Removed interrupt nesting in the stepper ISR.
Add serial checkRx in stepper ISR. Copied HardwareSerial to MarlinSerial (Needed for checkRx).
This commit is contained in:
parent
aad4b75b94
commit
f75f426dfa
16 changed files with 1007 additions and 754 deletions
|
@ -232,7 +232,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
|||
|
||||
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
|
||||
#define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this
|
||||
#define DEFAULT_XYJERK 30.0 // (mm/sec)
|
||||
#define DEFAULT_XYJERK 20.0 // (mm/sec)
|
||||
#define DEFAULT_ZJERK 0.4 // (mm/sec)
|
||||
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
#include "Marlin.h"
|
||||
#include "planner.h"
|
||||
#include "temperature.h"
|
||||
|
||||
#include <EEPROM.h>
|
||||
|
||||
template <class T> int EEPROM_writeAnything(int &ee, const T& value)
|
||||
|
|
|
@ -3,10 +3,12 @@
|
|||
|
||||
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
|
||||
// Licence: GPL
|
||||
#define HardwareSerial_h // trick to disable the standard HWserial
|
||||
#include <WProgram.h>
|
||||
#include "fastio.h"
|
||||
#include <avr/pgmspace.h>
|
||||
#include "Configuration.h"
|
||||
#include "MarlinSerial.h"
|
||||
|
||||
//#define SERIAL_ECHO(x) Serial << "echo: " << x;
|
||||
//#define SERIAL_ECHOLN(x) Serial << "echo: "<<x<<endl;
|
||||
|
@ -17,10 +19,10 @@
|
|||
|
||||
|
||||
|
||||
#define SERIAL_PROTOCOL(x) Serial.print(x);
|
||||
#define SERIAL_PROTOCOL(x) MSerial.print(x);
|
||||
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x));
|
||||
#define SERIAL_PROTOCOLLN(x) {Serial.print(x);Serial.write('\n');}
|
||||
#define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(PSTR(x));Serial.write('\n');}
|
||||
#define SERIAL_PROTOCOLLN(x) {MSerial.print(x);MSerial.write('\n');}
|
||||
#define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(PSTR(x));MSerial.write('\n');}
|
||||
|
||||
const char errormagic[] PROGMEM ="Error:";
|
||||
const char echomagic[] PROGMEM ="echo:";
|
||||
|
@ -46,7 +48,7 @@ inline void serialprintPGM(const char *str)
|
|||
char ch=pgm_read_byte(str);
|
||||
while(ch)
|
||||
{
|
||||
Serial.write(ch);
|
||||
MSerial.write(ch);
|
||||
ch=pgm_read_byte(++str);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -176,6 +176,7 @@ static unsigned long stoptime=0;
|
|||
|
||||
static uint8_t tmp_extruder;
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//=============================ROUTINES=============================
|
||||
//===========================================================================
|
||||
|
@ -199,13 +200,6 @@ extern "C"{
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//adds an command to the main command buffer
|
||||
//thats really done in a non-safe way.
|
||||
//needs overworking someday
|
||||
|
@ -226,7 +220,7 @@ void enquecommand(const char *cmd)
|
|||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(BAUDRATE);
|
||||
MSerial.begin(BAUDRATE);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(VERSION_STRING);
|
||||
SERIAL_PROTOCOLLNPGM("start");
|
||||
|
@ -289,15 +283,14 @@ void loop()
|
|||
manage_heater();
|
||||
manage_inactivity(1);
|
||||
checkHitEndstops();
|
||||
checkStepperErrors();
|
||||
LCD_STATUS;
|
||||
}
|
||||
|
||||
|
||||
inline void get_command()
|
||||
{
|
||||
while( Serial.available() > 0 && buflen < BUFSIZE) {
|
||||
serial_char = Serial.read();
|
||||
while( MSerial.available() > 0 && buflen < BUFSIZE) {
|
||||
serial_char = MSerial.read();
|
||||
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
|
||||
{
|
||||
if(!serial_count) return; //if empty line
|
||||
|
@ -1039,7 +1032,7 @@ inline void process_commands()
|
|||
void FlushSerialRequestResend()
|
||||
{
|
||||
//char cmdbuffer[bufindr][100]="Resend:";
|
||||
Serial.flush();
|
||||
MSerial.flush();
|
||||
SERIAL_PROTOCOLPGM("Resend:");
|
||||
SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
||||
ClearToSend();
|
||||
|
@ -1088,7 +1081,7 @@ void prepare_move()
|
|||
if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
|
||||
}
|
||||
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
|
@ -1098,7 +1091,7 @@ void prepare_arc_move(char isclockwise) {
|
|||
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
||||
|
||||
// Trace the arc
|
||||
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise);
|
||||
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
|
||||
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
|
@ -1108,10 +1101,6 @@ void prepare_arc_move(char isclockwise) {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void manage_inactivity(byte debug)
|
||||
{
|
||||
if( (millis()-previous_millis_cmd) > max_inactive_time )
|
||||
|
|
213
Marlin/MarlinSerial.cpp
Normal file
213
Marlin/MarlinSerial.cpp
Normal file
|
@ -0,0 +1,213 @@
|
|||
/*
|
||||
HardwareSerial.cpp - Hardware serial library for Wiring
|
||||
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
Modified 23 November 2006 by David A. Mellis
|
||||
Modified 28 September 2010 by Mark Sproul
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <inttypes.h>
|
||||
#include "wiring.h"
|
||||
#include "wiring_private.h"
|
||||
|
||||
// this next line disables the entire HardwareSerial.cpp,
|
||||
// this is so I can support Attiny series and any other chip without a uart
|
||||
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)
|
||||
|
||||
#include "MarlinSerial.h"
|
||||
|
||||
// Define constants and variables for buffering incoming serial data. We're
|
||||
// using a ring buffer (I think), in which rx_buffer_head is the index of the
|
||||
// location to which to write the next incoming character and rx_buffer_tail
|
||||
// is the index of the location from which to read.
|
||||
#define RX_BUFFER_SIZE 128
|
||||
|
||||
struct ring_buffer
|
||||
{
|
||||
unsigned char buffer[RX_BUFFER_SIZE];
|
||||
int head;
|
||||
int tail;
|
||||
};
|
||||
|
||||
#if defined(UBRRH) || defined(UBRR0H)
|
||||
ring_buffer rx_buffer = { { 0 }, 0, 0 };
|
||||
#endif
|
||||
|
||||
|
||||
inline void store_char(unsigned char c, ring_buffer *rx_buffer)
|
||||
{
|
||||
int i = (unsigned int)(rx_buffer->head + 1) % RX_BUFFER_SIZE;
|
||||
|
||||
// if we should be storing the received character into the location
|
||||
// just before the tail (meaning that the head would advance to the
|
||||
// current location of the tail), we're about to overflow the buffer
|
||||
// and so we don't write the character or advance the head.
|
||||
if (i != rx_buffer->tail) {
|
||||
rx_buffer->buffer[rx_buffer->head] = c;
|
||||
rx_buffer->head = i;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//#elif defined(SIG_USART_RECV)
|
||||
#if defined(USART0_RX_vect)
|
||||
// fixed by Mark Sproul this is on the 644/644p
|
||||
//SIGNAL(SIG_USART_RECV)
|
||||
SIGNAL(USART0_RX_vect)
|
||||
{
|
||||
#if defined(UDR0)
|
||||
unsigned char c = UDR0;
|
||||
#elif defined(UDR)
|
||||
unsigned char c = UDR; // atmega8, atmega32
|
||||
#else
|
||||
#error UDR not defined
|
||||
#endif
|
||||
store_char(c, &rx_buffer);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Constructors ////////////////////////////////////////////////////////////////
|
||||
|
||||
MarlinSerial::MarlinSerial(ring_buffer *rx_buffer,
|
||||
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
|
||||
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
|
||||
volatile uint8_t *udr,
|
||||
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udre, uint8_t u2x)
|
||||
{
|
||||
_rx_buffer = rx_buffer;
|
||||
_ubrrh = ubrrh;
|
||||
_ubrrl = ubrrl;
|
||||
_ucsra = ucsra;
|
||||
_ucsrb = ucsrb;
|
||||
_udr = udr;
|
||||
_rxen = rxen;
|
||||
_txen = txen;
|
||||
_rxcie = rxcie;
|
||||
_udre = udre;
|
||||
_u2x = u2x;
|
||||
}
|
||||
|
||||
// Public Methods //////////////////////////////////////////////////////////////
|
||||
|
||||
void MarlinSerial::begin(long baud)
|
||||
{
|
||||
uint16_t baud_setting;
|
||||
bool use_u2x = true;
|
||||
|
||||
#if F_CPU == 16000000UL
|
||||
// hardcoded exception for compatibility with the bootloader shipped
|
||||
// with the Duemilanove and previous boards and the firmware on the 8U2
|
||||
// on the Uno and Mega 2560.
