus=E0_ENABLE_READ;
|
||||
if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
|
||||
if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
|
||||
bool oldstatus;
|
||||
switch(active_extruder) {
|
||||
case 0:
|
||||
oldstatus = E0_ENABLE_READ;
|
||||
enable_e0();
|
||||
float oldepos=current_position[E_AXIS];
|
||||
float oldedes=destination[E_AXIS];
|
||||
break;
|
||||
#if EXTRUDERS > 1
|
||||
case 1:
|
||||
oldstatus = E1_ENABLE_READ;
|
||||
enable_e1();
|
||||
break;
|
||||
#if EXTRUDERS > 2
|
||||
case 2:
|
||||
oldstatus = E2_ENABLE_READ;
|
||||
enable_e2();
|
||||
break;
|
||||
#if EXTRUDERS > 3
|
||||
case 3:
|
||||
oldstatus = E3_ENABLE_READ;
|
||||
enable_e3();
|
||||
break;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
|
||||
destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
|
||||
EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
|
||||
current_position[E_AXIS] = oldepos;
|
||||
destination[E_AXIS] = oldedes;
|
||||
plan_set_e_position(oldepos);
|
||||
previous_millis_cmd=millis();
|
||||
previous_millis_cmd = ms; // refresh_cmd_timeout()
|
||||
st_synchronize();
|
||||
switch(active_extruder) {
|
||||
case 0:
|
||||
E0_ENABLE_WRITE(oldstatus);
|
||||
break;
|
||||
#if EXTRUDERS > 1
|
||||
case 1:
|
||||
E1_ENABLE_WRITE(oldstatus);
|
||||
break;
|
||||
#if EXTRUDERS > 2
|
||||
case 2:
|
||||
E2_ENABLE_WRITE(oldstatus);
|
||||
break;
|
||||
#if EXTRUDERS > 3
|
||||
case 3:
|
||||
E3_ENABLE_WRITE(oldstatus);
|
||||
break;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#if defined(DUAL_X_CARRIAGE)
|
||||
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
// handle delayed move timeout
|
||||
if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
|
||||
{
|
||||
if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
|
||||
// travel moves have been received so enact them
|
||||
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
|
||||
memcpy(destination,current_position,sizeof(destination));
|
||||
set_destination_to_current();
|
||||
prepare_move();
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef TEMP_STAT_LEDS
|
||||
handle_status_leds();
|
||||
#endif
|
||||
|
||||
check_axes_activity();
|
||||
}
|
||||
|
||||
|
@ -5898,13 +5899,7 @@ void kill()
|
|||
cli(); // Stop interrupts
|
||||
disable_heater();
|
||||
|
||||
disable_x();
|
||||
disable_y();
|
||||
disable_z();
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
disable_e3();
|
||||
disable_all_steppers();
|
||||
|
||||
#if HAS_POWER_SWITCH
|
||||
pinMode(PS_ON_PIN, INPUT);
|
||||
|
@ -6017,10 +6012,10 @@ void setPwmFrequency(uint8_t pin, int val)
|
|||
#endif //FAST_PWM_FAN
|
||||
|
||||
bool setTargetedHotend(int code){
|
||||
tmp_extruder = active_extruder;
|
||||
target_extruder = active_extruder;
|
||||
if (code_seen('T')) {
|
||||
tmp_extruder = code_value();
|
||||
if(tmp_extruder >= EXTRUDERS) {
|
||||
target_extruder = code_value_short();
|
||||
if (target_extruder >= EXTRUDERS) {
|
||||
SERIAL_ECHO_START;
|
||||
switch(code){
|
||||
case 104:
|
||||
|
@ -6039,7 +6034,7 @@ bool setTargetedHotend(int code){
|
|||
SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
|
||||
break;
|
||||
}
|
||||
SERIAL_ECHOLN(tmp_extruder);
|
||||
SERIAL_ECHOLN(target_extruder);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -56,7 +56,7 @@
|
|||
#if EXTRUDERS > 1
|
||||
|
||||
#if EXTRUDERS > 4
|
||||
#error The maximum number of EXTRUDERS is 4.
|
||||
#error The maximum number of EXTRUDERS in Marlin is 4.
|
||||
#endif
|
||||
|
||||
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
||||
|
@ -77,6 +77,13 @@
|
|||
|
||||
#endif // EXTRUDERS > 1
|
||||
|
||||
/**
|
||||
* Limited number of servos
|
||||
*/
|
||||
#if NUM_SERVOS > 4
|
||||
#error The maximum number of SERVOS in Marlin is 4.
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Required LCD language
|
||||
*/
|
||||
|
@ -93,13 +100,39 @@
|
|||
* Require a Z Min pin
|
||||
*/
|
||||
#if Z_MIN_PIN == -1
|
||||
#if Z_PROBE_PIN == -1 || (!defined(Z_PROBE_ENDSTOP) || defined(DISABLE_Z_PROBE_ENDSTOP)) // It's possible for someone to set a pin for the Z Probe, but not enable it.
|
||||
#ifdef Z_PROBE_REPEATABILITY_TEST
|
||||
#error You must have a Z_MIN endstop to enable Z_PROBE_REPEATABILITY_TEST.
|
||||
#error You must have a Z_MIN or Z_PROBE endstop to enable Z_PROBE_REPEATABILITY_TEST.
|
||||
#else
|
||||
#error ENABLE_AUTO_BED_LEVELING requires a Z_MIN endstop. Z_MIN_PIN must point to a valid hardware pin.
|
||||
#error ENABLE_AUTO_BED_LEVELING requires a Z_MIN or Z_PROBE endstop. Z_MIN_PIN or Z_PROBE_PIN must point to a valid hardware pin.
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Require a Z Probe Pin if Z_PROBE_ENDSTOP is enabled.
|
||||
*/
|
||||
#if defined(Z_PROBE_ENDSTOP)
|
||||
#ifndef Z_PROBE_PIN
|
||||
#error You must have a Z_PROBE_PIN defined in your pins_XXXX.h file if you enable Z_PROBE_ENDSTOP
|
||||
#endif
|
||||
#if Z_PROBE_PIN == -1
|
||||
#error You must set Z_PROBE_PIN to a valid pin if you enable Z_PROBE_ENDSTOP
|
||||
#endif
|
||||
// Forcing Servo definitions can break some hall effect sensor setups. Leaving these here for further comment.
|
||||
// #ifndef NUM_SERVOS
|
||||
// #error You must have NUM_SERVOS defined and there must be at least 1 configured to use Z_PROBE_ENDSTOP
|
||||
// #endif
|
||||
// #if defined(NUM_SERVOS) && NUM_SERVOS < 1
|
||||
// #error You must have at least 1 servo defined for NUM_SERVOS to use Z_PROBE_ENDSTOP
|
||||
// #endif
|
||||
// #ifndef SERVO_ENDSTOPS
|
||||
// #error You must have SERVO_ENDSTOPS defined and have the Z index set to at least 0 or above to use Z_PROBE_ENDSTOP
|
||||
// #endif
|
||||
// #ifndef SERVO_ENDSTOP_ANGLES
|
||||
// #error You must have SERVO_ENDSTOP_ANGLES defined for Z Extend and Retract to use Z_PROBE_AND_ENSTOP
|
||||
// #endif
|
||||
#endif
|
||||
/**
|
||||
* Check if Probe_Offset * Grid Points is greater than Probing Range
|
||||
*/
|
||||
|
@ -209,9 +242,9 @@
|
|||
*/
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
#if EXTRUDERS == 1 || defined(COREXY) \
|
||||
|| !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
|
||||
|| !HAS_X2_ENABLE || !HAS_X2_STEP || !HAS_X2_DIR \
|
||||
|| !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
|
||||
|| !defined(X_MAX_PIN) || X_MAX_PIN < 0
|
||||
|| !HAS_X_MAX
|
||||
#error Missing or invalid definitions for DUAL_X_CARRIAGE mode.
