Removed interrupt nesting in the stepper ISR.

Add serial checkRx in stepper ISR.
Copied HardwareSerial to MarlinSerial (Needed for checkRx).
This commit is contained in:
Erik van der Zalm 2011-11-27 21:12:55 +01:00
parent aad4b75b94
commit f75f426dfa
16 changed files with 1007 additions and 754 deletions

View file

@ -232,7 +232,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff. // minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
#define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this #define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this
#define DEFAULT_XYJERK 30.0 // (mm/sec) #define DEFAULT_XYJERK 20.0 // (mm/sec)
#define DEFAULT_ZJERK 0.4 // (mm/sec) #define DEFAULT_ZJERK 0.4 // (mm/sec)

View file

@ -4,6 +4,7 @@
#include "Marlin.h" #include "Marlin.h"
#include "planner.h" #include "planner.h"
#include "temperature.h" #include "temperature.h"
#include <EEPROM.h> #include <EEPROM.h>
template <class T> int EEPROM_writeAnything(int &ee, const T& value) template <class T> int EEPROM_writeAnything(int &ee, const T& value)

View file

@ -3,10 +3,12 @@
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. // Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// Licence: GPL // Licence: GPL
#define HardwareSerial_h // trick to disable the standard HWserial
#include <WProgram.h> #include <WProgram.h>
#include "fastio.h" #include "fastio.h"
#include <avr/pgmspace.h> #include <avr/pgmspace.h>
#include "Configuration.h" #include "Configuration.h"
#include "MarlinSerial.h"
//#define SERIAL_ECHO(x) Serial << "echo: " << x; //#define SERIAL_ECHO(x) Serial << "echo: " << x;
//#define SERIAL_ECHOLN(x) Serial << "echo: "<<x<<endl; //#define SERIAL_ECHOLN(x) Serial << "echo: "<<x<<endl;
@ -17,10 +19,10 @@
#define SERIAL_PROTOCOL(x) Serial.print(x); #define SERIAL_PROTOCOL(x) MSerial.print(x);
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x)); #define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x));
#define SERIAL_PROTOCOLLN(x) {Serial.print(x);Serial.write('\n');} #define SERIAL_PROTOCOLLN(x) {MSerial.print(x);MSerial.write('\n');}
#define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(PSTR(x));Serial.write('\n');} #define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(PSTR(x));MSerial.write('\n');}
const char errormagic[] PROGMEM ="Error:"; const char errormagic[] PROGMEM ="Error:";
const char echomagic[] PROGMEM ="echo:"; const char echomagic[] PROGMEM ="echo:";
@ -46,7 +48,7 @@ inline void serialprintPGM(const char *str)
char ch=pgm_read_byte(str); char ch=pgm_read_byte(str);
while(ch) while(ch)
{ {
Serial.write(ch); MSerial.write(ch);
ch=pgm_read_byte(++str); ch=pgm_read_byte(++str);
} }
} }

View file

@ -176,6 +176,7 @@ static unsigned long stoptime=0;
static uint8_t tmp_extruder; static uint8_t tmp_extruder;
//=========================================================================== //===========================================================================
//=============================ROUTINES============================= //=============================ROUTINES=============================
//=========================================================================== //===========================================================================
@ -199,13 +200,6 @@ extern "C"{
} }
} }
//adds an command to the main command buffer //adds an command to the main command buffer
//thats really done in a non-safe way. //thats really done in a non-safe way.
//needs overworking someday //needs overworking someday
@ -226,7 +220,7 @@ void enquecommand(const char *cmd)
void setup() void setup()
{ {
Serial.begin(BAUDRATE); MSerial.begin(BAUDRATE);
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(VERSION_STRING); SERIAL_ECHOLNPGM(VERSION_STRING);
SERIAL_PROTOCOLLNPGM("start"); SERIAL_PROTOCOLLNPGM("start");
@ -289,15 +283,14 @@ void loop()
manage_heater(); manage_heater();
manage_inactivity(1); manage_inactivity(1);
checkHitEndstops(); checkHitEndstops();
checkStepperErrors();
LCD_STATUS; LCD_STATUS;
} }
inline void get_command() inline void get_command()
{ {
while( Serial.available() > 0 && buflen < BUFSIZE) { while( MSerial.available() > 0 && buflen < BUFSIZE) {
serial_char = Serial.read(); serial_char = MSerial.read();
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
{ {
if(!serial_count) return; //if empty line if(!serial_count) return; //if empty line
@ -1039,7 +1032,7 @@ inline void process_commands()
void FlushSerialRequestResend() void FlushSerialRequestResend()
{ {
//char cmdbuffer[bufindr][100]="Resend:"; //char cmdbuffer[bufindr][100]="Resend:";
Serial.flush(); MSerial.flush();
SERIAL_PROTOCOLPGM("Resend:"); SERIAL_PROTOCOLPGM("Resend:");
SERIAL_PROTOCOLLN(gcode_LastN + 1); SERIAL_PROTOCOLLN(gcode_LastN + 1);
ClearToSend(); ClearToSend();
@ -1088,7 +1081,7 @@ void prepare_move()
if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH; if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
} }
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i]; current_position[i] = destination[i];
} }
@ -1098,7 +1091,7 @@ void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc // Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise); mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position
@ -1108,10 +1101,6 @@ void prepare_arc_move(char isclockwise) {
} }
} }
void manage_inactivity(byte debug) void manage_inactivity(byte debug)
{ {
if( (millis()-previous_millis_cmd) > max_inactive_time ) if( (millis()-previous_millis_cmd) > max_inactive_time )