|
||||
if (baud == 57600) {
|
||||
use_u2x = false;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (use_u2x) {
|
||||
*_ucsra = 1 << _u2x;
|
||||
baud_setting = (F_CPU / 4 / baud - 1) / 2;
|
||||
} else {
|
||||
*_ucsra = 0;
|
||||
baud_setting = (F_CPU / 8 / baud - 1) / 2;
|
||||
}
|
||||
|
||||
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
|
||||
*_ubrrh = baud_setting >> 8;
|
||||
*_ubrrl = baud_setting;
|
||||
|
||||
sbi(*_ucsrb, _rxen);
|
||||
sbi(*_ucsrb, _txen);
|
||||
sbi(*_ucsrb, _rxcie);
|
||||
}
|
||||
|
||||
void MarlinSerial::end()
|
||||
{
|
||||
cbi(*_ucsrb, _rxen);
|
||||
cbi(*_ucsrb, _txen);
|
||||
cbi(*_ucsrb, _rxcie);
|
||||
}
|
||||
|
||||
int MarlinSerial::available(void)
|
||||
{
|
||||
return (unsigned int)(RX_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % RX_BUFFER_SIZE;
|
||||
}
|
||||
|
||||
int MarlinSerial::peek(void)
|
||||
{
|
||||
if (_rx_buffer->head == _rx_buffer->tail) {
|
||||
return -1;
|
||||
} else {
|
||||
return _rx_buffer->buffer[_rx_buffer->tail];
|
||||
}
|
||||
}
|
||||
|
||||
int MarlinSerial::read(void)
|
||||
{
|
||||
// if the head isn't ahead of the tail, we don't have any characters
|
||||
if (_rx_buffer->head == _rx_buffer->tail) {
|
||||
return -1;
|
||||
} else {
|
||||
unsigned char c = _rx_buffer->buffer[_rx_buffer->tail];
|
||||
_rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % RX_BUFFER_SIZE;
|
||||
return c;
|
||||
}
|
||||
}
|
||||
|
||||
void MarlinSerial::flush()
|
||||
{
|
||||
// don't reverse this or there may be problems if the RX interrupt
|
||||
// occurs after reading the value of rx_buffer_head but before writing
|
||||
// the value to rx_buffer_tail; the previous value of rx_buffer_head
|
||||
// may be written to rx_buffer_tail, making it appear as if the buffer
|
||||
// don't reverse this or there may be problems if the RX interrupt
|
||||
// occurs after reading the value of rx_buffer_head but before writing
|
||||
// the value to rx_buffer_tail; the previous value of rx_buffer_head
|
||||
// may be written to rx_buffer_tail, making it appear as if the buffer
|
||||
// were full, not empty.
|
||||
_rx_buffer->head = _rx_buffer->tail;
|
||||
}
|
||||
|
||||
void MarlinSerial::write(uint8_t c)
|
||||
{
|
||||
while (!((*_ucsra) & (1 << _udre)))
|
||||
;
|
||||
|
||||
*_udr = c;
|
||||
}
|
||||
|
||||
void MarlinSerial::checkRx()
|
||||
{
|
||||
if((UCSR0A & (1<<RXC0)) != 0) {
|
||||
unsigned char c = UDR0;
|
||||
store_char(c, &rx_buffer);
|
||||
}
|
||||
}
|
||||
|
||||
// Preinstantiate Objects //////////////////////////////////////////////////////
|
||||
|
||||
#if defined(UBRR0H) && defined(UBRR0L)
|
||||
MarlinSerial MSerial(&rx_buffer, &UBRR0H, &UBRR0L, &UCSR0A, &UCSR0B, &UDR0, RXEN0, TXEN0, RXCIE0, UDRE0, U2X0);
|
||||
#else
|
||||
#error no serial port defined (port 0)
|
||||
#endif
|
||||
|
||||
|
||||
#endif // whole file
|
||||
|
66
Marlin/MarlinSerial.h
Normal file
66
Marlin/MarlinSerial.h
Normal file
|
@ -0,0 +1,66 @@
|
|||
/*
|
||||
HardwareSerial.h - Hardware serial library for Wiring
|
||||
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
Modified 28 September 2010 by Mark Sproul
|
||||
*/
|
||||
|
||||
#ifndef MarlinSerial_h
|
||||
#define MarlinSerial_h
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
#include "Stream.h"
|
||||
|
||||
struct ring_buffer;
|
||||
|
||||
class MarlinSerial : public Stream
|
||||
{
|
||||
private:
|
||||
ring_buffer *_rx_buffer;
|
||||
volatile uint8_t *_ubrrh;
|
||||
volatile uint8_t *_ubrrl;
|
||||
volatile uint8_t *_ucsra;
|
||||
volatile uint8_t *_ucsrb;
|
||||
volatile uint8_t *_udr;
|
||||
uint8_t _rxen;
|
||||
uint8_t _txen;
|
||||
uint8_t _rxcie;
|
||||
uint8_t _udre;
|
||||
uint8_t _u2x;
|
||||
public:
|
||||
MarlinSerial(ring_buffer *rx_buffer,
|
||||
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
|
||||
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
|
||||
volatile uint8_t *udr,
|
||||
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udre, uint8_t u2x);
|
||||
void begin(long);
|
||||
void end();
|
||||
virtual int available(void);
|
||||
virtual int peek(void);
|
||||
virtual int read(void);
|
||||
virtual void flush(void);
|
||||
virtual void write(uint8_t);
|
||||
virtual void checkRx(void);
|
||||
using Print::write; // pull in write(str) and write(buf, size) from Print
|
||||
};
|
||||
|
||||
#if defined(UBRRH) || defined(UBRR0H)
|
||||
extern MarlinSerial MSerial;
|
||||
#endif
|
||||
|
||||
#endif
|
1283
Marlin/Sd2Card.cpp
1283
Marlin/Sd2Card.cpp
|
@ -1,642 +1,643 @@
|
|||
/* Arduino Sd2Card Library
|
||||
* Copyright (C) 2009 by William Greiman
|
||||
*
|
||||
* This file is part of the Arduino Sd2Card Library
|
||||
*
|
||||
* This Library is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This Library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with the Arduino Sd2Card Library. If not, see
|
||||
* <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#if ARDUINO < 100
|
||||
#include <WProgram.h>
|
||||
#else // ARDUINO
|
||||
#include <Arduino.h>
|
||||
#endif // ARDUINO
|
||||
#include "Sd2Card.h"
|
||||
//------------------------------------------------------------------------------
|
||||
#ifndef SOFTWARE_SPI
|
||||
// functions for hardware SPI
|
||||
//------------------------------------------------------------------------------
|
||||
// make sure SPCR rate is in expected bits
|
||||
#if (SPR0 != 0 || SPR1 != 1)
|
||||
#error unexpected SPCR bits
|
||||
#endif
|
||||
/**
|
||||
* Initialize hardware SPI
|
||||
* Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6]
|
||||
*/
|
||||
static void spiInit(uint8_t spiRate) {
|
||||
// See avr processor documentation
|
||||
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1);
|
||||
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI receive a byte */
|
||||
static uint8_t spiRec() {
|
||||
SPDR = 0XFF;
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
return SPDR;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI read data - only one call so force inline */
|
||||
static inline __attribute__((always_inline))
|
||||
void spiRead(uint8_t* buf, uint16_t nbyte) {
|
||||
if (nbyte-- == 0) return;
|
||||
SPDR = 0XFF;
|
||||
for (uint16_t i = 0; i < nbyte; i++) {
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
buf[i] = SPDR;
|
||||
SPDR = 0XFF;
|
||||
}
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
buf[nbyte] = SPDR;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI send a byte */
|
||||
static void spiSend(uint8_t b) {
|
||||
SPDR = b;
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI send block - only one call so force inline */