|
||||
#endif
|
||||
#if X_HOME_DIR != -1 || X2_HOME_DIR != 1
|
||||
|
@ -234,6 +267,10 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_FAN && CONTROLLERFAN_PIN == FAN_PIN
|
||||
#error You cannot set CONTROLLERFAN_PIN equal to FAN_PIN
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Test required HEATER defines
|
||||
*/
|
||||
|
@ -254,4 +291,11 @@
|
|||
#error HEATER_0_PIN not defined for this board
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Warnings for old configurations
|
||||
*/
|
||||
#ifdef X_HOME_RETRACT_MM
|
||||
#error [XYZ]_HOME_RETRACT_MM settings have been renamed [XYZ]_HOME_BUMP_MM
|
||||
#endif
|
||||
|
||||
#endif //SANITYCHECK_H
|
||||
|
|
|
@ -123,7 +123,7 @@ class Servo {
|
|||
int read(); // returns current pulse width as an angle between 0 and 180 degrees
|
||||
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
|
||||
bool attached(); // return true if this servo is attached, otherwise false
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
#if defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
|
||||
int pin; // store the hardware pin of the servo
|
||||
#endif
|
||||
private:
|
||||
|
|
|
@ -37,6 +37,7 @@
|
|||
#define BOARD_BRAINWAVE 82 // Brainwave (AT90USB646)
|
||||
#define BOARD_SAV_MKI 83 // SAV Mk-I (AT90USB1286)
|
||||
#define BOARD_TEENSY2 84 // Teensy++2.0 (AT90USB1286) - CLI compile: DEFINES=AT90USBxx_TEENSYPP_ASSIGNMENTS HARDWARE_MOTHERBOARD=84 make
|
||||
#define BOARD_BRAINWAVE_PRO 85 // Brainwave Pro (AT90USB1286)
|
||||
#define BOARD_GEN3_PLUS 9 // Gen3+
|
||||
#define BOARD_GEN3_MONOLITHIC 22 // Gen3 Monolithic Electronics
|
||||
#define BOARD_MEGATRONICS 70 // Megatronics
|
||||
|
|
|
@ -249,7 +249,7 @@ void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/)
|
|||
if (!myDir.open(curDir, subdirname, O_READ)) {
|
||||
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
|
||||
SERIAL_PROTOCOL(subdirname);
|
||||
SERIAL_PROTOCOLLNPGM(".");
|
||||
SERIAL_PROTOCOLCHAR('.');
|
||||
return;
|
||||
}
|
||||
else {
|
||||
|
@ -287,14 +287,14 @@ void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/)
|
|||
else {
|
||||
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
|
||||
SERIAL_PROTOCOL(fname);
|
||||
SERIAL_PROTOCOLLNPGM(".");
|
||||
SERIAL_PROTOCOLCHAR('.');
|
||||
}
|
||||
}
|
||||
else { //write
|
||||
if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) {
|
||||
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
|
||||
SERIAL_PROTOCOL(fname);
|
||||
SERIAL_PROTOCOLLNPGM(".");
|
||||
SERIAL_PROTOCOLCHAR('.');
|
||||
}
|
||||
else {
|
||||
saving = true;
|
||||
|
@ -330,7 +330,7 @@ void CardReader::removeFile(char* name) {
|
|||
if (!myDir.open(curDir, subdirname, O_READ)) {
|
||||
SERIAL_PROTOCOLPGM("open failed, File: ");
|
||||
SERIAL_PROTOCOL(subdirname);
|
||||
SERIAL_PROTOCOLLNPGM(".");
|
||||
SERIAL_PROTOCOLCHAR('.');
|
||||
return;
|
||||
}
|
||||
else {
|
||||
|
@ -360,7 +360,7 @@ void CardReader::removeFile(char* name) {
|
|||
else {
|
||||
SERIAL_PROTOCOLPGM("Deletion failed, File: ");
|
||||
SERIAL_PROTOCOL(fname);
|
||||
SERIAL_PROTOCOLLNPGM(".");
|
||||
SERIAL_PROTOCOLCHAR('.');
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -368,7 +368,7 @@ void CardReader::getStatus() {
|
|||
if (cardOK) {
|
||||
SERIAL_PROTOCOLPGM(MSG_SD_PRINTING_BYTE);
|
||||
SERIAL_PROTOCOL(sdpos);
|
||||
SERIAL_PROTOCOLPGM("/");
|
||||
SERIAL_PROTOCOLCHAR('/');
|
||||
SERIAL_PROTOCOLLN(filesize);
|
||||
}
|
||||
else {
|
||||
|
|
|
@ -412,7 +412,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -519,6 +519,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -539,8 +553,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
|
||||
// @section movement
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
|
||||
|
||||
// default settings
|
||||
|
|
|
@ -189,9 +189,9 @@
|
|||
// @section homing
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 2
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 2
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -300,7 +300,7 @@ static void lcd_implementation_status_screen() {
|
|||
// Fan
|
||||
lcd_setFont(FONT_STATUSMENU);
|
||||
u8g.setPrintPos(104,27);
|
||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
||||
#if HAS_FAN
|
||||
int per = ((fanSpeed + 1) * 100) / 256;
|
||||
if (per) {
|
||||
|
||||
|
|
|
@ -364,7 +364,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -469,6 +469,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -485,8 +499,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
|
||||
|
||||
// default settings
|
||||
|
|
|
@ -364,7 +364,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -469,6 +469,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -485,8 +499,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
|
||||
|
||||
// default settings
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 3
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 3
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -387,7 +387,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -492,6 +492,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -508,8 +522,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {2000, 2000, 150, 0} // set the homing speeds (mm/min)
|
||||
|
||||
// default settings
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 2
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 2
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -392,7 +392,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -497,6 +497,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -513,8 +527,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
|
||||
|
||||
// default settings
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 3
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 3
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -416,7 +416,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -521,6 +521,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -537,8 +551,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define MANUAL_Z_HOME_POS 0.1 // Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {40*60, 40*60, 10*60, 0} // set the homing speeds (mm/min)
|
||||
|
||||
// default settings
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 3
|
||||
#define Y_HOME_RETRACT_MM 3
|
||||
#define Z_HOME_RETRACT_MM 3
|
||||
#define X_HOME_BUMP_MM 3
|
||||
#define Y_HOME_BUMP_MM 3
|
||||
#define Z_HOME_BUMP_MM 3
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -386,7 +386,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -491,6 +491,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -507,8 +521,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {120*60, 120*60, 7.2*60, 0} // set the homing speeds (mm/min)
|
||||
|
||||
// default settings
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 2
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 2
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -414,7 +414,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -507,10 +507,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define Z_PROBE_ALLEN_KEY_DEPLOY_Y DELTA_PRINTABLE_RADIUS
|
||||
#define Z_PROBE_ALLEN_KEY_DEPLOY_Z 100
|
||||
|
||||
#define Z_PROBE_ALLEN_KEY_RETRACT_X -64
|
||||
#define Z_PROBE_ALLEN_KEY_RETRACT_Y 56
|
||||
#define Z_PROBE_ALLEN_KEY_RETRACT_Z 23
|
||||
#define Z_PROBE_ALLEN_KEY_RETRACT_DEPTH 20
|
||||
#define Z_PROBE_ALLEN_KEY_STOW_X -64
|
||||
#define Z_PROBE_ALLEN_KEY_STOW_Y 56
|
||||
#define Z_PROBE_ALLEN_KEY_STOW_Z 23
|
||||
#define Z_PROBE_ALLEN_KEY_STOW_DEPTH 20
|
||||
#endif
|
||||
|
||||
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
|
||||
|
@ -537,6 +537,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -552,8 +566,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
#define MANUAL_Z_HOME_POS 250 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
|
||||
// delta homing speeds must be the same on xyz
|
||||
#define HOMING_FEEDRATE {200*60, 200*60, 200*60, 0} // set the homing speeds (mm/min)
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 5 // deltas need the same for all three axis
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 5 // deltas need the same for all three axis
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -414,7 +414,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -511,10 +511,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
#define Z_PROBE_ALLEN_KEY_DEPLOY_Y DELTA_PRINTABLE_RADIUS
|
||||
#define Z_PROBE_ALLEN_KEY_DEPLOY_Z 100
|
||||
|
||||
#define Z_PROBE_ALLEN_KEY_RETRACT_X -64
|
||||
#define Z_PROBE_ALLEN_KEY_RETRACT_Y 56
|
||||
#define Z_PROBE_ALLEN_KEY_RETRACT_Z 23
|
||||
#define Z_PROBE_ALLEN_KEY_RETRACT_DEPTH 20
|
||||
#define Z_PROBE_ALLEN_KEY_STOW_X -64
|
||||
#define Z_PROBE_ALLEN_KEY_STOW_Y 56
|
||||
#define Z_PROBE_ALLEN_KEY_STOW_Z 23
|
||||
#define Z_PROBE_ALLEN_KEY_STOW_DEPTH 20
|
||||
#endif
|
||||
|
||||
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
|
||||
|
@ -541,6 +541,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -556,8 +570,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
#define MANUAL_Z_HOME_POS 250 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
|
||||
// delta homing speeds must be the same on xyz
|
||||
#define HOMING_FEEDRATE {200*60, 200*60, 200*60, 0} // set the homing speeds (mm/min)
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 5 // deltas need the same for all three axis
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 5 // deltas need the same for all three axis
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -384,7 +384,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -489,6 +489,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -505,8 +519,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {1500, 1500, 120, 0} // set the homing speeds (mm/min) ***** MakiBox A6 *****
|
||||
|
||||
// default settings
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 2
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 2
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -386,7 +386,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
// #define MANUAL_BED_LEVELING // Add display menu option for bed leveling
|
||||
// #define MESH_BED_LEVELING // Enable mesh bed leveling
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#define MESH_MIN_X 10
|
||||
#define MESH_MAX_X (X_MAX_POS - MESH_MIN_X)
|
||||
#define MESH_MIN_Y 10
|
||||
|
@ -491,6 +491,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
|
||||
#endif
|
||||
|
||||
// Support for a dedicated Z PROBE endstop separate from the Z MIN endstop.