213
Marlin/MarlinSerial.cpp Normal file
View file

@ -0,0 +1,213 @@
/*
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "wiring.h"
#include "wiring_private.h"
// this next line disables the entire HardwareSerial.cpp,
// this is so I can support Attiny series and any other chip without a uart
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)
#include "MarlinSerial.h"
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which rx_buffer_head is the index of the
// location to which to write the next incoming character and rx_buffer_tail
// is the index of the location from which to read.
#define RX_BUFFER_SIZE 128
struct ring_buffer
{
unsigned char buffer[RX_BUFFER_SIZE];
int head;
int tail;
};
#if defined(UBRRH) || defined(UBRR0H)
ring_buffer rx_buffer = { { 0 }, 0, 0 };
#endif
inline void store_char(unsigned char c, ring_buffer *rx_buffer)
{
int i = (unsigned int)(rx_buffer->head + 1) % RX_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != rx_buffer->tail) {
rx_buffer->buffer[rx_buffer->head] = c;
rx_buffer->head = i;
}
}
//#elif defined(SIG_USART_RECV)
#if defined(USART0_RX_vect)
// fixed by Mark Sproul this is on the 644/644p
//SIGNAL(SIG_USART_RECV)
SIGNAL(USART0_RX_vect)
{
#if defined(UDR0)
unsigned char c = UDR0;
#elif defined(UDR)
unsigned char c = UDR; // atmega8, atmega32
#else
#error UDR not defined
#endif
store_char(c, &rx_buffer);
}
#endif
// Constructors ////////////////////////////////////////////////////////////////
MarlinSerial::MarlinSerial(ring_buffer *rx_buffer,
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udre, uint8_t u2x)
{
_rx_buffer = rx_buffer;
_ubrrh = ubrrh;
_ubrrl = ubrrl;
_ucsra = ucsra;
_ucsrb = ucsrb;
_udr = udr;
_rxen = rxen;
_txen = txen;
_rxcie = rxcie;
_udre = udre;
_u2x = u2x;
}
// Public Methods //////////////////////////////////////////////////////////////
void MarlinSerial::begin(long baud)
{
uint16_t baud_setting;
bool use_u2x = true;
#if F_CPU == 16000000UL
// hardcoded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards and the firmware on the 8U2
// on the Uno and Mega 2560.
if (baud == 57600) {
use_u2x = false;
}
#endif
if (use_u2x) {
*_ucsra = 1 << _u2x;
baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else {
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
sbi(*_ucsrb, _rxen);
sbi(*_ucsrb, _txen);
sbi(*_ucsrb, _rxcie);
}
void MarlinSerial::end()
{
cbi(*_ucsrb, _rxen);
cbi(*_ucsrb, _txen);
cbi(*_ucsrb, _rxcie);
}
int MarlinSerial::available(void)
{
return (unsigned int)(RX_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % RX_BUFFER_SIZE;
}
int MarlinSerial::peek(void)
{
if (_rx_buffer->head == _rx_buffer->tail) {
return -1;
} else {
return _rx_buffer->buffer[_rx_buffer->tail];
}
}
int MarlinSerial::read(void)
{
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer->head == _rx_buffer->tail) {
return -1;
} else {
unsigned char c = _rx_buffer->buffer[_rx_buffer->tail];
_rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % RX_BUFFER_SIZE;
return c;
}
}
void MarlinSerial::flush()
{
// don't reverse this or there may be problems if the RX interrupt
// occurs after reading the value of rx_buffer_head but before writing
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// don't reverse this or there may be problems if the RX interrupt
// occurs after reading the value of rx_buffer_head but before writing
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// were full, not empty.
_rx_buffer->head = _rx_buffer->tail;
}
void MarlinSerial::write(uint8_t c)
{
while (!((*_ucsra) & (1 << _udre)))
;
*_udr = c;
}
void MarlinSerial::checkRx()
{
if((UCSR0A & (1<<RXC0)) != 0) {
unsigned char c = UDR0;
store_char(c, &rx_buffer);
}
}
// Preinstantiate Objects //////////////////////////////////////////////////////
#if defined(UBRR0H) && defined(UBRR0L)
MarlinSerial MSerial(&rx_buffer, &UBRR0H, &UBRR0L, &UCSR0A, &UCSR0B, &UDR0, RXEN0, TXEN0, RXCIE0, UDRE0, U2X0);
#else
#error no serial port defined (port 0)
#endif
#endif // whole file

66
Marlin/MarlinSerial.h Normal file
View file

@ -0,0 +1,66 @@
/*
HardwareSerial.h - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 28 September 2010 by Mark Sproul
*/
#ifndef MarlinSerial_h
#define MarlinSerial_h
#include <inttypes.h>
#include "Stream.h"
struct ring_buffer;
class MarlinSerial : public Stream
{
private:
ring_buffer *_rx_buffer;
volatile uint8_t *_ubrrh;
volatile uint8_t *_ubrrl;
volatile uint8_t *_ucsra;
volatile uint8_t *_ucsrb;
volatile uint8_t *_udr;
uint8_t _rxen;
uint8_t _txen;
uint8_t _rxcie;
uint8_t _udre;
uint8_t _u2x;
public:
MarlinSerial(ring_buffer *rx_buffer,
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udre, uint8_t u2x);
void begin(long);
void end();
virtual int available(void);
virtual int peek(void);
virtual int read(void);
virtual void flush(void);
virtual void write(uint8_t);
virtual void checkRx(void);
using Print::write; // pull in write(str) and write(buf, size) from Print
};
#if defined(UBRRH) || defined(UBRR0H)
extern MarlinSerial MSerial;
#endif
#endif