|
||||
static inline __attribute__((always_inline))
|
||||
void spiSendBlock(uint8_t token, const uint8_t* buf) {
|
||||
SPDR = token;
|
||||
for (uint16_t i = 0; i < 512; i += 2) {
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
SPDR = buf[i];
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
SPDR = buf[i + 1];
|
||||
}
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
#else // SOFTWARE_SPI
|
||||
//------------------------------------------------------------------------------
|
||||
/** nop to tune soft SPI timing */
|
||||
#define nop asm volatile ("nop\n\t")
|
||||
//------------------------------------------------------------------------------
|
||||
/** Soft SPI receive byte */
|
||||
static uint8_t spiRec() {
|
||||
uint8_t data = 0;
|
||||
// no interrupts during byte receive - about 8 us
|
||||
cli();
|
||||
// output pin high - like sending 0XFF
|
||||
fastDigitalWrite(SPI_MOSI_PIN, HIGH);
|
||||
|
||||
for (uint8_t i = 0; i < 8; i++) {
|
||||
fastDigitalWrite(SPI_SCK_PIN, HIGH);
|
||||
|
||||
// adjust so SCK is nice
|
||||
nop;
|
||||
nop;
|
||||
|
||||
data <<= 1;
|
||||
|
||||
if (fastDigitalRead(SPI_MISO_PIN)) data |= 1;
|
||||
|
||||
fastDigitalWrite(SPI_SCK_PIN, LOW);
|
||||
}
|
||||
// enable interrupts
|
||||
sei();
|
||||
return data;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Soft SPI read data */
|
||||
static void spiRead(uint8_t* buf, uint16_t nbyte) {
|
||||
for (uint16_t i = 0; i < nbyte; i++) {
|
||||
buf[i] = spiRec();
|
||||
}
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Soft SPI send byte */
|
||||
static void spiSend(uint8_t data) {
|
||||
// no interrupts during byte send - about 8 us
|
||||
cli();
|
||||
for (uint8_t i = 0; i < 8; i++) {
|
||||
fastDigitalWrite(SPI_SCK_PIN, LOW);
|
||||
|
||||
fastDigitalWrite(SPI_MOSI_PIN, data & 0X80);
|
||||
|
||||
data <<= 1;
|
||||
|
||||
fastDigitalWrite(SPI_SCK_PIN, HIGH);
|
||||
}
|
||||
// hold SCK high for a few ns
|
||||
nop;
|
||||
nop;
|
||||
nop;
|
||||
nop;
|
||||
|
||||
fastDigitalWrite(SPI_SCK_PIN, LOW);
|
||||
// enable interrupts
|
||||
sei();
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Soft SPI send block */
|
||||
void spiSendBlock(uint8_t token, const uint8_t* buf) {
|
||||
spiSend(token);
|
||||
for (uint16_t i = 0; i < 512; i++) {
|
||||
spiSend(buf[i]);
|
||||
}
|
||||
}
|
||||
#endif // SOFTWARE_SPI
|
||||
//------------------------------------------------------------------------------
|
||||
// send command and return error code. Return zero for OK
|
||||
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
|
||||
// select card
|
||||
chipSelectLow();
|
||||
|
||||
// wait up to 300 ms if busy
|
||||
waitNotBusy(300);
|
||||
|
||||
// send command
|
||||
spiSend(cmd | 0x40);
|
||||
|
||||
// send argument
|
||||
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
|
||||
|
||||
// send CRC
|
||||
uint8_t crc = 0XFF;
|
||||
if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0
|
||||
if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA
|
||||
spiSend(crc);
|
||||
|
||||
// skip stuff byte for stop read
|
||||
if (cmd == CMD12) spiRec();
|
||||
|
||||
// wait for response
|
||||
for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++);
|
||||
return status_;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Determine the size of an SD flash memory card.
|
||||
*
|
||||
* \return The number of 512 byte data blocks in the card
|
||||
* or zero if an error occurs.
|
||||
*/
|
||||
uint32_t Sd2Card::cardSize() {
|
||||
csd_t csd;
|
||||
if (!readCSD(&csd)) return 0;
|
||||
if (csd.v1.csd_ver == 0) {
|
||||
uint8_t read_bl_len = csd.v1.read_bl_len;
|
||||
uint16_t c_size = (csd.v1.c_size_high << 10)
|
||||
| (csd.v1.c_size_mid << 2) | csd.v1.c_size_low;
|
||||
uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1)
|
||||
| csd.v1.c_size_mult_low;
|
||||
return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7);
|
||||
} else if (csd.v2.csd_ver == 1) {
|
||||
uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16)
|
||||
| (csd.v2.c_size_mid << 8) | csd.v2.c_size_low;
|
||||
return (c_size + 1) << 10;
|
||||
} else {
|
||||
error(SD_CARD_ERROR_BAD_CSD);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
void Sd2Card::chipSelectHigh() {
|
||||
digitalWrite(chipSelectPin_, HIGH);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
void Sd2Card::chipSelectLow() {
|
||||
#ifndef SOFTWARE_SPI
|
||||
spiInit(spiRate_);
|
||||
#endif // SOFTWARE_SPI
|
||||
digitalWrite(chipSelectPin_, LOW);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Erase a range of blocks.
|
||||
*
|
||||
* \param[in] firstBlock The address of the first block in the range.
|
||||
* \param[in] lastBlock The address of the last block in the range.
|
||||
*
|
||||
* \note This function requests the SD card to do a flash erase for a
|
||||
* range of blocks. The data on the card after an erase operation is
|
||||
* either 0 or 1, depends on the card vendor. The card must support
|
||||
* single block erase.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
|
||||
csd_t csd;
|
||||
if (!readCSD(&csd)) goto fail;
|
||||
// check for single block erase
|
||||
if (!csd.v1.erase_blk_en) {
|
||||
// erase size mask
|
||||
uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low;
|
||||
if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) {
|
||||
// error card can't erase specified area
|
||||
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
if (type_ != SD_CARD_TYPE_SDHC) {
|
||||
firstBlock <<= 9;
|
||||
lastBlock <<= 9;
|
||||
}
|
||||
if (cardCommand(CMD32, firstBlock)
|
||||
|| cardCommand(CMD33, lastBlock)
|
||||
|| cardCommand(CMD38, 0)) {
|
||||
error(SD_CARD_ERROR_ERASE);
|
||||
goto fail;
|
||||
}
|
||||
if (!waitNotBusy(SD_ERASE_TIMEOUT)) {
|
||||
error(SD_CARD_ERROR_ERASE_TIMEOUT);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Determine if card supports single block erase.
|
||||
*
|
||||
* \return The value one, true, is returned if single block erase is supported.
|
||||
* The value zero, false, is returned if single block erase is not supported.
|
||||
*/
|
||||
bool Sd2Card::eraseSingleBlockEnable() {
|
||||
csd_t csd;
|
||||
return readCSD(&csd) ? csd.v1.erase_blk_en : false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Initialize an SD flash memory card.
|
||||
*
|
||||
* \param[in] sckRateID SPI clock rate selector. See setSckRate().
|
||||
* \param[in] chipSelectPin SD chip select pin number.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure. The reason for failure
|
||||
* can be determined by calling errorCode() and errorData().