|
||||
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
|
||||
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
|
||||
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
|
||||
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
|
||||
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
|
||||
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
|
||||
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.
|
||||
// The D32 pin in Aux 4 on RAMPS maps to the Arduino D32 pin. Z_PROBE_PIN is setting the pin to use on the Arduino. Since the D32 pin on the RAMPS maps to D32 on Arduino, this works.
|
||||
// D32 is currently selected in the RAMPS 1.3/1.4 pin file. All other boards will need changes to the respective pins_XXXXX.h file.
|
||||
// WARNING: Setting the wrong pin may have unexpected and potentially disastrous outcomes. Use with caution and do your homework.
|
||||
|
||||
//#define Z_PROBE_ENDSTOP
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
|
@ -507,8 +521,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||
#endif
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
/**
|
||||
* MOVEMENT SETTINGS
|
||||
*/
|
||||
|
||||
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
|
||||
|
||||
// default settings
|
||||
|
|
|
@ -175,9 +175,9 @@
|
|||
#endif //DUAL_X_CARRIAGE
|
||||
|
||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||
#define X_HOME_RETRACT_MM 5
|
||||
#define Y_HOME_RETRACT_MM 5
|
||||
#define Z_HOME_RETRACT_MM 1
|
||||
#define X_HOME_BUMP_MM 5
|
||||
#define Y_HOME_BUMP_MM 5
|
||||
#define Z_HOME_BUMP_MM 1
|
||||
#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
||||
|
||||
|
|
|
@ -36,18 +36,19 @@
|
|||
#define LANGUAGE_INCLUDE GENERATE_LANGUAGE_INCLUDE(en)
|
||||
#endif
|
||||
|
||||
#ifdef HAS_AUTOMATIC_VERSIONING
|
||||
#include "_Version.h"
|
||||
#endif
|
||||
|
||||
#define PROTOCOL_VERSION "1.0"
|
||||
#define FIRMWARE_URL "https://github.com/MarlinFirmware/Marlin"
|
||||
|
||||
#if MB(ULTIMAKER)|| MB(ULTIMAKER_OLD)|| MB(ULTIMAIN_2)
|
||||
#undef FIRMWARE_URL
|
||||
#define MACHINE_NAME "Ultimaker"
|
||||
#define FIRMWARE_URL "http://firmware.ultimaker.com"
|
||||
#elif MB(RUMBA)
|
||||
#define MACHINE_NAME "Rumba"
|
||||
#elif MB(3DRAG)
|
||||
#define MACHINE_NAME "3Drag"
|
||||
#undef FIRMWARE_URL
|
||||
#define FIRMWARE_URL "http://3dprint.elettronicain.it/"
|
||||
#elif MB(K8200)
|
||||
#define MACHINE_NAME "K8200"
|
||||
|
@ -55,23 +56,40 @@
|
|||
#define MACHINE_NAME "Makibox"
|
||||
#elif MB(SAV_MKI)
|
||||
#define MACHINE_NAME "SAV MkI"
|
||||
#undef FIRMWARE_URL
|
||||
#define FIRMWARE_URL "https://github.com/fmalpartida/Marlin/tree/SAV-MkI-config"
|
||||
#elif MB(WITBOX)
|
||||
#define MACHINE_NAME "WITBOX"
|
||||
#undef FIRMWARE_URL
|
||||
#define FIRMWARE_URL "http://www.bq.com/gb/downloads-witbox.html"
|
||||
#elif MB(HEPHESTOS)
|
||||
#define MACHINE_NAME "HEPHESTOS"
|
||||
#undef FIRMWARE_URL
|
||||
#define FIRMWARE_URL "http://www.bq.com/gb/downloads-prusa-i3-hephestos.html"
|
||||
#else // Default firmware set to Mendel
|
||||
#elif MB(BRAINWAVE_PRO)
|
||||
#define MACHINE_NAME "Kossel Pro"
|
||||
#ifndef FIRMWARE_URL
|
||||
#define FIRMWARE_URL "https://github.com/OpenBeamUSA/Marlin/"
|
||||
#endif
|
||||
#else
|
||||
#ifndef MACHINE_NAME
|
||||
#define MACHINE_NAME "Mendel"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef CUSTOM_MENDEL_NAME
|
||||
#warning CUSTOM_MENDEL_NAME deprecated - use CUSTOM_MACHINE_NAME
|
||||
#define CUSTOM_MACHINE_NAME CUSTOM_MENDEL_NAME
|
||||
#endif
|
||||
|
||||
#ifdef CUSTOM_MACHINE_NAME
|
||||
#undef MACHINE_NAME
|
||||
#define MACHINE_NAME CUSTOM_MENDEL_NAME
|
||||
#define MACHINE_NAME CUSTOM_MACHINE_NAME
|
||||
#endif
|
||||
|
||||
#ifndef FIRMWARE_URL
|
||||
#define FIRMWARE_URL "https://github.com/MarlinFirmware/Marlin"
|
||||
#endif
|
||||
|
||||
#ifndef BUILD_VERSION
|
||||
#define BUILD_VERSION "V1; Sprinter/grbl mashup for gen6"
|
||||
#endif
|
||||
|
||||
#ifndef MACHINE_UUID
|
||||
|
@ -122,7 +140,7 @@
|
|||
#define MSG_HEATING_COMPLETE "Heating done."
|
||||
#define MSG_BED_HEATING "Bed Heating."
|
||||
#define MSG_BED_DONE "Bed done."