View file

@ -1,642 +1,643 @@
/* Arduino Sd2Card Library /* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman * Copyright (C) 2009 by William Greiman
* *
* This file is part of the Arduino Sd2Card Library * This file is part of the Arduino Sd2Card Library
* *
* This Library is free software: you can redistribute it and/or modify * This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or * the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version. * (at your option) any later version.
* *
* This Library is distributed in the hope that it will be useful, * This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with the Arduino Sd2Card Library. If not, see * along with the Arduino Sd2Card Library. If not, see
* <http://www.gnu.org/licenses/>. * <http://www.gnu.org/licenses/>.
*/ */
#if ARDUINO < 100 #if ARDUINO < 100
#include <WProgram.h> #define HardwareSerial_h // trick to disable the standard HWserial
#else // ARDUINO #include <WProgram.h>
#include <Arduino.h> #else // ARDUINO
#endif // ARDUINO #include <Arduino.h>
#include "Sd2Card.h" #endif // ARDUINO
//------------------------------------------------------------------------------ #include "Sd2Card.h"
#ifndef SOFTWARE_SPI //------------------------------------------------------------------------------
// functions for hardware SPI #ifndef SOFTWARE_SPI
//------------------------------------------------------------------------------ // functions for hardware SPI
// make sure SPCR rate is in expected bits //------------------------------------------------------------------------------
#if (SPR0 != 0 || SPR1 != 1) // make sure SPCR rate is in expected bits
#error unexpected SPCR bits #if (SPR0 != 0 || SPR1 != 1)
#endif #error unexpected SPCR bits
/** #endif
* Initialize hardware SPI /**
* Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6] * Initialize hardware SPI
*/ * Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6]
static void spiInit(uint8_t spiRate) { */
// See avr processor documentation static void spiInit(uint8_t spiRate) {
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1); // See avr processor documentation
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X; SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1);
} SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X;
//------------------------------------------------------------------------------ }
/** SPI receive a byte */ //------------------------------------------------------------------------------
static uint8_t spiRec() { /** SPI receive a byte */
SPDR = 0XFF; static uint8_t spiRec() {
while (!(SPSR & (1 << SPIF))); SPDR = 0XFF;
return SPDR; while (!(SPSR & (1 << SPIF)));
} return SPDR;
//------------------------------------------------------------------------------ }
/** SPI read data - only one call so force inline */ //------------------------------------------------------------------------------
static inline __attribute__((always_inline)) /** SPI read data - only one call so force inline */
void spiRead(uint8_t* buf, uint16_t nbyte) { static inline __attribute__((always_inline))
if (nbyte-- == 0) return; void spiRead(uint8_t* buf, uint16_t nbyte) {
SPDR = 0XFF; if (nbyte-- == 0) return;
for (uint16_t i = 0; i < nbyte; i++) { SPDR = 0XFF;
while (!(SPSR & (1 << SPIF))); for (uint16_t i = 0; i < nbyte; i++) {
buf[i] = SPDR; while (!(SPSR & (1 << SPIF)));
SPDR = 0XFF; buf[i] = SPDR;
} SPDR = 0XFF;
while (!(SPSR & (1 << SPIF))); }
buf[nbyte] = SPDR; while (!(SPSR & (1 << SPIF)));
} buf[nbyte] = SPDR;
//------------------------------------------------------------------------------ }
/** SPI send a byte */ //------------------------------------------------------------------------------
static void spiSend(uint8_t b) { /** SPI send a byte */
SPDR = b; static void spiSend(uint8_t b) {
while (!(SPSR & (1 << SPIF))); SPDR = b;
} while (!(SPSR & (1 << SPIF)));
//------------------------------------------------------------------------------ }
/** SPI send block - only one call so force inline */ //------------------------------------------------------------------------------
static inline __attribute__((always_inline)) /** SPI send block - only one call so force inline */
void spiSendBlock(uint8_t token, const uint8_t* buf) { static inline __attribute__((always_inline))
SPDR = token; void spiSendBlock(uint8_t token, const uint8_t* buf) {
for (uint16_t i = 0; i < 512; i += 2) { SPDR = token;
while (!(SPSR & (1 << SPIF))); for (uint16_t i = 0; i < 512; i += 2) {
SPDR = buf[i]; while (!(SPSR & (1 << SPIF)));
while (!(SPSR & (1 << SPIF))); SPDR = buf[i];
SPDR = buf[i + 1]; while (!(SPSR & (1 << SPIF)));
} SPDR = buf[i + 1];
while (!(SPSR & (1 << SPIF))); }
} while (!(SPSR & (1 << SPIF)));
//------------------------------------------------------------------------------ }
#else // SOFTWARE_SPI //------------------------------------------------------------------------------
//------------------------------------------------------------------------------ #else // SOFTWARE_SPI
/** nop to tune soft SPI timing */ //------------------------------------------------------------------------------
#define nop asm volatile ("nop\n\t") /** nop to tune soft SPI timing */
//------------------------------------------------------------------------------ #define nop asm volatile ("nop\n\t")
/** Soft SPI receive byte */ //------------------------------------------------------------------------------
static uint8_t spiRec() { /** Soft SPI receive byte */
uint8_t data = 0; static uint8_t spiRec() {
// no interrupts during byte receive - about 8 us uint8_t data = 0;
cli(); // no interrupts during byte receive - about 8 us
// output pin high - like sending 0XFF cli();
fastDigitalWrite(SPI_MOSI_PIN, HIGH); // output pin high - like sending 0XFF
fastDigitalWrite(SPI_MOSI_PIN, HIGH);
for (uint8_t i = 0; i < 8; i++) {
fastDigitalWrite(SPI_SCK_PIN, HIGH); for (uint8_t i = 0; i < 8; i++) {
fastDigitalWrite(SPI_SCK_PIN, HIGH);
// adjust so SCK is nice
nop; // adjust so SCK is nice
nop; nop;
nop;
data <<= 1;
data <<= 1;
if (fastDigitalRead(SPI_MISO_PIN)) data |= 1;
if (fastDigitalRead(SPI_MISO_PIN)) data |= 1;
fastDigitalWrite(SPI_SCK_PIN, LOW);
} fastDigitalWrite(SPI_SCK_PIN, LOW);
// enable interrupts }
sei(); // enable interrupts
return data; sei();
} return data;
//------------------------------------------------------------------------------ }
/** Soft SPI read data */ //------------------------------------------------------------------------------
static void spiRead(uint8_t* buf, uint16_t nbyte) { /** Soft SPI read data */
for (uint16_t i = 0; i < nbyte; i++) { static void spiRead(uint8_t* buf, uint16_t nbyte) {
buf[i] = spiRec(); for (uint16_t i = 0; i < nbyte; i++) {
} buf[i] = spiRec();
} }
//------------------------------------------------------------------------------ }
/** Soft SPI send byte */ //------------------------------------------------------------------------------
static void spiSend(uint8_t data) { /** Soft SPI send byte */
// no interrupts during byte send - about 8 us static void spiSend(uint8_t data) {
cli(); // no interrupts during byte send - about 8 us
for (uint8_t i = 0; i < 8; i++) { cli();
fastDigitalWrite(SPI_SCK_PIN, LOW); for (uint8_t i = 0; i < 8; i++) {
fastDigitalWrite(SPI_SCK_PIN, LOW);
fastDigitalWrite(SPI_MOSI_PIN, data & 0X80);
fastDigitalWrite(SPI_MOSI_PIN, data & 0X80);
data <<= 1;
data <<= 1;
fastDigitalWrite(SPI_SCK_PIN, HIGH);
} fastDigitalWrite(SPI_SCK_PIN, HIGH);
// hold SCK high for a few ns }
nop; // hold SCK high for a few ns
nop; nop;
nop; nop;
nop; nop;
nop;
fastDigitalWrite(SPI_SCK_PIN, LOW);
// enable interrupts fastDigitalWrite(SPI_SCK_PIN, LOW);
sei(); // enable interrupts
} sei();
//------------------------------------------------------------------------------ }
/** Soft SPI send block */ //------------------------------------------------------------------------------
void spiSendBlock(uint8_t token, const uint8_t* buf) { /** Soft SPI send block */
spiSend(token); void spiSendBlock(uint8_t token, const uint8_t* buf) {
for (uint16_t i = 0; i < 512; i++) { spiSend(token);
spiSend(buf[i]); for (uint16_t i = 0; i < 512; i++) {
} spiSend(buf[i]);
} }
#endif // SOFTWARE_SPI }
//------------------------------------------------------------------------------ #endif // SOFTWARE_SPI
// send command and return error code. Return zero for OK //------------------------------------------------------------------------------
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) { // send command and return error code. Return zero for OK