|
||||
*/
|
||||
bool Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
|
||||
errorCode_ = type_ = 0;
|
||||
chipSelectPin_ = chipSelectPin;
|
||||
// 16-bit init start time allows over a minute
|
||||
uint16_t t0 = (uint16_t)millis();
|
||||
uint32_t arg;
|
||||
|
||||
// set pin modes
|
||||
pinMode(chipSelectPin_, OUTPUT);
|
||||
chipSelectHigh();
|
||||
pinMode(SPI_MISO_PIN, INPUT);
|
||||
pinMode(SPI_MOSI_PIN, OUTPUT);
|
||||
pinMode(SPI_SCK_PIN, OUTPUT);
|
||||
|
||||
#ifndef SOFTWARE_SPI
|
||||
// SS must be in output mode even it is not chip select
|
||||
pinMode(SS_PIN, OUTPUT);
|
||||
// set SS high - may be chip select for another SPI device
|
||||
#if SET_SPI_SS_HIGH
|
||||
digitalWrite(SS_PIN, HIGH);
|
||||
#endif // SET_SPI_SS_HIGH
|
||||
// set SCK rate for initialization commands
|
||||
spiRate_ = SPI_SD_INIT_RATE;
|
||||
spiInit(spiRate_);
|
||||
#endif // SOFTWARE_SPI
|
||||
|
||||
// must supply min of 74 clock cycles with CS high.
|
||||
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
|
||||
|
||||
// command to go idle in SPI mode
|
||||
while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
|
||||
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
|
||||
error(SD_CARD_ERROR_CMD0);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
// check SD version
|
||||
if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
|
||||
type(SD_CARD_TYPE_SD1);
|
||||
} else {
|
||||
// only need last byte of r7 response
|
||||
for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
|
||||
if (status_ != 0XAA) {
|
||||
error(SD_CARD_ERROR_CMD8);
|
||||
goto fail;
|
||||
}
|
||||
type(SD_CARD_TYPE_SD2);
|
||||
}
|
||||
// initialize card and send host supports SDHC if SD2
|
||||
arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;
|
||||
|
||||
while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
|
||||
// check for timeout
|
||||
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
|
||||
error(SD_CARD_ERROR_ACMD41);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
// if SD2 read OCR register to check for SDHC card
|
||||
if (type() == SD_CARD_TYPE_SD2) {
|
||||
if (cardCommand(CMD58, 0)) {
|
||||
error(SD_CARD_ERROR_CMD58);
|
||||
goto fail;
|
||||
}
|
||||
if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
|
||||
// discard rest of ocr - contains allowed voltage range
|
||||
for (uint8_t i = 0; i < 3; i++) spiRec();
|
||||
}
|
||||
chipSelectHigh();
|
||||
|
||||
#ifndef SOFTWARE_SPI
|
||||
return setSckRate(sckRateID);
|
||||
#else // SOFTWARE_SPI
|
||||
return true;
|
||||
#endif // SOFTWARE_SPI
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Read a 512 byte block from an SD card.
|
||||
*
|
||||
* \param[in] blockNumber Logical block to be read.
|
||||
* \param[out] dst Pointer to the location that will receive the data.
|
||||
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
|
||||
// use address if not SDHC card
|
||||
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
||||
if (cardCommand(CMD17, blockNumber)) {
|
||||
error(SD_CARD_ERROR_CMD17);
|
||||
goto fail;
|
||||
}
|
||||
return readData(dst, 512);
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Read one data block in a multiple block read sequence
|
||||
*
|
||||
* \param[in] dst Pointer to the location for the data to be read.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::readData(uint8_t *dst) {
|
||||
chipSelectLow();
|
||||
return readData(dst, 512);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
bool Sd2Card::readData(uint8_t* dst, uint16_t count) {
|
||||
// wait for start block token
|
||||
uint16_t t0 = millis();
|
||||
while ((status_ = spiRec()) == 0XFF) {
|
||||
if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) {
|
||||
error(SD_CARD_ERROR_READ_TIMEOUT);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
if (status_ != DATA_START_BLOCK) {
|
||||
error(SD_CARD_ERROR_READ);
|
||||
goto fail;
|
||||
}
|
||||
// transfer data
|
||||
spiRead(dst, count);
|
||||
|
||||
// discard CRC
|
||||
spiRec();
|
||||
spiRec();
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** read CID or CSR register */
|
||||
bool Sd2Card::readRegister(uint8_t cmd, void* buf) {
|
||||
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
|
||||
if (cardCommand(cmd, 0)) {
|
||||
error(SD_CARD_ERROR_READ_REG);
|
||||
goto fail;
|
||||
}
|
||||
return readData(dst, 16);
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Start a read multiple blocks sequence.
|
||||
*
|
||||
* \param[in] blockNumber Address of first block in sequence.
|
||||
*
|
||||
* \note This function is used with readData() and readStop() for optimized
|
||||
* multiple block reads. SPI chipSelect must be low for the entire sequence.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::readStart(uint32_t blockNumber) {
|
||||
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
||||
if (cardCommand(CMD18, blockNumber)) {
|
||||
error(SD_CARD_ERROR_CMD18);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** End a read multiple blocks sequence.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::readStop() {
|
||||
chipSelectLow();
|
||||
if (cardCommand(CMD12, 0)) {
|
||||
error(SD_CARD_ERROR_CMD12);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Set the SPI clock rate.
|
||||
*
|
||||
* \param[in] sckRateID A value in the range [0, 6].
|
||||
*
|
||||
* The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum
|
||||
* SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128
|
||||
* for \a scsRateID = 6.
|
||||
*
|
||||
* \return The value one, true, is returned for success and the value zero,
|
||||
* false, is returned for an invalid value of \a sckRateID.
|
||||
*/
|
||||
bool Sd2Card::setSckRate(uint8_t sckRateID) {
|
||||
if (sckRateID > 6) {
|
||||
error(SD_CARD_ERROR_SCK_RATE);
|
||||
return false;
|
||||
}
|
||||
spiRate_ = sckRateID;
|
||||
return true;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// wait for card to go not busy
|
||||
bool Sd2Card::waitNotBusy(uint16_t timeoutMillis) {
|
||||
uint16_t t0 = millis();
|
||||
while (spiRec() != 0XFF) {
|
||||
if (((uint16_t)millis() - t0) >= timeoutMillis) goto fail;
|
||||
}
|
||||
return true;
|
||||
|
||||
fail:
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Writes a 512 byte block to an SD card.
|
||||
*
|
||||
* \param[in] blockNumber Logical block to be written.
|
||||
* \param[in] src Pointer to the location of the data to be written.
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
|
||||
// use address if not SDHC card
|
||||
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
||||
if (cardCommand(CMD24, blockNumber)) {
|
||||
error(SD_CARD_ERROR_CMD24);
|
||||
goto fail;
|
||||
}
|
||||
if (!writeData(DATA_START_BLOCK, src)) goto fail;
|
||||
|
||||
// wait for flash programming to complete
|
||||
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
|
||||
error(SD_CARD_ERROR_WRITE_TIMEOUT);
|
||||
goto fail;
|
||||
}
|
||||
// response is r2 so get and check two bytes for nonzero
|
||||
if (cardCommand(CMD13, 0) || spiRec()) {
|
||||
error(SD_CARD_ERROR_WRITE_PROGRAMMING);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Write one data block in a multiple block write sequence
|
||||
* \param[in] src Pointer to the location of the data to be written.