|
||||
#define MSG_M115_REPORT "FIRMWARE_NAME:Marlin V1; Sprinter/grbl mashup for gen6 FIRMWARE_URL:" FIRMWARE_URL " PROTOCOL_VERSION:" PROTOCOL_VERSION " MACHINE_TYPE:" MACHINE_NAME " EXTRUDER_COUNT:" STRINGIFY(EXTRUDERS) " UUID:" MACHINE_UUID "\n"
|
||||
#define MSG_M115_REPORT "FIRMWARE_NAME:Marlin " BUILD_VERSION " FIRMWARE_URL:" FIRMWARE_URL " PROTOCOL_VERSION:" PROTOCOL_VERSION " MACHINE_TYPE:" MACHINE_NAME " EXTRUDER_COUNT:" STRINGIFY(EXTRUDERS) " UUID:" MACHINE_UUID "\n"
|
||||
#define MSG_COUNT_X " Count X: "
|
||||
#define MSG_ERR_KILLED "Printer halted. kill() called!"
|
||||
#define MSG_ERR_STOPPED "Printer stopped due to errors. Fix the error and use M999 to restart. (Temperature is reset. Set it after restarting)"
|
||||
|
@ -138,6 +156,7 @@
|
|||
#define MSG_Z_MIN "z_min: "
|
||||
#define MSG_Z_MAX "z_max: "
|
||||
#define MSG_Z2_MAX "z2_max: "
|
||||
#define MSG_Z_PROBE "z_probe: "
|
||||
#define MSG_M119_REPORT "Reporting endstop status"
|
||||
#define MSG_ENDSTOP_HIT "TRIGGERED"
|
||||
#define MSG_ENDSTOP_OPEN "open"
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#include "Marlin.h"
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
|
||||
#define MESH_X_DIST ((MESH_MAX_X - MESH_MIN_X)/(MESH_NUM_X_POINTS - 1))
|
||||
#define MESH_Y_DIST ((MESH_MAX_Y - MESH_MIN_Y)/(MESH_NUM_Y_POINTS - 1))
|
||||
|
|
|
@ -187,6 +187,10 @@
|
|||
#define Z_MIN_PIN -1
|
||||
#endif
|
||||
|
||||
#if defined(DISABLE_Z_PROBE_ENDSTOP) || !defined(Z_PROBE_ENDSTOP) // Allow code to compile regardless of Z_PROBE_ENDSTOP setting.
|
||||
#define Z_PROBE_PIN -1
|
||||
#endif
|
||||
|
||||
#ifdef DISABLE_XMAX_ENDSTOP
|
||||
#undef X_MAX_PIN
|
||||
#define X_MAX_PIN -1
|
||||
|
@ -216,8 +220,11 @@
|
|||
#define Z_MIN_PIN -1
|
||||
#endif
|
||||
|
||||
#define SENSITIVE_PINS { 0, 1, X_STEP_PIN, X_DIR_PIN, X_ENABLE_PIN, X_MIN_PIN, X_MAX_PIN, Y_STEP_PIN, Y_DIR_PIN, Y_ENABLE_PIN, Y_MIN_PIN, Y_MAX_PIN, Z_STEP_PIN, Z_DIR_PIN, Z_ENABLE_PIN, Z_MIN_PIN, Z_MAX_PIN, PS_ON_PIN, \
|
||||
HEATER_BED_PIN, FAN_PIN, \
|
||||
#define SENSITIVE_PINS { 0, 1, \
|
||||
X_STEP_PIN, X_DIR_PIN, X_ENABLE_PIN, X_MIN_PIN, X_MAX_PIN, \
|
||||
Y_STEP_PIN, Y_DIR_PIN, Y_ENABLE_PIN, Y_MIN_PIN, Y_MAX_PIN, \
|
||||
Z_STEP_PIN, Z_DIR_PIN, Z_ENABLE_PIN, Z_MIN_PIN, Z_MAX_PIN, Z_PROBE_PIN, \
|
||||
PS_ON_PIN, HEATER_BED_PIN, FAN_PIN, \
|
||||
_E0_PINS _E1_PINS _E2_PINS _E3_PINS \
|
||||
analogInputToDigitalPin(TEMP_BED_PIN) \
|
||||
}
|
||||
|
|
|
@ -34,7 +34,12 @@
|
|||
#define Z_MAX_PIN 18
|
||||
#endif
|
||||
//
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
//#undef Z_MIN_PIN
|
||||
//#define Z_MIN_PIN 15
|
||||
#define Z_PROBE_PIN 19
|
||||
#endif
|
||||
//
|
||||
#define E2_STEP_PIN 23
|
||||
#define E2_DIR_PIN 25
|
||||
#define E2_ENABLE_PIN 40
|
||||
|
|
|
@ -34,6 +34,7 @@
|
|||
#define Z_ENABLE_PIN 62
|
||||
#define Z_MIN_PIN 18
|
||||
#define Z_MAX_PIN 19
|
||||
#define Z_PROBE_PIN -1
|
||||
|
||||
#define Y2_STEP_PIN 36
|
||||
#define Y2_DIR_PIN 34
|
||||
|
@ -61,7 +62,12 @@
|
|||
#define FILWIDTH_PIN 5
|
||||
#endif
|
||||
|
||||
#if defined(FILAMENT_RUNOUT_SENSOR)
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
// Define a pin to use as the signal pin on Arduino for the Z_PROBE endstop.
|
||||
#define Z_PROBE_PIN 32
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_RUNOUT_SENSOR
|
||||
// define digital pin 4 for the filament runout sensor. Use the RAMPS 1.4 digital input 4 on the servos connector
|
||||
#define FILRUNOUT_PIN 4
|
||||
#endif
|
||||
|
|
|
@ -58,7 +58,7 @@
|
|||
#include "ultralcd.h"
|
||||
#include "language.h"
|
||||
|
||||
#if defined(MESH_BED_LEVELING)
|
||||
#ifdef MESH_BED_LEVELING
|
||||
#include "mesh_bed_leveling.h"
|
||||
#endif // MESH_BED_LEVELING
|
||||
|
||||
|
@ -67,7 +67,7 @@
|
|||
//===========================================================================
|
||||
|
||||
unsigned long minsegmenttime;
|
||||
float max_feedrate[NUM_AXIS]; // set the max speeds
|
||||
float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
|
||||
float axis_steps_per_unit[NUM_AXIS];
|
||||
unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
|
||||
float minimumfeedrate;
|
||||
|
@ -427,7 +427,7 @@ void check_axes_activity() {
|
|||
disable_e3();
|
||||
}
|
||||
|
||||
#if defined(FAN_PIN) && FAN_PIN > -1 // HAS_FAN
|
||||
#if HAS_FAN
|
||||
#ifdef FAN_KICKSTART_TIME
|
||||
static unsigned long fan_kick_end;
|
||||
if (tail_fan_speed) {
|
||||
|
@ -447,17 +447,17 @@ void check_axes_activity() {
|
|||
#else
|
||||
analogWrite(FAN_PIN, tail_fan_speed);
|
||||
#endif //!FAN_SOFT_PWM
|
||||
#endif //FAN_PIN > -1
|
||||
#endif // HAS_FAN
|
||||
|
||||
#ifdef AUTOTEMP
|
||||
getHighESpeed();
|
||||
#endif
|
||||
|
||||
#ifdef BARICUDA
|
||||
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 // HAS_HEATER_1
|
||||
#if HAS_HEATER_1
|
||||
analogWrite(HEATER_1_PIN,tail_valve_pressure);
|
||||
#endif
|
||||
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 // HAS_HEATER_2
|
||||
#if HAS_HEATER_2
|
||||
analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
|
||||
#endif
|
||||
#endif
|
||||
|
|
|
@ -76,6 +76,7 @@ volatile long endstops_stepsTotal, endstops_stepsDone;
|
|||
static volatile bool endstop_x_hit = false;
|
||||
static volatile bool endstop_y_hit = false;
|
||||
static volatile bool endstop_z_hit = false;
|
||||
static volatile bool endstop_z_probe_hit = false; // Leaving this in even if Z_PROBE_ENDSTOP isn't defined, keeps code below cleaner. #ifdef it and usage below to save space.