// select card uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
chipSelectLow(); // select card
chipSelectLow();
// wait up to 300 ms if busy
waitNotBusy(300); // wait up to 300 ms if busy
waitNotBusy(300);
// send command
spiSend(cmd | 0x40); // send command
spiSend(cmd | 0x40);
// send argument
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s); // send argument
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
// send CRC
uint8_t crc = 0XFF; // send CRC
if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0 uint8_t crc = 0XFF;
if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0
spiSend(crc); if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA
spiSend(crc);
// skip stuff byte for stop read
if (cmd == CMD12) spiRec(); // skip stuff byte for stop read
if (cmd == CMD12) spiRec();
// wait for response
for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++); // wait for response
return status_; for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++);
} return status_;
//------------------------------------------------------------------------------ }
/** //------------------------------------------------------------------------------
* Determine the size of an SD flash memory card. /**
* * Determine the size of an SD flash memory card.
* \return The number of 512 byte data blocks in the card *
* or zero if an error occurs. * \return The number of 512 byte data blocks in the card
*/ * or zero if an error occurs.
uint32_t Sd2Card::cardSize() { */
csd_t csd; uint32_t Sd2Card::cardSize() {
if (!readCSD(&csd)) return 0; csd_t csd;
if (csd.v1.csd_ver == 0) { if (!readCSD(&csd)) return 0;
uint8_t read_bl_len = csd.v1.read_bl_len; if (csd.v1.csd_ver == 0) {
uint16_t c_size = (csd.v1.c_size_high << 10) uint8_t read_bl_len = csd.v1.read_bl_len;
| (csd.v1.c_size_mid << 2) | csd.v1.c_size_low; uint16_t c_size = (csd.v1.c_size_high << 10)
uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1) | (csd.v1.c_size_mid << 2) | csd.v1.c_size_low;
| csd.v1.c_size_mult_low; uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1)
return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7); | csd.v1.c_size_mult_low;
} else if (csd.v2.csd_ver == 1) { return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7);
uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16) } else if (csd.v2.csd_ver == 1) {
| (csd.v2.c_size_mid << 8) | csd.v2.c_size_low; uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16)
return (c_size + 1) << 10; | (csd.v2.c_size_mid << 8) | csd.v2.c_size_low;
} else { return (c_size + 1) << 10;
error(SD_CARD_ERROR_BAD_CSD); } else {
return 0; error(SD_CARD_ERROR_BAD_CSD);
} return 0;
} }
//------------------------------------------------------------------------------ }
void Sd2Card::chipSelectHigh() { //------------------------------------------------------------------------------
digitalWrite(chipSelectPin_, HIGH); void Sd2Card::chipSelectHigh() {
} digitalWrite(chipSelectPin_, HIGH);
//------------------------------------------------------------------------------ }
void Sd2Card::chipSelectLow() { //------------------------------------------------------------------------------
#ifndef SOFTWARE_SPI void Sd2Card::chipSelectLow() {
spiInit(spiRate_); #ifndef SOFTWARE_SPI
#endif // SOFTWARE_SPI spiInit(spiRate_);
digitalWrite(chipSelectPin_, LOW); #endif // SOFTWARE_SPI
} digitalWrite(chipSelectPin_, LOW);
//------------------------------------------------------------------------------ }
/** Erase a range of blocks. //------------------------------------------------------------------------------
* /** Erase a range of blocks.
* \param[in] firstBlock The address of the first block in the range. *
* \param[in] lastBlock The address of the last block in the range. * \param[in] firstBlock The address of the first block in the range.
* * \param[in] lastBlock The address of the last block in the range.
* \note This function requests the SD card to do a flash erase for a *
* range of blocks. The data on the card after an erase operation is * \note This function requests the SD card to do a flash erase for a
* either 0 or 1, depends on the card vendor. The card must support * range of blocks. The data on the card after an erase operation is
* single block erase. * either 0 or 1, depends on the card vendor. The card must support
* * single block erase.
* \return The value one, true, is returned for success and *
* the value zero, false, is returned for failure. * \return The value one, true, is returned for success and
*/ * the value zero, false, is returned for failure.
bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) { */
csd_t csd; bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
if (!readCSD(&csd)) goto fail; csd_t csd;
// check for single block erase if (!readCSD(&csd)) goto fail;
if (!csd.v1.erase_blk_en) { // check for single block erase
// erase size mask if (!csd.v1.erase_blk_en) {
uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low; // erase size mask
if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) { uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low;
// error card can't erase specified area if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) {
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK); // error card can't erase specified area
goto fail; error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
} goto fail;
} }
if (type_ != SD_CARD_TYPE_SDHC) { }
firstBlock <<= 9; if (type_ != SD_CARD_TYPE_SDHC) {
lastBlock <<= 9; firstBlock <<= 9;
} lastBlock <<= 9;
if (cardCommand(CMD32, firstBlock) }
|| cardCommand(CMD33, lastBlock) if (cardCommand(CMD32, firstBlock)
|| cardCommand(CMD38, 0)) { || cardCommand(CMD33, lastBlock)
error(SD_CARD_ERROR_ERASE); || cardCommand(CMD38, 0)) {
goto fail; error(SD_CARD_ERROR_ERASE);
} goto fail;
if (!waitNotBusy(SD_ERASE_TIMEOUT)) { }
error(SD_CARD_ERROR_ERASE_TIMEOUT); if (!waitNotBusy(SD_ERASE_TIMEOUT)) {
goto fail; error(SD_CARD_ERROR_ERASE_TIMEOUT);
} goto fail;
chipSelectHigh(); }
return true; chipSelectHigh();
return true;
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** Determine if card supports single block erase. //------------------------------------------------------------------------------
* /** Determine if card supports single block erase.
* \return The value one, true, is returned if single block erase is supported. *
* The value zero, false, is returned if single block erase is not supported. * \return The value one, true, is returned if single block erase is supported.
*/ * The value zero, false, is returned if single block erase is not supported.
bool Sd2Card::eraseSingleBlockEnable() { */
csd_t csd; bool Sd2Card::eraseSingleBlockEnable() {
return readCSD(&csd) ? csd.v1.erase_blk_en : false; csd_t csd;
} return readCSD(&csd) ? csd.v1.erase_blk_en : false;
//------------------------------------------------------------------------------ }
/** //------------------------------------------------------------------------------
* Initialize an SD flash memory card. /**
* * Initialize an SD flash memory card.
* \param[in] sckRateID SPI clock rate selector. See setSckRate(). *
* \param[in] chipSelectPin SD chip select pin number. * \param[in] sckRateID SPI clock rate selector. See setSckRate().
* * \param[in] chipSelectPin SD chip select pin number.
* \return The value one, true, is returned for success and *
* the value zero, false, is returned for failure. The reason for failure * \return The value one, true, is returned for success and
* can be determined by calling errorCode() and errorData(). * the value zero, false, is returned for failure. The reason for failure
*/ * can be determined by calling errorCode() and errorData().
bool Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) { */
errorCode_ = type_ = 0; bool Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
chipSelectPin_ = chipSelectPin; errorCode_ = type_ = 0;
// 16-bit init start time allows over a minute chipSelectPin_ = chipSelectPin;
uint16_t t0 = (uint16_t)millis(); // 16-bit init start time allows over a minute
uint32_t arg; uint16_t t0 = (uint16_t)millis();
uint32_t arg;
// set pin modes
pinMode(chipSelectPin_, OUTPUT); // set pin modes
chipSelectHigh(); pinMode(chipSelectPin_, OUTPUT);
pinMode(SPI_MISO_PIN, INPUT); chipSelectHigh();
pinMode(SPI_MOSI_PIN, OUTPUT); pinMode(SPI_MISO_PIN, INPUT);
pinMode(SPI_SCK_PIN, OUTPUT); pinMode(SPI_MOSI_PIN, OUTPUT);
pinMode(SPI_SCK_PIN, OUTPUT);
#ifndef SOFTWARE_SPI
// SS must be in output mode even it is not chip select #ifndef SOFTWARE_SPI