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::writeData(const uint8_t* src) {
|
||||
chipSelectLow();
|
||||
// wait for previous write to finish
|
||||
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
|
||||
if (!writeData(WRITE_MULTIPLE_TOKEN, src)) goto fail;
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
error(SD_CARD_ERROR_WRITE_MULTIPLE);
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// send one block of data for write block or write multiple blocks
|
||||
bool Sd2Card::writeData(uint8_t token, const uint8_t* src) {
|
||||
spiSendBlock(token, src);
|
||||
|
||||
spiSend(0xff); // dummy crc
|
||||
spiSend(0xff); // dummy crc
|
||||
|
||||
status_ = spiRec();
|
||||
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
|
||||
error(SD_CARD_ERROR_WRITE);
|
||||
goto fail;
|
||||
}
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Start a write multiple blocks sequence.
|
||||
*
|
||||
* \param[in] blockNumber Address of first block in sequence.
|
||||
* \param[in] eraseCount The number of blocks to be pre-erased.
|
||||
*
|
||||
* \note This function is used with writeData() and writeStop()
|
||||
* for optimized multiple block writes.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
|
||||
// send pre-erase count
|
||||
if (cardAcmd(ACMD23, eraseCount)) {
|
||||
error(SD_CARD_ERROR_ACMD23);
|
||||
goto fail;
|
||||
}
|
||||
// use address if not SDHC card
|
||||
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
||||
if (cardCommand(CMD25, blockNumber)) {
|
||||
error(SD_CARD_ERROR_CMD25);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** End a write multiple blocks sequence.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::writeStop() {
|
||||
chipSelectLow();
|
||||
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
|
||||
spiSend(STOP_TRAN_TOKEN);
|
||||
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
error(SD_CARD_ERROR_STOP_TRAN);
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
/* Arduino Sd2Card Library
|
||||
* Copyright (C) 2009 by William Greiman
|
||||
*
|
||||
* This file is part of the Arduino Sd2Card Library
|
||||
*
|
||||
* This Library is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This Library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with the Arduino Sd2Card Library. If not, see
|
||||
* <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#if ARDUINO < 100
|
||||
#define HardwareSerial_h // trick to disable the standard HWserial
|
||||
#include <WProgram.h>
|
||||
#else // ARDUINO
|
||||
#include <Arduino.h>
|
||||
#endif // ARDUINO
|
||||
#include "Sd2Card.h"
|
||||
//------------------------------------------------------------------------------
|
||||
#ifndef SOFTWARE_SPI
|
||||
// functions for hardware SPI
|
||||
//------------------------------------------------------------------------------
|
||||
// make sure SPCR rate is in expected bits
|
||||
#if (SPR0 != 0 || SPR1 != 1)
|
||||
#error unexpected SPCR bits
|
||||
#endif
|
||||
/**
|
||||
* Initialize hardware SPI
|
||||
* Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6]
|
||||
*/
|
||||
static void spiInit(uint8_t spiRate) {
|
||||
// See avr processor documentation
|
||||
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1);
|
||||
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI receive a byte */
|
||||
static uint8_t spiRec() {
|
||||
SPDR = 0XFF;
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
return SPDR;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI read data - only one call so force inline */
|
||||
static inline __attribute__((always_inline))
|
||||
void spiRead(uint8_t* buf, uint16_t nbyte) {
|
||||
if (nbyte-- == 0) return;
|
||||
SPDR = 0XFF;
|
||||
for (uint16_t i = 0; i < nbyte; i++) {
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
buf[i] = SPDR;
|
||||
SPDR = 0XFF;
|
||||
}
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
buf[nbyte] = SPDR;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI send a byte */
|
||||
static void spiSend(uint8_t b) {
|
||||
SPDR = b;
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI send block - only one call so force inline */
|
||||
static inline __attribute__((always_inline))
|
||||
void spiSendBlock(uint8_t token, const uint8_t* buf) {
|
||||
SPDR = token;
|
||||
for (uint16_t i = 0; i < 512; i += 2) {
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
SPDR = buf[i];
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
SPDR = buf[i + 1];
|
||||
}
|
||||
while (!(SPSR & (1 << SPIF)));
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
#else // SOFTWARE_SPI
|
||||
//------------------------------------------------------------------------------
|
||||
/** nop to tune soft SPI timing */
|
||||
#define nop asm volatile ("nop\n\t")
|
||||
//------------------------------------------------------------------------------
|
||||
/** Soft SPI receive byte */
|
||||
static uint8_t spiRec() {
|
||||
uint8_t data = 0;
|
||||
// no interrupts during byte receive - about 8 us
|
||||
cli();
|
||||
// output pin high - like sending 0XFF
|
||||
fastDigitalWrite(SPI_MOSI_PIN, HIGH);
|
||||
|
||||
for (uint8_t i = 0; i < 8; i++) {
|
||||
fastDigitalWrite(SPI_SCK_PIN, HIGH);
|
||||
|
||||
// adjust so SCK is nice
|
||||
nop;
|
||||
nop;
|
||||
|
||||
data <<= 1;
|
||||
|
||||
if (fastDigitalRead(SPI_MISO_PIN)) data |= 1;
|
||||
|
||||
fastDigitalWrite(SPI_SCK_PIN, LOW);
|
||||
}
|
||||
// enable interrupts
|
||||
sei();
|
||||
return data;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Soft SPI read data */
|
||||
static void spiRead(uint8_t* buf, uint16_t nbyte) {
|
||||
for (uint16_t i = 0; i < nbyte; i++) {
|
||||
buf[i] = spiRec();
|
||||
}
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Soft SPI send byte */
|
||||
static void spiSend(uint8_t data) {
|
||||
// no interrupts during byte send - about 8 us
|
||||
cli();
|
||||
for (uint8_t i = 0; i < 8; i++) {
|
||||
fastDigitalWrite(SPI_SCK_PIN, LOW);
|
||||
|
||||
fastDigitalWrite(SPI_MOSI_PIN, data & 0X80);
|
||||
|
||||
data <<= 1;
|
||||
|
||||
fastDigitalWrite(SPI_SCK_PIN, HIGH);
|
||||
}
|
||||
// hold SCK high for a few ns
|
||||
nop;
|
||||
nop;
|
||||
nop;
|
||||
nop;
|
||||
|
||||
fastDigitalWrite(SPI_SCK_PIN, LOW);
|
||||
// enable interrupts
|
||||
sei();
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Soft SPI send block */
|
||||
void spiSendBlock(uint8_t token, const uint8_t* buf) {
|
||||
spiSend(token);
|
||||
for (uint16_t i = 0; i < 512; i++) {
|
||||
spiSend(buf[i]);
|
||||
}
|
||||
}
|
||||
#endif // SOFTWARE_SPI
|
||||
//------------------------------------------------------------------------------
|
||||
// send command and return error code. Return zero for OK
|
||||
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
|
||||
// select card
|
||||
chipSelectLow();
|
||||
|
||||
// wait up to 300 ms if busy
|
||||
waitNotBusy(300);
|
||||
|
||||
// send command
|
||||
spiSend(cmd | 0x40);
|
||||
|
||||
// send argument
|
||||
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
|
||||
|
||||
// send CRC
|
||||
uint8_t crc = 0XFF;
|
||||
if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0
|
||||
if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA
|
||||
spiSend(crc);
|
||||
|
||||
// skip stuff byte for stop read
|
||||
if (cmd == CMD12) spiRec();
|
||||
|
||||
// wait for response
|
||||
for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++);
|
||||
return status_;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Determine the size of an SD flash memory card.
|
||||
*
|
||||
* \return The number of 512 byte data blocks in the card
|
||||
* or zero if an error occurs.
|
||||
*/
|
||||
uint32_t Sd2Card::cardSize() {
|
||||
csd_t csd;
|
||||
if (!readCSD(&csd)) return 0;
|
||||
if (csd.v1.csd_ver == 0) {
|
||||
uint8_t read_bl_len = csd.v1.read_bl_len;
|
||||
uint16_t c_size = (csd.v1.c_size_high << 10)
|
||||
| (csd.v1.c_size_mid << 2) | csd.v1.c_size_low;
|
||||
uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1)
|
||||
| csd.v1.c_size_mult_low;
|
||||
return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7);
|
||||
} else if (csd.v2.csd_ver == 1) {
|
||||
uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16)
|
||||
| (csd.v2.c_size_mid << 8) | csd.v2.c_size_low;
|
||||
return (c_size + 1) << 10;
|
||||
} else {
|
||||
error(SD_CARD_ERROR_BAD_CSD);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
void Sd2Card::chipSelectHigh() {
|
||||
digitalWrite(chipSelectPin_, HIGH);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
void Sd2Card::chipSelectLow() {
|
||||
#ifndef SOFTWARE_SPI
|
||||
spiInit(spiRate_);
|
||||
#endif // SOFTWARE_SPI
|
||||
digitalWrite(chipSelectPin_, LOW);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Erase a range of blocks.