|
||||
|
||||
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||
bool abort_on_endstop_hit = false;
|
||||
|
@ -85,33 +86,37 @@ static volatile bool endstop_z_hit = false;
|
|||
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
|
||||
#endif
|
||||
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
|
||||
#if HAS_X_MIN
|
||||
static bool old_x_min_endstop = false;
|
||||
#endif
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
|
||||
#if HAS_X_MAX
|
||||
static bool old_x_max_endstop = false;
|
||||
#endif
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
|
||||
#if HAS_Y_MIN
|
||||
static bool old_y_min_endstop = false;
|
||||
#endif
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
|
||||
#if HAS_Y_MAX
|
||||
static bool old_y_max_endstop = false;
|
||||
#endif
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
|
||||
#if HAS_Z_MIN
|
||||
static bool old_z_min_endstop = false;
|
||||
#endif
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
|
||||
#if HAS_Z_MAX
|
||||
static bool old_z_max_endstop = false;
|
||||
#endif
|
||||
#ifdef Z_DUAL_ENDSTOPS
|
||||
#if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
|
||||
#if HAS_Z2_MIN
|
||||
static bool old_z2_min_endstop = false;
|
||||
#endif
|
||||
#if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
|
||||
#if HAS_Z2_MAX
|
||||
static bool old_z2_max_endstop = false;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
|
||||
static bool old_z_probe_endstop = false;
|
||||
#endif
|
||||
|
||||
static bool check_endstops = true;
|
||||
|
||||
volatile long count_position[NUM_AXIS] = { 0 };
|
||||
|
@ -254,11 +259,11 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
|
|||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
|
||||
|
||||
void endstops_hit_on_purpose() {
|
||||
endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
|
||||
endstop_x_hit = endstop_y_hit = endstop_z_hit = endstop_z_probe_hit = false; // #ifdef endstop_z_probe_hit = to save space if needed.
|
||||
}
|
||||
|
||||
void checkHitEndstops() {
|
||||
if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
|
||||
if (endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_z_probe_hit) { // #ifdef || endstop_z_probe_hit to save space if needed.
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
|
||||
if (endstop_x_hit) {
|
||||
|
@ -273,6 +278,12 @@ void checkHitEndstops() {
|
|||
SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
|
||||
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
|
||||
}
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
if (endstop_z_probe_hit) {
|
||||
SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
|
||||
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
|
||||
}
|
||||
#endif
|
||||
SERIAL_EOL;
|
||||
|
||||
endstops_hit_on_purpose();
|
||||
|
@ -472,7 +483,7 @@ ISR(TIMER1_COMPA_vect) {
|
|||
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
||||
#endif
|
||||
{
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
|
||||
#if HAS_X_MIN
|
||||
UPDATE_ENDSTOP(x, X, min, MIN);
|
||||
#endif
|
||||
}
|
||||
|
@ -483,7 +494,7 @@ ISR(TIMER1_COMPA_vect) {
|
|||
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
||||
#endif
|
||||
{
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
|
||||
#if HAS_X_MAX
|
||||
UPDATE_ENDSTOP(x, X, max, MAX);
|
||||
#endif
|
||||
}
|
||||
|
@ -498,12 +509,12 @@ ISR(TIMER1_COMPA_vect) {
|
|||
if (TEST(out_bits, Y_AXIS)) // -direction
|
||||
#endif
|
||||
{ // -direction
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
|
||||
#if HAS_Y_MIN
|
||||
UPDATE_ENDSTOP(y, Y, min, MIN);
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
|
||||
#if HAS_Y_MAX
|
||||
UPDATE_ENDSTOP(y, Y, max, MAX);
|
||||
#endif
|
||||
}
|
||||
|
@ -519,13 +530,13 @@ ISR(TIMER1_COMPA_vect) {
|
|||
|
||||
if (check_endstops) {
|
||||
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
|
||||
#if HAS_Z_MIN
|
||||
|
||||
#ifdef Z_DUAL_ENDSTOPS
|
||||
|
||||
bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
|
||||
z2_min_endstop =
|
||||
#if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
|
||||
#if HAS_Z2_MIN
|
||||
READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
|
||||
#else
|
||||
z_min_endstop
|
||||
|
@ -551,6 +562,19 @@ ISR(TIMER1_COMPA_vect) {
|
|||
|
||||
#endif // Z_MIN_PIN
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
UPDATE_ENDSTOP(z, Z, probe, PROBE);
|
||||
z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
||||
if(z_probe_endstop && old_z_probe_endstop)
|
||||
{
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_probe_hit=true;
|
||||
|
||||
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
|
||||
}
|
||||
old_z_probe_endstop = z_probe_endstop;
|
||||
#endif
|
||||
|
||||
} // check_endstops
|
||||
|
||||
}
|
||||
|
@ -561,13 +585,13 @@ ISR(TIMER1_COMPA_vect) {
|
|||
|
||||
if (check_endstops) {
|
||||
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
|
||||
#if HAS_Z_MAX
|
||||
|
||||
#ifdef Z_DUAL_ENDSTOPS
|
||||
|
||||
bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
|
||||
z2_max_endstop =
|
||||
#if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
|
||||
#if HAS_Z2_MAX
|
||||
READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
|
||||
#else
|
||||
z_max_endstop
|
||||
|
@ -597,6 +621,18 @@ ISR(TIMER1_COMPA_vect) {
|
|||
|
||||
#endif // Z_MAX_PIN
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
UPDATE_ENDSTOP(z, Z, probe, PROBE);
|
||||
z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
||||
if(z_probe_endstop && old_z_probe_endstop)
|
||||
{
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_probe_hit=true;
|
||||
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
|
||||
}
|
||||
old_z_probe_endstop = z_probe_endstop;
|
||||
#endif
|
||||
|
||||
} // check_endstops
|
||||
|
||||
} // +direction
|
||||
|
@ -679,7 +715,7 @@ ISR(TIMER1_COMPA_vect) {
|
|||
step_events_completed++;
|
||||
if (step_events_completed >= current_block->step_event_count) break;
|
||||
}
|
||||
// Calculare new timer value
|
||||
// Calculate new timer value
|
||||
unsigned short timer;
|
||||
unsigned short step_rate;
|
||||
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
|
||||
|
@ -835,133 +871,140 @@ void st_init() {
|
|||
#endif
|
||||
|
||||
// Initialize Dir Pins
|
||||
#if defined(X_DIR_PIN) && X_DIR_PIN >= 0
|
||||
#if HAS_X_DIR
|
||||
X_DIR_INIT;
|
||||
#endif
|
||||
#if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
|
||||
#if HAS_X2_DIR
|
||||
X2_DIR_INIT;
|
||||
#endif
|
||||
#if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
|
||||
#if HAS_Y_DIR
|
||||
Y_DIR_INIT;
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
|
||||
Y2_DIR_INIT;
|
||||
#endif
|
||||
#endif
|
||||
#if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
|
||||
#if HAS_Z_DIR
|
||||
Z_DIR_INIT;
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
|
||||
Z2_DIR_INIT;
|
||||
#endif
|
||||
#endif
|
||||
#if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
|
||||
#if HAS_E0_DIR
|
||||
E0_DIR_INIT;
|
||||
#endif
|
||||
#if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
|
||||
#if HAS_E1_DIR
|
||||
E1_DIR_INIT;
|
||||
#endif
|
||||
#if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
|
||||
#if HAS_E2_DIR
|
||||
E2_DIR_INIT;
|
||||
#endif
|
||||
#if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
|
||||
#if HAS_E3_DIR
|
||||
E3_DIR_INIT;
|
||||
#endif
|
||||
|
||||
//Initialize Enable Pins - steppers default to disabled.