pinMode(SS_PIN, OUTPUT); // SS must be in output mode even it is not chip select
// set SS high - may be chip select for another SPI device pinMode(SS_PIN, OUTPUT);
#if SET_SPI_SS_HIGH // set SS high - may be chip select for another SPI device
digitalWrite(SS_PIN, HIGH); #if SET_SPI_SS_HIGH
#endif // SET_SPI_SS_HIGH digitalWrite(SS_PIN, HIGH);
// set SCK rate for initialization commands #endif // SET_SPI_SS_HIGH
spiRate_ = SPI_SD_INIT_RATE; // set SCK rate for initialization commands
spiInit(spiRate_); spiRate_ = SPI_SD_INIT_RATE;
#endif // SOFTWARE_SPI spiInit(spiRate_);
#endif // SOFTWARE_SPI
// must supply min of 74 clock cycles with CS high.
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF); // must supply min of 74 clock cycles with CS high.
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
// command to go idle in SPI mode
while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) { // command to go idle in SPI mode
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) { while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
error(SD_CARD_ERROR_CMD0); if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
goto fail; error(SD_CARD_ERROR_CMD0);
} goto fail;
} }
// check SD version }
if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) { // check SD version
type(SD_CARD_TYPE_SD1); if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
} else { type(SD_CARD_TYPE_SD1);
// only need last byte of r7 response } else {
for (uint8_t i = 0; i < 4; i++) status_ = spiRec(); // only need last byte of r7 response
if (status_ != 0XAA) { for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
error(SD_CARD_ERROR_CMD8); if (status_ != 0XAA) {
goto fail; error(SD_CARD_ERROR_CMD8);
} goto fail;
type(SD_CARD_TYPE_SD2); }
} type(SD_CARD_TYPE_SD2);
// initialize card and send host supports SDHC if SD2 }
arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0; // initialize card and send host supports SDHC if SD2
arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;
while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
// check for timeout while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) { // check for timeout
error(SD_CARD_ERROR_ACMD41); if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
goto fail; error(SD_CARD_ERROR_ACMD41);
} goto fail;
} }
// if SD2 read OCR register to check for SDHC card }
if (type() == SD_CARD_TYPE_SD2) { // if SD2 read OCR register to check for SDHC card
if (cardCommand(CMD58, 0)) { if (type() == SD_CARD_TYPE_SD2) {
error(SD_CARD_ERROR_CMD58); if (cardCommand(CMD58, 0)) {
goto fail; error(SD_CARD_ERROR_CMD58);
} goto fail;
if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC); }
// discard rest of ocr - contains allowed voltage range if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
for (uint8_t i = 0; i < 3; i++) spiRec(); // discard rest of ocr - contains allowed voltage range
} for (uint8_t i = 0; i < 3; i++) spiRec();
chipSelectHigh(); }
chipSelectHigh();
#ifndef SOFTWARE_SPI
return setSckRate(sckRateID); #ifndef SOFTWARE_SPI
#else // SOFTWARE_SPI return setSckRate(sckRateID);
return true; #else // SOFTWARE_SPI
#endif // SOFTWARE_SPI return true;
#endif // SOFTWARE_SPI
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** //------------------------------------------------------------------------------
* Read a 512 byte block from an SD card. /**
* * Read a 512 byte block from an SD card.
* \param[in] blockNumber Logical block to be read. *
* \param[out] dst Pointer to the location that will receive the data. * \param[in] blockNumber Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. * \return The value one, true, is returned for success and
*/ * the value zero, false, is returned for failure.
bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) { */
// use address if not SDHC card bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9; // use address if not SDHC card
if (cardCommand(CMD17, blockNumber)) { if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
error(SD_CARD_ERROR_CMD17); if (cardCommand(CMD17, blockNumber)) {
goto fail; error(SD_CARD_ERROR_CMD17);
} goto fail;
return readData(dst, 512); }
return readData(dst, 512);
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** Read one data block in a multiple block read sequence //------------------------------------------------------------------------------
* /** Read one data block in a multiple block read sequence
* \param[in] dst Pointer to the location for the data to be read. *
* * \param[in] dst Pointer to the location for the data to be read.
* \return The value one, true, is returned for success and *
* the value zero, false, is returned for failure. * \return The value one, true, is returned for success and
*/ * the value zero, false, is returned for failure.
bool Sd2Card::readData(uint8_t *dst) { */
chipSelectLow(); bool Sd2Card::readData(uint8_t *dst) {
return readData(dst, 512); chipSelectLow();
} return readData(dst, 512);
//------------------------------------------------------------------------------ }
bool Sd2Card::readData(uint8_t* dst, uint16_t count) { //------------------------------------------------------------------------------
// wait for start block token bool Sd2Card::readData(uint8_t* dst, uint16_t count) {
uint16_t t0 = millis(); // wait for start block token
while ((status_ = spiRec()) == 0XFF) { uint16_t t0 = millis();
if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) { while ((status_ = spiRec()) == 0XFF) {
error(SD_CARD_ERROR_READ_TIMEOUT); if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) {
goto fail; error(SD_CARD_ERROR_READ_TIMEOUT);
} goto fail;
} }
if (status_ != DATA_START_BLOCK) { }
error(SD_CARD_ERROR_READ); if (status_ != DATA_START_BLOCK) {
goto fail; error(SD_CARD_ERROR_READ);
} goto fail;
// transfer data }
spiRead(dst, count); // transfer data
spiRead(dst, count);
// discard CRC
spiRec(); // discard CRC
spiRec(); spiRec();
chipSelectHigh(); spiRec();
return true; chipSelectHigh();
return true;
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** read CID or CSR register */ //------------------------------------------------------------------------------
bool Sd2Card::readRegister(uint8_t cmd, void* buf) { /** read CID or CSR register */
uint8_t* dst = reinterpret_cast<uint8_t*>(buf); bool Sd2Card::readRegister(uint8_t cmd, void* buf) {
if (cardCommand(cmd, 0)) { uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
error(SD_CARD_ERROR_READ_REG); if (cardCommand(cmd, 0)) {
goto fail; error(SD_CARD_ERROR_READ_REG);
} goto fail;
return readData(dst, 16); }
return readData(dst, 16);
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** Start a read multiple blocks sequence. //------------------------------------------------------------------------------
* /** Start a read multiple blocks sequence.
* \param[in] blockNumber Address of first block in sequence. *
* * \param[in] blockNumber Address of first block in sequence.
* \note This function is used with readData() and readStop() for optimized *
* multiple block reads. SPI chipSelect must be low for the entire sequence. * \note This function is used with readData() and readStop() for optimized
* * multiple block reads. SPI chipSelect must be low for the entire sequence.
* \return The value one, true, is returned for success and *
* the value zero, false, is returned for failure. * \return The value one, true, is returned for success and
*/ * the value zero, false, is returned for failure.
bool Sd2Card::readStart(uint32_t blockNumber) { */
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9; bool Sd2Card::readStart(uint32_t blockNumber) {
if (cardCommand(CMD18, blockNumber)) { if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
error(SD_CARD_ERROR_CMD18); if (cardCommand(CMD18, blockNumber)) {
goto fail; error(SD_CARD_ERROR_CMD18);
} goto fail;
chipSelectHigh(); }
return true; chipSelectHigh();
return true;
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** End a read multiple blocks sequence. //------------------------------------------------------------------------------
* /** End a read multiple blocks sequence.
* \return The value one, true, is returned for success and *
* the value zero, false, is returned for failure. * \return The value one, true, is returned for success and
*/ * the value zero, false, is returned for failure.
bool Sd2Card::readStop() { */
chipSelectLow(); bool Sd2Card::readStop() {
if (cardCommand(CMD12, 0)) { chipSelectLow();