|
||||
*
|
||||
* \param[in] firstBlock The address of the first block in the range.
|
||||
* \param[in] lastBlock The address of the last block in the range.
|
||||
*
|
||||
* \note This function requests the SD card to do a flash erase for a
|
||||
* range of blocks. The data on the card after an erase operation is
|
||||
* either 0 or 1, depends on the card vendor. The card must support
|
||||
* single block erase.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
|
||||
csd_t csd;
|
||||
if (!readCSD(&csd)) goto fail;
|
||||
// check for single block erase
|
||||
if (!csd.v1.erase_blk_en) {
|
||||
// erase size mask
|
||||
uint8_t m = (csd.v1.sector_size_high << 1) | csd.v1.sector_size_low;
|
||||
if ((firstBlock & m) != 0 || ((lastBlock + 1) & m) != 0) {
|
||||
// error card can't erase specified area
|
||||
error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
if (type_ != SD_CARD_TYPE_SDHC) {
|
||||
firstBlock <<= 9;
|
||||
lastBlock <<= 9;
|
||||
}
|
||||
if (cardCommand(CMD32, firstBlock)
|
||||
|| cardCommand(CMD33, lastBlock)
|
||||
|| cardCommand(CMD38, 0)) {
|
||||
error(SD_CARD_ERROR_ERASE);
|
||||
goto fail;
|
||||
}
|
||||
if (!waitNotBusy(SD_ERASE_TIMEOUT)) {
|
||||
error(SD_CARD_ERROR_ERASE_TIMEOUT);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Determine if card supports single block erase.
|
||||
*
|
||||
* \return The value one, true, is returned if single block erase is supported.
|
||||
* The value zero, false, is returned if single block erase is not supported.
|
||||
*/
|
||||
bool Sd2Card::eraseSingleBlockEnable() {
|
||||
csd_t csd;
|
||||
return readCSD(&csd) ? csd.v1.erase_blk_en : false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Initialize an SD flash memory card.
|
||||
*
|
||||
* \param[in] sckRateID SPI clock rate selector. See setSckRate().
|
||||
* \param[in] chipSelectPin SD chip select pin number.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure. The reason for failure
|
||||
* can be determined by calling errorCode() and errorData().
|
||||
*/
|
||||
bool Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) {
|
||||
errorCode_ = type_ = 0;
|
||||
chipSelectPin_ = chipSelectPin;
|
||||
// 16-bit init start time allows over a minute
|
||||
uint16_t t0 = (uint16_t)millis();
|
||||
uint32_t arg;
|
||||
|
||||
// set pin modes
|
||||
pinMode(chipSelectPin_, OUTPUT);
|
||||
chipSelectHigh();
|
||||
pinMode(SPI_MISO_PIN, INPUT);
|
||||
pinMode(SPI_MOSI_PIN, OUTPUT);
|
||||
pinMode(SPI_SCK_PIN, OUTPUT);
|
||||
|
||||
#ifndef SOFTWARE_SPI
|
||||
// SS must be in output mode even it is not chip select
|
||||
pinMode(SS_PIN, OUTPUT);
|
||||
// set SS high - may be chip select for another SPI device
|
||||
#if SET_SPI_SS_HIGH
|
||||
digitalWrite(SS_PIN, HIGH);
|
||||
#endif // SET_SPI_SS_HIGH
|
||||
// set SCK rate for initialization commands
|
||||
spiRate_ = SPI_SD_INIT_RATE;
|
||||
spiInit(spiRate_);
|
||||
#endif // SOFTWARE_SPI
|
||||
|
||||
// must supply min of 74 clock cycles with CS high.
|
||||
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
|
||||
|
||||
// command to go idle in SPI mode
|
||||
while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
|
||||
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
|
||||
error(SD_CARD_ERROR_CMD0);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
// check SD version
|
||||
if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
|
||||
type(SD_CARD_TYPE_SD1);
|
||||
} else {
|
||||
// only need last byte of r7 response
|
||||
for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
|
||||
if (status_ != 0XAA) {
|
||||
error(SD_CARD_ERROR_CMD8);
|
||||
goto fail;
|
||||
}
|
||||
type(SD_CARD_TYPE_SD2);
|
||||
}
|
||||
// initialize card and send host supports SDHC if SD2
|
||||
arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0;
|
||||
|
||||
while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
|
||||
// check for timeout
|
||||
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
|
||||
error(SD_CARD_ERROR_ACMD41);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
// if SD2 read OCR register to check for SDHC card
|
||||
if (type() == SD_CARD_TYPE_SD2) {
|
||||
if (cardCommand(CMD58, 0)) {
|
||||
error(SD_CARD_ERROR_CMD58);
|
||||
goto fail;
|
||||
}
|
||||
if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC);
|
||||
// discard rest of ocr - contains allowed voltage range
|
||||
for (uint8_t i = 0; i < 3; i++) spiRec();
|
||||
}
|
||||
chipSelectHigh();
|
||||
|
||||
#ifndef SOFTWARE_SPI
|
||||
return setSckRate(sckRateID);
|
||||
#else // SOFTWARE_SPI
|
||||
return true;
|
||||
#endif // SOFTWARE_SPI
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Read a 512 byte block from an SD card.
|
||||
*
|
||||
* \param[in] blockNumber Logical block to be read.
|
||||
* \param[out] dst Pointer to the location that will receive the data.
|
||||
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
|
||||
// use address if not SDHC card
|
||||
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
||||
if (cardCommand(CMD17, blockNumber)) {
|
||||
error(SD_CARD_ERROR_CMD17);
|
||||
goto fail;
|
||||
}
|
||||
return readData(dst, 512);
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Read one data block in a multiple block read sequence
|
||||
*
|
||||
* \param[in] dst Pointer to the location for the data to be read.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::readData(uint8_t *dst) {
|
||||
chipSelectLow();
|
||||
return readData(dst, 512);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
bool Sd2Card::readData(uint8_t* dst, uint16_t count) {
|
||||
// wait for start block token
|
||||
uint16_t t0 = millis();
|
||||
while ((status_ = spiRec()) == 0XFF) {
|
||||
if (((uint16_t)millis() - t0) > SD_READ_TIMEOUT) {
|
||||
error(SD_CARD_ERROR_READ_TIMEOUT);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
if (status_ != DATA_START_BLOCK) {
|
||||
error(SD_CARD_ERROR_READ);
|
||||
goto fail;
|
||||
}
|
||||
// transfer data
|
||||
spiRead(dst, count);
|
||||
|
||||
// discard CRC
|
||||
spiRec();
|
||||
spiRec();
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** read CID or CSR register */
|
||||
bool Sd2Card::readRegister(uint8_t cmd, void* buf) {
|
||||
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
|
||||
if (cardCommand(cmd, 0)) {
|
||||
error(SD_CARD_ERROR_READ_REG);
|
||||
goto fail;
|
||||
}
|
||||
return readData(dst, 16);
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Start a read multiple blocks sequence.
|
||||
*
|
||||
* \param[in] blockNumber Address of first block in sequence.
|
||||
*
|
||||
* \note This function is used with readData() and readStop() for optimized
|
||||
* multiple block reads. SPI chipSelect must be low for the entire sequence.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::readStart(uint32_t blockNumber) {
|
||||
if (type()!= SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
||||
if (cardCommand(CMD18, blockNumber)) {
|
||||
error(SD_CARD_ERROR_CMD18);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** End a read multiple blocks sequence.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::readStop() {
|
||||
chipSelectLow();
|
||||
if (cardCommand(CMD12, 0)) {
|
||||
error(SD_CARD_ERROR_CMD12);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Set the SPI clock rate.
|
||||
*
|
||||
* \param[in] sckRateID A value in the range [0, 6].
|
||||
*
|
||||
* The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum
|
||||
* SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128
|
||||
* for \a scsRateID = 6.
|
||||
*
|
||||
* \return The value one, true, is returned for success and the value zero,
|
||||
* false, is returned for an invalid value of \a sckRateID.
|
||||
*/
|
||||
bool Sd2Card::setSckRate(uint8_t sckRateID) {
|
||||
if (sckRateID > 6) {
|
||||
error(SD_CARD_ERROR_SCK_RATE);
|
||||
return false;
|
||||
}
|
||||
spiRate_ = sckRateID;
|
||||
return true;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// wait for card to go not busy
|
||||
bool Sd2Card::waitNotBusy(uint16_t timeoutMillis) {
|
||||
uint16_t t0 = millis();
|
||||
while (spiRec() != 0XFF) {
|
||||
if (((uint16_t)millis() - t0) >= timeoutMillis) goto fail;
|
||||
}
|
||||
return true;
|
||||
|
||||
fail:
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* Writes a 512 byte block to an SD card.
|
||||
*
|
||||
* \param[in] blockNumber Logical block to be written.
|
||||
* \param[in] src Pointer to the location of the data to be written.