|
||||
|
||||
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
|
||||
#if HAS_X_ENABLE
|
||||
X_ENABLE_INIT;
|
||||
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
|
||||
#if HAS_X2_ENABLE
|
||||
X2_ENABLE_INIT;
|
||||
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
|
||||
#if HAS_Y_ENABLE
|
||||
Y_ENABLE_INIT;
|
||||
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
|
||||
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
|
||||
Y2_ENABLE_INIT;
|
||||
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#endif
|
||||
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
|
||||
#if HAS_Z_ENABLE
|
||||
Z_ENABLE_INIT;
|
||||
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
|
||||
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
|
||||
Z2_ENABLE_INIT;
|
||||
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#endif
|
||||
#if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
|
||||
#if HAS_E0_ENABLE
|
||||
E0_ENABLE_INIT;
|
||||
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
|
||||
#if HAS_E1_ENABLE
|
||||
E1_ENABLE_INIT;
|
||||
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
|
||||
#if HAS_E2_ENABLE
|
||||
E2_ENABLE_INIT;
|
||||
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
|
||||
#if HAS_E3_ENABLE
|
||||
E3_ENABLE_INIT;
|
||||
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
|
||||
//endstops and pullups
|
||||
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
|
||||
#if HAS_X_MIN
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
#ifdef ENDSTOPPULLUP_XMIN
|
||||
WRITE(X_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
|
||||
#if HAS_Y_MIN
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
#ifdef ENDSTOPPULLUP_YMIN
|
||||
WRITE(Y_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
|
||||
#if HAS_Z_MIN
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
#ifdef ENDSTOPPULLUP_ZMIN
|
||||
WRITE(Z_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
|
||||
#if HAS_X_MAX
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
#ifdef ENDSTOPPULLUP_XMAX
|
||||
WRITE(X_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
|
||||
#if HAS_Y_MAX
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
#ifdef ENDSTOPPULLUP_YMAX
|
||||
WRITE(Y_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
|
||||
#if HAS_Z_MAX
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
#ifdef ENDSTOPPULLUP_ZMAX
|
||||
WRITE(Z_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
|
||||
#if HAS_Z2_MAX
|
||||
SET_INPUT(Z2_MAX_PIN);
|
||||
#ifdef ENDSTOPPULLUP_ZMAX
|
||||
WRITE(Z2_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
|
||||
SET_INPUT(Z_PROBE_PIN);
|
||||
#ifdef ENDSTOPPULLUP_ZPROBE
|
||||
WRITE(Z_PROBE_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define AXIS_INIT(axis, AXIS, PIN) \
|
||||
AXIS ##_STEP_INIT; \
|
||||
AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
|
||||
|
@ -970,36 +1013,36 @@ void st_init() {
|
|||
#define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
|
||||
|
||||
// Initialize Step Pins
|
||||
#if defined(X_STEP_PIN) && X_STEP_PIN >= 0
|
||||
#if HAS_X_STEP
|
||||
AXIS_INIT(x, X, X);
|
||||
#endif
|
||||
#if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
|
||||
#if HAS_X2_STEP
|
||||
AXIS_INIT(x, X2, X);
|
||||
#endif
|
||||
#if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
|
||||
#if HAS_Y_STEP
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
|
||||
Y2_STEP_INIT;
|
||||
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
|
||||
#endif
|
||||
AXIS_INIT(y, Y, Y);
|
||||
#endif
|
||||
#if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
|
||||
#if HAS_Z_STEP
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
|
||||
Z2_STEP_INIT;
|
||||
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
|
||||
#endif
|
||||
AXIS_INIT(z, Z, Z);
|
||||
#endif
|
||||
#if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
|
||||
#if HAS_E0_STEP
|
||||
E_AXIS_INIT(0);
|
||||
#endif
|
||||
#if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
|
||||
#if HAS_E1_STEP
|
||||
E_AXIS_INIT(1);
|
||||
#endif
|
||||
#if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
|
||||
#if HAS_E2_STEP
|
||||
E_AXIS_INIT(2);
|
||||
#endif
|
||||
#if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
|
||||
#if HAS_E3_STEP
|
||||
E_AXIS_INIT(3);
|
||||
#endif
|
||||
|
||||
|
@ -1084,13 +1127,7 @@ long st_get_position(uint8_t axis) {
|
|||
|
||||
void finishAndDisableSteppers() {
|
||||
st_synchronize();
|
||||
disable_x();
|
||||
disable_y();
|
||||
disable_z();
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
disable_e3();
|
||||
disable_all_steppers();
|
||||
}
|
||||
|
||||
void quickStop() {
|
||||
|
@ -1220,12 +1257,12 @@ void digipot_current(uint8_t driver, int current) {
|
|||
}
|
||||
|
||||
void microstep_init() {
|
||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
|
||||
#if HAS_MICROSTEPS_E1
|
||||
pinMode(E1_MS1_PIN,OUTPUT);
|
||||
pinMode(E1_MS2_PIN,OUTPUT);
|
||||
#endif
|
||||
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN >= 0
|
||||
#if HAS_MICROSTEPS
|
||||
pinMode(X_MS1_PIN,OUTPUT);
|
||||
pinMode(X_MS2_PIN,OUTPUT);
|
||||
pinMode(Y_MS1_PIN,OUTPUT);
|
||||
|
@ -1246,7 +1283,7 @@ void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
|||
case 1: digitalWrite(Y_MS1_PIN, ms1); break;
|
||||
case 2: digitalWrite(Z_MS1_PIN, ms1); break;
|
||||
case 3: digitalWrite(E0_MS1_PIN, ms1); break;
|
||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
|
||||
#if HAS_MICROSTEPS_E1
|
||||
case 4: digitalWrite(E1_MS1_PIN, ms1); break;
|
||||
#endif
|
||||
}
|
||||
|
@ -1285,7 +1322,7 @@ void microstep_readings() {
|
|||
SERIAL_PROTOCOLPGM("E0: ");
|
||||
SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
|
||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
|
||||
#if HAS_MICROSTEPS_E1
|
||||
SERIAL_PROTOCOLPGM("E1: ");
|
||||
SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
temperature.c - temperature control
|
||||
temperature.cpp - temperature control
|
||||
Part of Marlin
|
||||
|
||||
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
|
@ -18,17 +18,6 @@
|
|||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
This firmware is a mashup between Sprinter and grbl.