error(SD_CARD_ERROR_CMD12); if (cardCommand(CMD12, 0)) {
goto fail; error(SD_CARD_ERROR_CMD12);
} goto fail;
chipSelectHigh(); }
return true; chipSelectHigh();
return true;
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** //------------------------------------------------------------------------------
* Set the SPI clock rate. /**
* * Set the SPI clock rate.
* \param[in] sckRateID A value in the range [0, 6]. *
* * \param[in] sckRateID A value in the range [0, 6].
* The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum *
* SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128 * The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum
* for \a scsRateID = 6. * SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128
* * for \a scsRateID = 6.
* \return The value one, true, is returned for success and the value zero, *
* false, is returned for an invalid value of \a sckRateID. * \return The value one, true, is returned for success and the value zero,
*/ * false, is returned for an invalid value of \a sckRateID.
bool Sd2Card::setSckRate(uint8_t sckRateID) { */
if (sckRateID > 6) { bool Sd2Card::setSckRate(uint8_t sckRateID) {
error(SD_CARD_ERROR_SCK_RATE); if (sckRateID > 6) {
return false; error(SD_CARD_ERROR_SCK_RATE);
} return false;
spiRate_ = sckRateID; }
return true; spiRate_ = sckRateID;
} return true;
//------------------------------------------------------------------------------ }
// wait for card to go not busy //------------------------------------------------------------------------------
bool Sd2Card::waitNotBusy(uint16_t timeoutMillis) { // wait for card to go not busy
uint16_t t0 = millis(); bool Sd2Card::waitNotBusy(uint16_t timeoutMillis) {
while (spiRec() != 0XFF) { uint16_t t0 = millis();
if (((uint16_t)millis() - t0) >= timeoutMillis) goto fail; while (spiRec() != 0XFF) {
} if (((uint16_t)millis() - t0) >= timeoutMillis) goto fail;
return true; }
return true;
fail:
return false; fail:
} return false;
//------------------------------------------------------------------------------ }
/** //------------------------------------------------------------------------------
* Writes a 512 byte block to an SD card. /**
* * Writes a 512 byte block to an SD card.
* \param[in] blockNumber Logical block to be written. *
* \param[in] src Pointer to the location of the data to be written. * \param[in] blockNumber Logical block to be written.
* \return The value one, true, is returned for success and * \param[in] src Pointer to the location of the data to be written.
* the value zero, false, is returned for failure. * \return The value one, true, is returned for success and
*/ * the value zero, false, is returned for failure.
bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) { */
// use address if not SDHC card bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; // use address if not SDHC card
if (cardCommand(CMD24, blockNumber)) { if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
error(SD_CARD_ERROR_CMD24); if (cardCommand(CMD24, blockNumber)) {
goto fail; error(SD_CARD_ERROR_CMD24);
} goto fail;
if (!writeData(DATA_START_BLOCK, src)) goto fail; }
if (!writeData(DATA_START_BLOCK, src)) goto fail;
// wait for flash programming to complete
if (!waitNotBusy(SD_WRITE_TIMEOUT)) { // wait for flash programming to complete
error(SD_CARD_ERROR_WRITE_TIMEOUT); if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
goto fail; error(SD_CARD_ERROR_WRITE_TIMEOUT);
} goto fail;
// response is r2 so get and check two bytes for nonzero }
if (cardCommand(CMD13, 0) || spiRec()) { // response is r2 so get and check two bytes for nonzero
error(SD_CARD_ERROR_WRITE_PROGRAMMING); if (cardCommand(CMD13, 0) || spiRec()) {
goto fail; error(SD_CARD_ERROR_WRITE_PROGRAMMING);
} goto fail;
chipSelectHigh(); }
return true; chipSelectHigh();
return true;
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** Write one data block in a multiple block write sequence //------------------------------------------------------------------------------
* \param[in] src Pointer to the location of the data to be written. /** Write one data block in a multiple block write sequence
* \return The value one, true, is returned for success and * \param[in] src Pointer to the location of the data to be written.
* the value zero, false, is returned for failure. * \return The value one, true, is returned for success and
*/ * the value zero, false, is returned for failure.
bool Sd2Card::writeData(const uint8_t* src) { */
chipSelectLow(); bool Sd2Card::writeData(const uint8_t* src) {
// wait for previous write to finish chipSelectLow();
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail; // wait for previous write to finish
if (!writeData(WRITE_MULTIPLE_TOKEN, src)) goto fail; if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
chipSelectHigh(); if (!writeData(WRITE_MULTIPLE_TOKEN, src)) goto fail;
return true; chipSelectHigh();
return true;
fail:
error(SD_CARD_ERROR_WRITE_MULTIPLE); fail:
chipSelectHigh(); error(SD_CARD_ERROR_WRITE_MULTIPLE);
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
// send one block of data for write block or write multiple blocks //------------------------------------------------------------------------------
bool Sd2Card::writeData(uint8_t token, const uint8_t* src) { // send one block of data for write block or write multiple blocks
spiSendBlock(token, src); bool Sd2Card::writeData(uint8_t token, const uint8_t* src) {
spiSendBlock(token, src);
spiSend(0xff); // dummy crc
spiSend(0xff); // dummy crc spiSend(0xff); // dummy crc
spiSend(0xff); // dummy crc
status_ = spiRec();
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) { status_ = spiRec();
error(SD_CARD_ERROR_WRITE); if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
goto fail; error(SD_CARD_ERROR_WRITE);
} goto fail;
return true; }
return true;
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** Start a write multiple blocks sequence. //------------------------------------------------------------------------------
* /** Start a write multiple blocks sequence.
* \param[in] blockNumber Address of first block in sequence. *
* \param[in] eraseCount The number of blocks to be pre-erased. * \param[in] blockNumber Address of first block in sequence.
* * \param[in] eraseCount The number of blocks to be pre-erased.
* \note This function is used with writeData() and writeStop() *
* for optimized multiple block writes. * \note This function is used with writeData() and writeStop()
* * for optimized multiple block writes.
* \return The value one, true, is returned for success and *
* the value zero, false, is returned for failure. * \return The value one, true, is returned for success and
*/ * the value zero, false, is returned for failure.
bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) { */
// send pre-erase count bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
if (cardAcmd(ACMD23, eraseCount)) { // send pre-erase count
error(SD_CARD_ERROR_ACMD23); if (cardAcmd(ACMD23, eraseCount)) {
goto fail; error(SD_CARD_ERROR_ACMD23);
} goto fail;
// use address if not SDHC card }
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; // use address if not SDHC card
if (cardCommand(CMD25, blockNumber)) { if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
error(SD_CARD_ERROR_CMD25); if (cardCommand(CMD25, blockNumber)) {
goto fail; error(SD_CARD_ERROR_CMD25);
} goto fail;
chipSelectHigh(); }
return true; chipSelectHigh();
return true;
fail:
chipSelectHigh(); fail:
return false; chipSelectHigh();
} return false;
//------------------------------------------------------------------------------ }
/** End a write multiple blocks sequence. //------------------------------------------------------------------------------
* /** End a write multiple blocks sequence.
* \return The value one, true, is returned for success and *
* the value zero, false, is returned for failure. * \return The value one, true, is returned for success and
*/ * the value zero, false, is returned for failure.
bool Sd2Card::writeStop() { */
chipSelectLow(); bool Sd2Card::writeStop() {
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail; chipSelectLow();
spiSend(STOP_TRAN_TOKEN); if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail; spiSend(STOP_TRAN_TOKEN);
chipSelectHigh(); if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
return true; chipSelectHigh();
return true;
fail:
error(SD_CARD_ERROR_STOP_TRAN); fail:
chipSelectHigh(); error(SD_CARD_ERROR_STOP_TRAN);
return false; chipSelectHigh();
return false;
} }