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
|
||||
// use address if not SDHC card
|
||||
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
||||
if (cardCommand(CMD24, blockNumber)) {
|
||||
error(SD_CARD_ERROR_CMD24);
|
||||
goto fail;
|
||||
}
|
||||
if (!writeData(DATA_START_BLOCK, src)) goto fail;
|
||||
|
||||
// wait for flash programming to complete
|
||||
if (!waitNotBusy(SD_WRITE_TIMEOUT)) {
|
||||
error(SD_CARD_ERROR_WRITE_TIMEOUT);
|
||||
goto fail;
|
||||
}
|
||||
// response is r2 so get and check two bytes for nonzero
|
||||
if (cardCommand(CMD13, 0) || spiRec()) {
|
||||
error(SD_CARD_ERROR_WRITE_PROGRAMMING);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Write one data block in a multiple block write sequence
|
||||
* \param[in] src Pointer to the location of the data to be written.
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::writeData(const uint8_t* src) {
|
||||
chipSelectLow();
|
||||
// wait for previous write to finish
|
||||
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
|
||||
if (!writeData(WRITE_MULTIPLE_TOKEN, src)) goto fail;
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
error(SD_CARD_ERROR_WRITE_MULTIPLE);
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
// send one block of data for write block or write multiple blocks
|
||||
bool Sd2Card::writeData(uint8_t token, const uint8_t* src) {
|
||||
spiSendBlock(token, src);
|
||||
|
||||
spiSend(0xff); // dummy crc
|
||||
spiSend(0xff); // dummy crc
|
||||
|
||||
status_ = spiRec();
|
||||
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
|
||||
error(SD_CARD_ERROR_WRITE);
|
||||
goto fail;
|
||||
}
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** Start a write multiple blocks sequence.
|
||||
*
|
||||
* \param[in] blockNumber Address of first block in sequence.
|
||||
* \param[in] eraseCount The number of blocks to be pre-erased.
|
||||
*
|
||||
* \note This function is used with writeData() and writeStop()
|
||||
* for optimized multiple block writes.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
|
||||
// send pre-erase count
|
||||
if (cardAcmd(ACMD23, eraseCount)) {
|
||||
error(SD_CARD_ERROR_ACMD23);
|
||||
goto fail;
|
||||
}
|
||||
// use address if not SDHC card
|
||||
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
|
||||
if (cardCommand(CMD25, blockNumber)) {
|
||||
error(SD_CARD_ERROR_CMD25);
|
||||
goto fail;
|
||||
}
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** End a write multiple blocks sequence.
|
||||
*
|
||||
* \return The value one, true, is returned for success and
|
||||
* the value zero, false, is returned for failure.
|
||||
*/
|
||||
bool Sd2Card::writeStop() {
|
||||
chipSelectLow();
|
||||
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
|
||||
spiSend(STOP_TRAN_TOKEN);
|
||||
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail;
|
||||
chipSelectHigh();
|
||||
return true;
|
||||
|
||||
fail:
|
||||
error(SD_CARD_ERROR_STOP_TRAN);
|
||||
chipSelectHigh();
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -306,7 +306,7 @@ void SdBaseFile::getpos(fpos_t* pos) {
|
|||
* LS_R - Recursive list of subdirectories.
|
||||
*/
|
||||
void SdBaseFile::ls(uint8_t flags) {
|
||||
ls(&Serial, flags, 0);
|
||||
ls(&MSerial, flags, 0);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** List directory contents.
|
||||
|
@ -949,7 +949,7 @@ int SdBaseFile::peek() {
|
|||
*/
|
||||
void SdBaseFile::printDirName(const dir_t& dir,
|
||||
uint8_t width, bool printSlash) {
|
||||
printDirName(&Serial, dir, width, printSlash);
|
||||
printDirName(&MSerial, dir, width, printSlash);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** %Print the name field of a directory entry in 8.3 format.
|
||||
|
@ -993,7 +993,7 @@ static void print2u(Print* pr, uint8_t v) {
|
|||
* \param[in] fatDate The date field from a directory entry.
|
||||
*/
|
||||
void SdBaseFile::printFatDate(uint16_t fatDate) {
|
||||
printFatDate(&Serial, fatDate);
|
||||
printFatDate(&MSerial, fatDate);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** %Print a directory date field.
|
||||
|
@ -1018,7 +1018,7 @@ void SdBaseFile::printFatDate(Print* pr, uint16_t fatDate) {
|
|||
* \param[in] fatTime The time field from a directory entry.
|
||||
*/
|
||||
void SdBaseFile::printFatTime(uint16_t fatTime) {
|
||||
printFatTime(&Serial, fatTime);
|
||||
printFatTime(&MSerial, fatTime);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** %Print a directory time field.
|
||||
|
@ -1044,7 +1044,7 @@ void SdBaseFile::printFatTime(Print* pr, uint16_t fatTime) {
|
|||
bool SdBaseFile::printName() {
|
||||
char name[13];
|
||||
if (!getFilename(name)) return false;
|
||||
Serial.print(name);
|
||||
MSerial.print(name);
|
||||
return true;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
|
|
|
@ -25,7 +25,9 @@
|
|||
*/
|
||||
#include <avr/pgmspace.h>
|
||||
#if ARDUINO < 100
|
||||
#define HardwareSerial_h // trick to disable the standard HWserial
|
||||
#include <WProgram.h>
|
||||
#include "MarlinSerial.h"
|
||||
#else // ARDUINO
|
||||
#include <Arduino.h>
|
||||
#endif // ARDUINO
|
||||
|
|
|
@ -62,7 +62,7 @@ void SdFatUtil::println_P(Print* pr, PGM_P str) {
|
|||
* \param[in] str Pointer to string stored in flash memory.
|
||||
*/
|
||||
void SdFatUtil::SerialPrint_P(PGM_P str) {
|
||||
print_P(&Serial, str);
|
||||
print_P(&MSerial, str);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** %Print a string in flash memory to Serial followed by a CR/LF.
|
||||
|
@ -70,5 +70,5 @@ void SdFatUtil::SerialPrint_P(PGM_P str) {
|
|||
* \param[in] str Pointer to string stored in flash memory.
|
||||
*/
|
||||
void SdFatUtil::SerialPrintln_P(PGM_P str) {
|
||||
println_P(&Serial, str);
|
||||
println_P(&MSerial, str);
|
||||
}
|
||||
|
|
|
@ -1,46 +1,48 @@
|
|||
/* Arduino SdFat Library
|
||||
* Copyright (C) 2008 by William Greiman
|
||||
*
|
||||
* This file is part of the Arduino SdFat Library
|
||||
*
|
||||
* This Library is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This Library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with the Arduino SdFat Library. If not, see
|
||||
* <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef SdFatUtil_h
|
||||
#define SdFatUtil_h
|
||||
/**
|
||||
* \file
|
||||
* \brief Useful utility functions.