|
||||
(https://github.com/kliment/Sprinter)
|
||||
(https://github.com/simen/grbl/tree)
|
||||
|
||||
It has preliminary support for Matthew Roberts advance algorithm
|
||||
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
||||
|
||||
*/
|
||||
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "ultralcd.h"
|
||||
#include "temperature.h"
|
||||
|
@ -87,14 +76,14 @@ unsigned char soft_pwm_bed;
|
|||
#define HAS_HEATER_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0)
|
||||
#define HAS_BED_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0 && TEMP_SENSOR_BED != 0)
|
||||
#if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
|
||||
static bool thermal_runaway = false;
|
||||
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
|
||||
enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
|
||||
void thermal_runaway_protection(TRState *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
|
||||
#if HAS_HEATER_THERMAL_PROTECTION
|
||||
static int thermal_runaway_state_machine[4]; // = {0,0,0,0};
|
||||
static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
|
||||
static unsigned long thermal_runaway_timer[4]; // = {0,0,0,0};
|
||||
#endif
|
||||
#if HAS_BED_THERMAL_PROTECTION
|
||||
static int thermal_runaway_bed_state_machine;
|
||||
static TRState thermal_runaway_bed_state_machine = TRReset;
|
||||
static unsigned long thermal_runaway_bed_timer;
|
||||
#endif
|
||||
#endif
|
||||
|
@ -609,7 +598,7 @@ void manage_heater() {
|
|||
// Loop through all extruders
|
||||
for (int e = 0; e < EXTRUDERS; e++) {
|
||||
|
||||
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
||||
#if HAS_HEATER_THERMAL_PROTECTION
|
||||
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
|
||||
#endif
|
||||
|
||||
|
@ -656,7 +645,7 @@ void manage_heater() {
|
|||
#if TEMP_SENSOR_BED != 0
|
||||
|
||||
#if HAS_BED_THERMAL_PROTECTION
|
||||
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
|
||||
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
|
||||
#endif
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
|
@ -1014,69 +1003,72 @@ void setWatch() {
|
|||
}
|
||||
|
||||
#if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
|
||||
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
|
||||
{
|
||||
|
||||
void thermal_runaway_protection(TRState *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
|
||||
|
||||
static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
|
||||
|
||||
/*
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
|
||||
SERIAL_ECHO(heater_id);
|
||||
SERIAL_ECHO(" ; State:");
|
||||
SERIAL_ECHO(*state);
|
||||
SERIAL_ECHO(" ; Timer:");
|
||||
SERIAL_ECHO(*timer);
|
||||
SERIAL_ECHO(" ; Temperature:");
|
||||
SERIAL_ECHO(temperature);
|
||||
SERIAL_ECHO(" ; Target Temp:");
|
||||
SERIAL_ECHO(target_temperature);
|
||||
SERIAL_ECHOLN("");
|
||||
SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
|
||||
if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
|
||||
SERIAL_ECHOPGM(" ; State:");
|
||||
SERIAL_ECHOPGM(*state);
|
||||
SERIAL_ECHOPGM(" ; Timer:");
|
||||
SERIAL_ECHOPGM(*timer);
|
||||
SERIAL_ECHOPGM(" ; Temperature:");
|
||||
SERIAL_ECHOPGM(temperature);
|
||||
SERIAL_ECHOPGM(" ; Target Temp:");
|
||||
SERIAL_ECHOPGM(target_temperature);
|
||||
SERIAL_EOL;
|
||||
*/
|
||||
if ((target_temperature == 0) || thermal_runaway)
|
||||
{
|
||||
*state = 0;
|
||||
|
||||
int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
|
||||
|
||||
// If the target temperature changes, restart
|
||||
if (tr_target_temperature[heater_index] != target_temperature)
|
||||
*state = TRReset;
|
||||
|
||||
switch (*state) {
|
||||
case TRReset:
|
||||
*timer = 0;
|
||||
return;
|
||||
}
|
||||
switch (*state)
|
||||
{
|
||||
case 0: // "Heater Inactive" state
|
||||
if (target_temperature > 0) *state = 1;
|
||||
*state = TRInactive;
|
||||
break;
|
||||
case 1: // "First Heating" state
|
||||
if (temperature >= target_temperature) *state = 2;
|
||||
break;
|
||||
case 2: // "Temperature Stable" state
|
||||
{
|
||||
unsigned long ms = millis();
|
||||
if (temperature >= (target_temperature - hysteresis_degc))
|
||||
{
|
||||
*timer = ms;
|
||||
// Inactive state waits for a target temperature to be set
|
||||
case TRInactive:
|
||||
if (target_temperature > 0) {
|
||||
tr_target_temperature[heater_index] = target_temperature;
|
||||
*state = TRFirstHeating;
|
||||
}
|
||||
else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
|
||||
{
|
||||
break;
|
||||
// When first heating, wait for the temperature to be reached then go to Stable state
|
||||
case TRFirstHeating:
|
||||
if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
|
||||
break;
|
||||
// While the temperature is stable watch for a bad temperature
|
||||
case TRStable:
|
||||
// If the temperature is over the target (-hysteresis) restart the timer
|
||||
if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
|
||||
*timer = millis();
|
||||
// If the timer goes too long without a reset, trigger shutdown
|
||||
else if (millis() > *timer + period_seconds * 1000UL)
|
||||
*state = TRRunaway;
|
||||
break;
|
||||
case TRRunaway:
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
|
||||
SERIAL_ERRORLN((int)heater_id);
|
||||
LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable
|
||||
thermal_runaway = true;
|
||||
while(1)
|
||||
{
|
||||
if (heater_id < 0) SERIAL_ERRORLNPGM("bed"); else SERIAL_ERRORLN(heater_id);
|
||||
LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY);
|
||||
disable_heater();
|
||||
disable_x();
|
||||
disable_y();
|
||||
disable_z();
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
disable_e3();
|
||||
disable_all_steppers();
|
||||
for (;;) {
|
||||
manage_heater();
|
||||
lcd_update();
|
||||
}
|
||||
}
|
||||
} break;
|
||||
}
|
||||
}
|
||||
#endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
|
||||
|
||||
#endif // HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
|
||||
|
||||
void disable_heater() {
|
||||
for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
|
||||
|
@ -1559,7 +1551,7 @@ ISR(TIMER0_COMPB_vect) {
|
|||
#else
|
||||
#define GE2 >=
|
||||
#endif
|
||||
if (current_temperature_raw[2] GE2 (maxttemp_raw[2]) max_temp_error(2);
|
||||
if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
|
||||
if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
|
||||
#endif // TEMP_SENSOR_2
|
||||
|
||||
|
|
|
@ -18,8 +18,8 @@
|
|||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef temperature_h
|
||||
#define temperature_h
|
||||
#ifndef TEMPERATURE_H
|
||||
#define TEMPERATURE_H
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "planner.h"
|
||||
|
@ -53,7 +53,7 @@ extern float current_temperature_bed;
|
|||
extern float redundant_temperature;
|
||||
#endif
|
||||
|
||||
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
|
||||
#if HAS_CONTROLLERFAN
|
||||
extern unsigned char soft_pwm_bed;
|
||||
#endif
|
||||
|
||||
|
@ -72,11 +72,11 @@ extern float current_temperature_bed;
|
|||
float unscalePID_d(float d);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
extern float bedKp,bedKi,bedKd;
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef BABYSTEPPING
|
||||
extern volatile int babystepsTodo[3];
|
||||
#endif
|
||||
|
@ -105,40 +105,27 @@ FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_tempe
|
|||
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
|
||||
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
|
||||
|
||||
#define degHotend0() degHotend(0)
|
||||
#define degTargetHotend0() degTargetHotend(0)
|
||||
#define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
|
||||
#define isHeatingHotend0() isHeatingHotend(0)
|
||||
#define isCoolingHotend0() isCoolingHotend(0)
|
||||
#define HOTEND_ROUTINES(NR) \
|
||||
FORCE_INLINE float degHotend##NR() { return degHotend(NR); } \
|
||||
FORCE_INLINE float degTargetHotend##NR() { return degTargetHotend(NR); } \
|
||||
FORCE_INLINE void setTargetHotend##NR(const float c) { setTargetHotend(c, NR); } \
|
||||
FORCE_INLINE bool isHeatingHotend##NR() { return isHeatingHotend(NR); } \
|
||||
FORCE_INLINE bool isCoolingHotend##NR() { return isCoolingHotend(NR); }