View file

@ -306,7 +306,7 @@ void SdBaseFile::getpos(fpos_t* pos) {
* LS_R - Recursive list of subdirectories. * LS_R - Recursive list of subdirectories.
*/ */
void SdBaseFile::ls(uint8_t flags) { void SdBaseFile::ls(uint8_t flags) {
ls(&Serial, flags, 0); ls(&MSerial, flags, 0);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** List directory contents. /** List directory contents.
@ -949,7 +949,7 @@ int SdBaseFile::peek() {
*/ */
void SdBaseFile::printDirName(const dir_t& dir, void SdBaseFile::printDirName(const dir_t& dir,
uint8_t width, bool printSlash) { uint8_t width, bool printSlash) {
printDirName(&Serial, dir, width, printSlash); printDirName(&MSerial, dir, width, printSlash);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** %Print the name field of a directory entry in 8.3 format. /** %Print the name field of a directory entry in 8.3 format.
@ -993,7 +993,7 @@ static void print2u(Print* pr, uint8_t v) {
* \param[in] fatDate The date field from a directory entry. * \param[in] fatDate The date field from a directory entry.
*/ */
void SdBaseFile::printFatDate(uint16_t fatDate) { void SdBaseFile::printFatDate(uint16_t fatDate) {
printFatDate(&Serial, fatDate); printFatDate(&MSerial, fatDate);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** %Print a directory date field. /** %Print a directory date field.
@ -1018,7 +1018,7 @@ void SdBaseFile::printFatDate(Print* pr, uint16_t fatDate) {
* \param[in] fatTime The time field from a directory entry. * \param[in] fatTime The time field from a directory entry.
*/ */
void SdBaseFile::printFatTime(uint16_t fatTime) { void SdBaseFile::printFatTime(uint16_t fatTime) {
printFatTime(&Serial, fatTime); printFatTime(&MSerial, fatTime);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** %Print a directory time field. /** %Print a directory time field.
@ -1044,7 +1044,7 @@ void SdBaseFile::printFatTime(Print* pr, uint16_t fatTime) {
bool SdBaseFile::printName() { bool SdBaseFile::printName() {
char name[13]; char name[13];
if (!getFilename(name)) return false; if (!getFilename(name)) return false;
Serial.print(name); MSerial.print(name);
return true; return true;
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------

View file

@ -25,7 +25,9 @@
*/ */
#include <avr/pgmspace.h> #include <avr/pgmspace.h>
#if ARDUINO < 100 #if ARDUINO < 100
#define HardwareSerial_h // trick to disable the standard HWserial
#include <WProgram.h> #include <WProgram.h>
#include "MarlinSerial.h"
#else // ARDUINO #else // ARDUINO
#include <Arduino.h> #include <Arduino.h>
#endif // ARDUINO #endif // ARDUINO

View file

@ -62,7 +62,7 @@ void SdFatUtil::println_P(Print* pr, PGM_P str) {
* \param[in] str Pointer to string stored in flash memory. * \param[in] str Pointer to string stored in flash memory.
*/ */
void SdFatUtil::SerialPrint_P(PGM_P str) { void SdFatUtil::SerialPrint_P(PGM_P str) {
print_P(&Serial, str); print_P(&MSerial, str);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** %Print a string in flash memory to Serial followed by a CR/LF. /** %Print a string in flash memory to Serial followed by a CR/LF.
@ -70,5 +70,5 @@ void SdFatUtil::SerialPrint_P(PGM_P str) {
* \param[in] str Pointer to string stored in flash memory. * \param[in] str Pointer to string stored in flash memory.
*/ */
void SdFatUtil::SerialPrintln_P(PGM_P str) { void SdFatUtil::SerialPrintln_P(PGM_P str) {
println_P(&Serial, str); println_P(&MSerial, str);
} }