|
||||
*/
|
||||
#include <avr/pgmspace.h>
|
||||
#if ARDUINO < 100
|
||||
#include <WProgram.h>
|
||||
#else // ARDUINO
|
||||
#include <Arduino.h>
|
||||
#endif // ARDUINO
|
||||
/** Store and print a string in flash memory.*/
|
||||
#define PgmPrint(x) SerialPrint_P(PSTR(x))
|
||||
/** Store and print a string in flash memory followed by a CR/LF.*/
|
||||
#define PgmPrintln(x) SerialPrintln_P(PSTR(x))
|
||||
|
||||
namespace SdFatUtil {
|
||||
int FreeRam();
|
||||
void print_P(Print* pr, PGM_P str);
|
||||
void println_P(Print* pr, PGM_P str);
|
||||
void SerialPrint_P(PGM_P str);
|
||||
void SerialPrintln_P(PGM_P str);
|
||||
}
|
||||
|
||||
using namespace SdFatUtil; // NOLINT
|
||||
/* Arduino SdFat Library
|
||||
* Copyright (C) 2008 by William Greiman
|
||||
*
|
||||
* This file is part of the Arduino SdFat Library
|
||||
*
|
||||
* This Library is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This Library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with the Arduino SdFat Library. If not, see
|
||||
* <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#ifndef SdFatUtil_h
|
||||
#define SdFatUtil_h
|
||||
/**
|
||||
* \file
|
||||
* \brief Useful utility functions.
|
||||
*/
|
||||
#include <avr/pgmspace.h>
|
||||
#if ARDUINO < 100
|
||||
#define HardwareSerial_h // trick to disable the standard HWserial
|
||||
#include <WProgram.h>
|
||||
#include "MarlinSerial.h"
|
||||
#else // ARDUINO
|
||||
#include <Arduino.h>
|
||||
#endif // ARDUINO
|
||||
/** Store and print a string in flash memory.*/
|
||||
#define PgmPrint(x) SerialPrint_P(PSTR(x))
|
||||
/** Store and print a string in flash memory followed by a CR/LF.*/
|
||||
#define PgmPrintln(x) SerialPrintln_P(PSTR(x))
|
||||
|
||||
namespace SdFatUtil {
|
||||
int FreeRam();
|
||||
void print_P(Print* pr, PGM_P str);
|
||||
void println_P(Print* pr, PGM_P str);
|
||||
void SerialPrint_P(PGM_P str);
|
||||
void SerialPrintln_P(PGM_P str);
|
||||
}
|
||||
|
||||
using namespace SdFatUtil; // NOLINT
|
||||
#endif // #define SdFatUtil_h
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
|
||||
// segment is configured in settings.mm_per_arc_segment.
|
||||
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
|
||||
uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise)
|
||||
uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder)
|
||||
{
|
||||
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
|
||||
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
|
||||
|
@ -123,11 +123,11 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
|
|||
arc_target[axis_1] = center_axis1 + r_axis1;
|
||||
arc_target[axis_linear] += linear_per_segment;
|
||||
arc_target[E_AXIS] += extruder_per_segment;
|
||||
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate);
|
||||
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder);
|
||||
|
||||
}
|
||||
// Ensure last segment arrives at target location.
|
||||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate);
|
||||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder);
|
||||
|
||||
// plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
|
||||
}
|
||||
|
|
|
@ -27,6 +27,6 @@
|
|||
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
|
||||
// for vector transformation direction.
|
||||
void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1,
|
||||
unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise);
|
||||
unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise, uint8_t extruder);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -451,7 +451,7 @@ float junction_deviation = 0.1;
|
|||
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
||||
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)
|
||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
|
||||
{
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = next_block_index(block_buffer_head);
|
||||
|
@ -527,12 +527,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
else {
|
||||
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
||||
}
|
||||
|
||||
|
||||
#ifdef SLOWDOWN
|
||||
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
||||
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
||||
|
||||
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5)) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
|
||||
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
|
|
@ -66,7 +66,7 @@ void plan_init();
|
|||
|
||||
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
||||
// millimaters. Feed rate specifies the speed of the motion.
|
||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate);
|
||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
|
||||
|
||||
// Set position. Used for G92 instructions.
|
||||
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
|
||||
|
|
|
@ -52,7 +52,7 @@ static long counter_x, // Counter variables for the bresenham line tracer
|
|||
counter_y,
|
||||
counter_z,
|
||||
counter_e;
|
||||
static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||
#ifdef ADVANCE
|
||||
static long advance_rate, advance, final_advance = 0;
|
||||
static short old_advance = 0;
|
||||
|
@ -63,6 +63,7 @@ static long acceleration_time, deceleration_time;
|
|||
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||
static unsigned short acc_step_rate; // needed for deccelaration start point
|
||||
static char step_loops;
|
||||
static unsigned short OCR1A_nominal;
|
||||
|
||||
volatile long endstops_trigsteps[3]={0,0,0};
|
||||
volatile long endstops_stepsTotal,endstops_stepsDone;
|
||||
|
@ -77,10 +78,6 @@ static bool old_y_max_endstop=false;
|
|||
static bool old_z_min_endstop=false;
|
||||
static bool old_z_max_endstop=false;
|
||||
|
||||
static bool busy_error=false;
|
||||
unsigned short OCR1A_error=12345;
|
||||
unsigned short OCR1A_nominal;
|
||||
|
||||
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
||||
volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
||||
|
||||
|
@ -164,15 +161,6 @@ asm volatile ( \
|
|||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
|
||||
|
||||
void checkStepperErrors()
|
||||
{
|
||||
if(busy_error) {
|
||||
SERIAL_ERROR_START
|
||||
SERIAL_ERROR(OCR1A_error);
|
||||
SERIAL_ERRORLNPGM(" ISR overtaking itself.");
|
||||
busy_error = false;
|
||||
}
|
||||
}
|
||||
|
||||
void checkHitEndstops()
|
||||
{
|
||||
|
@ -255,7 +243,7 @@ inline unsigned short calc_timer(unsigned short step_rate) {
|
|||
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
|
||||
}
|
||||
if(timer < 100) { timer = 100; Serial.print("Steprate to high : "); Serial.println(step_rate); }//(20kHz this should never happen)
|
||||
if(timer < 100) { timer = 100; MSerial.print("Steprate to high : "); MSerial.println(step_rate); }//(20kHz this should never happen)
|
||||
return timer;
|
||||
}
|
||||
|
||||
|
@ -277,17 +265,7 @@ inline void trapezoid_generator_reset() {
|
|||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||
ISR(TIMER1_COMPA_vect)
|
||||
{
|
||||
if(busy){
|
||||
OCR1A_error = OCR1A;
|
||||
busy_error = true;
|
||||
OCR1A = 30000;
|
||||
return;
|
||||
} // The busy-flag is used to avoid reentering this interrupt
|
||||
|
||||
busy = true;
|
||||
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
|
||||
|
||||
{
|
||||
// If there is no current block, attempt to pop one from the buffer
|
||||
if (current_block == NULL) {
|
||||
// Anything in the buffer?
|
||||
|
@ -304,7 +282,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
// #endif
|
||||
}
|
||||
else {
|
||||
// DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
OCR1A=2000; // 1kHz.
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -404,8 +382,8 @@ ISR(TIMER1_COMPA_vect)
|
|||
count_direction[E_AXIS]=-1;
|
||||
}
|
||||
#endif //!ADVANCE
|
||||
|
||||
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
||||
MSerial.checkRx();
|
||||
/*
|
||||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) {
|
||||
|
@ -470,6 +448,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
unsigned short timer;
|
||||
unsigned short step_rate;
|
||||
if (step_events_completed <= current_block->accelerate_until) {
|
||||
|
||||
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||
acc_step_rate += current_block->initial_rate;
|
||||
|
||||
|
@ -519,8 +498,6 @@ ISR(TIMER1_COMPA_vect)
|
|||
plan_discard_current_block();
|
||||
}
|
||||
}
|
||||
cli(); // disable interrupts
|
||||
busy=false;
|
||||
}
|
||||
|
||||
#ifdef ADVANCE
|
||||
|
|
Reference in a new issue