|
||||
HOTEND_ROUTINES(0);
|
||||
#if EXTRUDERS > 1
|
||||
#define degHotend1() degHotend(1)
|
||||
#define degTargetHotend1() degTargetHotend(1)
|
||||
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
|
||||
#define isHeatingHotend1() isHeatingHotend(1)
|
||||
#define isCoolingHotend1() isCoolingHotend(1)
|
||||
HOTEND_ROUTINES(1);
|
||||
#else
|
||||
#define setTargetHotend1(_celsius) do{}while(0)
|
||||
#define setTargetHotend1(c) do{}while(0)
|
||||
#endif
|
||||
#if EXTRUDERS > 2
|
||||
#define degHotend2() degHotend(2)
|
||||
#define degTargetHotend2() degTargetHotend(2)
|
||||
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
|
||||
#define isHeatingHotend2() isHeatingHotend(2)
|
||||
#define isCoolingHotend2() isCoolingHotend(2)
|
||||
HOTEND_ROUTINES(2);
|
||||
#else
|
||||
#define setTargetHotend2(_celsius) do{}while(0)
|
||||
#define setTargetHotend2(c) do{}while(0)
|
||||
#endif
|
||||
#if EXTRUDERS > 3
|
||||
#define degHotend3() degHotend(3)
|
||||
#define degTargetHotend3() degTargetHotend(3)
|
||||
#define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
|
||||
#define isHeatingHotend3() isHeatingHotend(3)
|
||||
#define isCoolingHotend3() isCoolingHotend(3)
|
||||
HOTEND_ROUTINES(3);
|
||||
#else
|
||||
#define setTargetHotend3(_celsius) do{}while(0)
|
||||
#endif
|
||||
#if EXTRUDERS > 4
|
||||
#error Invalid number of extruders
|
||||
#define setTargetHotend3(c) do{}while(0)
|
||||
#endif
|
||||
|
||||
int getHeaterPower(int heater);
|
||||
|
@ -161,5 +148,4 @@ FORCE_INLINE void autotempShutdown() {
|
|||
#endif
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
#endif // TEMPERATURE_H
|
||||
|
|
|
@ -262,8 +262,7 @@ static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder=0, const bool
|
|||
}
|
||||
|
||||
/* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */
|
||||
static void lcd_status_screen()
|
||||
{
|
||||
static void lcd_status_screen() {
|
||||
encoderRateMultiplierEnabled = false;
|
||||
|
||||
#ifdef LCD_PROGRESS_BAR
|
||||
|
@ -296,15 +295,7 @@ static void lcd_status_screen()
|
|||
#endif
|
||||
#endif //LCD_PROGRESS_BAR
|
||||
|
||||
if (lcd_status_update_delay)
|
||||
lcd_status_update_delay--;
|
||||
else
|
||||
lcdDrawUpdate = 1;
|
||||
|
||||
if (lcdDrawUpdate) {
|
||||
lcd_implementation_status_screen();
|
||||
lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */
|
||||
}
|
||||
|
||||
#ifdef ULTIPANEL
|
||||
|
||||
|
@ -1349,16 +1340,25 @@ void lcd_update() {
|
|||
} // encoderRateMultiplierEnabled
|
||||
#endif //ENCODER_RATE_MULTIPLIER
|
||||
|
||||
lcdDrawUpdate = 1;
|
||||
encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP;
|
||||
encoderDiff = 0;
|
||||
}
|
||||
timeoutToStatus = ms + LCD_TIMEOUT_TO_STATUS;
|
||||
lcdDrawUpdate = 1;
|
||||
}
|
||||
|
||||
#endif //ULTIPANEL
|
||||
|
||||
if (currentMenu == lcd_status_screen) {
|
||||
if (!lcd_status_update_delay) {
|
||||
lcdDrawUpdate = 1;
|
||||
lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */
|
||||
}
|
||||
else {
|
||||
lcd_status_update_delay--;
|
||||
}
|
||||
}
|
||||
#ifdef DOGLCD // Changes due to different driver architecture of the DOGM display
|
||||
if (lcdDrawUpdate) {
|
||||
blink++; // Variable for fan animation and alive dot
|
||||
u8g.firstPage();
|
||||
do {
|
||||
|
@ -1368,8 +1368,8 @@ void lcd_update() {
|
|||
u8g.drawPixel(127, 63); // draw alive dot
|
||||
u8g.setColorIndex(1); // black on white
|
||||
(*currentMenu)();
|
||||
if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
|
||||
} while( u8g.nextPage() );
|
||||
}
|
||||
#else
|
||||
(*currentMenu)();
|
||||
#endif
|
||||
|
@ -1789,7 +1789,7 @@ char *ftostr52(const float &x) {
|
|||
return conv;
|
||||
}
|
||||
|
||||
#if defined(MANUAL_BED_LEVELING)
|
||||
#ifdef MANUAL_BED_LEVELING
|
||||
static int _lcd_level_bed_position;
|
||||
static void _lcd_level_bed()
|
||||
{
|
||||
|
@ -1849,8 +1849,7 @@ static void _lcd_level_bed_homing()
|
|||
lcd_goto_menu(_lcd_level_bed);
|
||||
}
|
||||
}
|
||||
static void lcd_level_bed()
|
||||
{
|
||||
static void lcd_level_bed() {
|
||||
axis_known_position[X_AXIS] = false;
|
||||
axis_known_position[Y_AXIS] = false;
|
||||
axis_known_position[Z_AXIS] = false;
|
||||
|
|
|
@ -64,14 +64,14 @@
|
|||
|
||||
#define LCD_CLICKED (buttons&EN_C)
|
||||
#ifdef REPRAPWORLD_KEYPAD
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 BIT(BLEN_REPRAPWORLD_KEYPAD_F3)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 BIT(BLEN_REPRAPWORLD_KEYPAD_F2)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 BIT(BLEN_REPRAPWORLD_KEYPAD_F1)
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP BIT(BLEN_REPRAPWORLD_KEYPAD_UP)
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT BIT(BLEN_REPRAPWORLD_KEYPAD_RIGHT)
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT(BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN BIT(BLEN_REPRAPWORLD_KEYPAD_DOWN)
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT BIT(BLEN_REPRAPWORLD_KEYPAD_LEFT)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 (BIT(BLEN_REPRAPWORLD_KEYPAD_F3))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 (BIT(BLEN_REPRAPWORLD_KEYPAD_F2))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 (BIT(BLEN_REPRAPWORLD_KEYPAD_F1))
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP (BIT(BLEN_REPRAPWORLD_KEYPAD_UP))
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT (BIT(BLEN_REPRAPWORLD_KEYPAD_RIGHT))
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (BIT(BLEN_REPRAPWORLD_KEYPAD_MIDDLE))
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN (BIT(BLEN_REPRAPWORLD_KEYPAD_DOWN))
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT (BIT(BLEN_REPRAPWORLD_KEYPAD_LEFT))
|
||||
|
||||
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
|
||||
#define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2)
|
||||
|
|
|
@ -125,9 +125,9 @@ void matrix_3x3::debug(const char title[]) {
|
|||
int count = 0;
|
||||
for(int i=0; i<3; i++) {
|
||||
for(int j=0; j<3; j++) {
|
||||
if (matrix[count] >= 0.0) SERIAL_PROTOCOLPGM("+");
|
||||
if (matrix[count] >= 0.0) SERIAL_PROTOCOLCHAR('+');
|
||||
SERIAL_PROTOCOL_F(matrix[count], 6);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
SERIAL_PROTOCOLCHAR(' ');
|
||||
count++;
|
||||
}
|
||||
SERIAL_EOL;
|
||||
|
|
14
README.md
14
README.md
|
@ -18,8 +18,8 @@
|
|||
## Quick Information
|
||||
|
||||
This is a firmware for reprap single-processor electronics setups.
|
||||
It also works on the Ultimaker PCB. It supports printing from SD card+Folders, and look-ahead trajectory planning.
|
||||
This firmware is a mashup between [Sprinter](https://github.com/kliment/Sprinter), [grbl](https://github.com/simen/grbl) and many original parts.
|
||||
It also works on the Ultimaker PCB. It supports printing from SD card+Folders and look-ahead trajectory planning.
|
||||
This firmware is a mashup between [Sprinter](https://github.com/kliment/Sprinter), [grbl](https://github.com/simen/grbl), and many original parts.
|
||||
|
||||
## Current Status: Bug Fixing
|
||||
|
||||
|
@ -31,18 +31,18 @@ We are actively looking for testers. So please try the current development versi
|
|||
|
||||
## Contact
|
||||
|
||||
__IRC:__ #marlin-firmware @freenode ([WebChat Client](https://webchat.freenode.net/?channels=marlin-firmware)
|
||||
__Google Hangout:__ <a href="https://plus.google.com/hangouts/_/g2wp5duzb2y6ahikg6tmwao3kua" target="_blank">Hagnout</a>
|
||||
|
||||
## Credits
|
||||
|
||||
The current Marlin dev team consists of:
|
||||
|
||||
- Erik van der Zalm ([@ErikZalm](https://github.com/ErikZalm))
|
||||
- [@daid](https://github.com/daid)
|
||||
- Scott Lahteine [@thinkyhead]
|
||||
-
|
||||
|
||||
Sprinters lead developers are Kliment and caru.
|
||||
Grbls lead developer is Simen Svale Skogsrud.
|
||||
Sonney Jeon (Chamnit) improved some parts of grbl
|
||||
Grbl's lead developer is Simen Svale Skogsrud.
|
||||
Sonney Jeon (Chamnit) improved some parts of grbl.
|
||||
A fork by bkubicek for the Ultimaker was merged.
|
||||
|
||||
More features have been added by:
|
||||
|
|
Reference in a new issue