View file

@ -1,46 +1,48 @@
/* Arduino SdFat Library /* Arduino SdFat Library
* Copyright (C) 2008 by William Greiman * Copyright (C) 2008 by William Greiman
* *
* This file is part of the Arduino SdFat Library * This file is part of the Arduino SdFat Library
* *
* This Library is free software: you can redistribute it and/or modify * This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or * the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version. * (at your option) any later version.
* *
* This Library is distributed in the hope that it will be useful, * This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see * along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>. * <http://www.gnu.org/licenses/>.
*/ */
#ifndef SdFatUtil_h #ifndef SdFatUtil_h
#define SdFatUtil_h #define SdFatUtil_h
/** /**
* \file * \file
* \brief Useful utility functions. * \brief Useful utility functions.
*/ */
#include <avr/pgmspace.h> #include <avr/pgmspace.h>
#if ARDUINO < 100 #if ARDUINO < 100
#include <WProgram.h> #define HardwareSerial_h // trick to disable the standard HWserial
#else // ARDUINO #include <WProgram.h>
#include <Arduino.h> #include "MarlinSerial.h"
#endif // ARDUINO #else // ARDUINO
/** Store and print a string in flash memory.*/ #include <Arduino.h>
#define PgmPrint(x) SerialPrint_P(PSTR(x)) #endif // ARDUINO
/** Store and print a string in flash memory followed by a CR/LF.*/ /** Store and print a string in flash memory.*/
#define PgmPrintln(x) SerialPrintln_P(PSTR(x)) #define PgmPrint(x) SerialPrint_P(PSTR(x))
/** Store and print a string in flash memory followed by a CR/LF.*/
namespace SdFatUtil { #define PgmPrintln(x) SerialPrintln_P(PSTR(x))
int FreeRam();
void print_P(Print* pr, PGM_P str); namespace SdFatUtil {
void println_P(Print* pr, PGM_P str); int FreeRam();
void SerialPrint_P(PGM_P str); void print_P(Print* pr, PGM_P str);
void SerialPrintln_P(PGM_P str); void println_P(Print* pr, PGM_P str);
} void SerialPrint_P(PGM_P str);
void SerialPrintln_P(PGM_P str);
using namespace SdFatUtil; // NOLINT }
using namespace SdFatUtil; // NOLINT
#endif // #define SdFatUtil_h #endif // #define SdFatUtil_h

View file

@ -27,7 +27,7 @@
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each // The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in settings.mm_per_arc_segment. // segment is configured in settings.mm_per_arc_segment.
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise) uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
{ {
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled(); // int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc // plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
@ -123,11 +123,11 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
arc_target[axis_1] = center_axis1 + r_axis1; arc_target[axis_1] = center_axis1 + r_axis1;
arc_target[axis_linear] += linear_per_segment; arc_target[axis_linear] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment; arc_target[E_AXIS] += extruder_per_segment;
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate); plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder);
} }
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate); plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
// plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled); // plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
} }

View file

@ -27,6 +27,6 @@
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used // the direction of helical travel, radius == circle radius, isclockwise boolean. Used
// for vector transformation direction. // for vector transformation direction.
void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1, void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1,
unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise); unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise, uint8_t extruder);
#endif #endif

View file

@ -451,7 +451,7 @@ float junction_deviation = 0.1;
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters. // calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate) void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
{ {
// Calculate the buffer head after we push this byte // Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head); int next_buffer_head = next_block_index(block_buffer_head);
@ -527,12 +527,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
else { else {
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate; if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
} }
#ifdef SLOWDOWN #ifdef SLOWDOWN
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5)) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
#endif #endif
/* /*

View file

@ -66,7 +66,7 @@ void plan_init();
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in // Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
// millimaters. Feed rate specifies the speed of the motion. // millimaters. Feed rate specifies the speed of the motion.
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate); void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
// Set position. Used for G92 instructions. // Set position. Used for G92 instructions.
void plan_set_position(const float &x, const float &y, const float &z, const float &e); void plan_set_position(const float &x, const float &y, const float &z, const float &e);

View file

@ -52,7 +52,7 @@ static long counter_x, // Counter variables for the bresenham line tracer
counter_y, counter_y,
counter_z, counter_z,
counter_e; counter_e;
static unsigned long step_events_completed; // The number of step events executed in the current block volatile static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE #ifdef ADVANCE
static long advance_rate, advance, final_advance = 0; static long advance_rate, advance, final_advance = 0;
static short old_advance = 0; static short old_advance = 0;
@ -63,6 +63,7 @@ static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point static unsigned short acc_step_rate; // needed for deccelaration start point
static char step_loops; static char step_loops;
static unsigned short OCR1A_nominal;
volatile long endstops_trigsteps[3]={0,0,0}; volatile long endstops_trigsteps[3]={0,0,0};
volatile long endstops_stepsTotal,endstops_stepsDone; volatile long endstops_stepsTotal,endstops_stepsDone;
@ -77,10 +78,6 @@ static bool old_y_max_endstop=false;
static bool old_z_min_endstop=false; static bool old_z_min_endstop=false;
static bool old_z_max_endstop=false; static bool old_z_max_endstop=false;
static bool busy_error=false;
unsigned short OCR1A_error=12345;
unsigned short OCR1A_nominal;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
@ -164,15 +161,6 @@ asm volatile ( \
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A) #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
void checkStepperErrors()
{
if(busy_error) {
SERIAL_ERROR_START
SERIAL_ERROR(OCR1A_error);
SERIAL_ERRORLNPGM(" ISR overtaking itself.");
busy_error = false;
}
}
void checkHitEndstops() void checkHitEndstops()
{ {
@ -255,7 +243,7 @@ inline unsigned short calc_timer(unsigned short step_rate) {
timer = (unsigned short)pgm_read_word_near(table_address); timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
} }
if(timer < 100) { timer = 100; Serial.print("Steprate to high : "); Serial.println(step_rate); }//(20kHz this should never happen) if(timer < 100) { timer = 100; MSerial.print("Steprate to high : "); MSerial.println(step_rate); }//(20kHz this should never happen)
return timer; return timer;
} }
@ -277,17 +265,7 @@ inline void trapezoid_generator_reset() {
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) ISR(TIMER1_COMPA_vect)
{ {
if(busy){
OCR1A_error = OCR1A;
busy_error = true;
OCR1A = 30000;
return;
} // The busy-flag is used to avoid reentering this interrupt
busy = true;
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
// If there is no current block, attempt to pop one from the buffer // If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) { if (current_block == NULL) {
// Anything in the buffer? // Anything in the buffer?
@ -304,7 +282,7 @@ ISR(TIMER1_COMPA_vect)
// #endif // #endif
} }
else { else {
// DISABLE_STEPPER_DRIVER_INTERRUPT(); OCR1A=2000; // 1kHz.
} }
} }
@ -404,8 +382,8 @@ ISR(TIMER1_COMPA_vect)
count_direction[E_AXIS]=-1; count_direction[E_AXIS]=-1;
} }
#endif //!ADVANCE #endif //!ADVANCE
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
MSerial.checkRx();
/* /*
counter_e += current_block->steps_e; counter_e += current_block->steps_e;
if (counter_e > 0) { if (counter_e > 0) {
@ -470,6 +448,7 @@ ISR(TIMER1_COMPA_vect)
unsigned short timer; unsigned short timer;
unsigned short step_rate; unsigned short step_rate;
if (step_events_completed <= current_block->accelerate_until) { if (step_events_completed <= current_block->accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate; acc_step_rate += current_block->initial_rate;
@ -519,8 +498,6 @@ ISR(TIMER1_COMPA_vect)
plan_discard_current_block(); plan_discard_current_block();
} }
} }
cli(); // disable interrupts
busy=false;
} }
#ifdef ADVANCE #ifdef ADVANCE