Improve planner kinematics, fix delta ABL
This commit is contained in:
parent
48761f2021
commit
f8c2473a71
6 changed files with 102 additions and 82 deletions
|
@ -711,8 +711,7 @@ inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[
|
||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
|
||||||
#endif
|
#endif
|
||||||
inverse_kinematics(current_position);
|
planner.set_position_mm_kinematic(current_position);
|
||||||
planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
|
|
||||||
}
|
}
|
||||||
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
|
||||||
|
|
||||||
|
@ -1541,8 +1540,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
|
||||||
) return;
|
) return;
|
||||||
|
|
||||||
refresh_cmd_timeout();
|
refresh_cmd_timeout();
|
||||||
inverse_kinematics(destination);
|
planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
|
|
||||||
set_current_to_destination();
|
set_current_to_destination();
|
||||||
}
|
}
|
||||||
#endif // IS_KINEMATIC
|
#endif // IS_KINEMATIC
|
||||||
|
@ -6779,8 +6777,7 @@ inline void gcode_M503() {
|
||||||
|
|
||||||
// Define runplan for move axes
|
// Define runplan for move axes
|
||||||
#if IS_KINEMATIC
|
#if IS_KINEMATIC
|
||||||
#define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
|
#define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
|
|
||||||
#else
|
#else
|
||||||
#define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
|
#define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
|
||||||
#endif
|
#endif
|
||||||
|
@ -6900,12 +6897,10 @@ inline void gcode_M503() {
|
||||||
planner.set_e_position_mm(current_position[E_AXIS]);
|
planner.set_e_position_mm(current_position[E_AXIS]);
|
||||||
|
|
||||||
#if IS_KINEMATIC
|
#if IS_KINEMATIC
|
||||||
// Move XYZ to starting position, then E
|
// Move XYZ to starting position
|
||||||
inverse_kinematics(lastpos);
|
planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
|
||||||
#else
|
#else
|
||||||
// Move XY to starting position, then Z, then E
|
// Move XY to starting position, then Z
|
||||||
destination[X_AXIS] = lastpos[X_AXIS];
|
destination[X_AXIS] = lastpos[X_AXIS];
|
||||||
destination[Y_AXIS] = lastpos[Y_AXIS];
|
destination[Y_AXIS] = lastpos[Y_AXIS];
|
||||||
RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
|
RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
|
||||||
|
@ -8671,8 +8666,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||||
|
|
||||||
// If the move is only in Z/E don't split up the move
|
// If the move is only in Z/E don't split up the move
|
||||||
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
|
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
|
||||||
inverse_kinematics(ltarget);
|
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -8815,16 +8809,14 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||||
// For non-interpolated delta calculate every segment
|
// For non-interpolated delta calculate every segment
|
||||||
for (uint16_t s = segments + 1; --s;) {
|
for (uint16_t s = segments + 1; --s;) {
|
||||||
DELTA_NEXT(segment_distance[i]);
|
DELTA_NEXT(segment_distance[i]);
|
||||||
DELTA_IK();
|
planner.buffer_line_kinematic(DELTA_VAR, _feedrate_mm_s, active_extruder);
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Since segment_distance is only approximate,
|
// Since segment_distance is only approximate,
|
||||||
// the final move must be to the exact destination.
|
// the final move must be to the exact destination.
|
||||||
inverse_kinematics(ltarget);
|
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -9064,21 +9056,11 @@ void prepare_move_to_destination() {
|
||||||
|
|
||||||
clamp_to_software_endstops(arc_target);
|
clamp_to_software_endstops(arc_target);
|
||||||
|
|
||||||
#if IS_KINEMATIC
|
planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
|
||||||
inverse_kinematics(arc_target);
|
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
|
|
||||||
#else
|
|
||||||
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Ensure last segment arrives at target location.
|
// Ensure last segment arrives at target location.
|
||||||
#if IS_KINEMATIC
|
planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
|
||||||
inverse_kinematics(logical);
|
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
|
|
||||||
#else
|
|
||||||
planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// As far as the parser is concerned, the position is now == target. In reality the
|
// As far as the parser is concerned, the position is now == target. In reality the
|
||||||
// motion control system might still be processing the action and the real tool position
|
// motion control system might still be processing the action and the real tool position
|
||||||
|
|
|
@ -518,6 +518,10 @@
|
||||||
*/
|
*/
|
||||||
#if HAS_ABL
|
#if HAS_ABL
|
||||||
|
|
||||||
|
#if ENABLED(USE_RAW_KINEMATICS) || ENABLED(USE_DELTA_IK_INTERPOLATION)
|
||||||
|
#error "USE_RAW_KINEMATICS and USE_DELTA_IK_INTERPOLATION are not compatible with AUTO_BED_LEVELING"
|
||||||
|
#endif
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Delta and SCARA have limited bed leveling options
|
* Delta and SCARA have limited bed leveling options
|
||||||
*/
|
*/
|
||||||
|
|
|
@ -522,7 +522,9 @@ void Planner::check_axes_activity() {
|
||||||
}
|
}
|
||||||
|
|
||||||
#if PLANNER_LEVELING
|
#if PLANNER_LEVELING
|
||||||
|
/**
|
||||||
|
* lx, ly, lz - logical (cartesian, not delta) positions in mm
|
||||||
|
*/
|
||||||
void Planner::apply_leveling(float &lx, float &ly, float &lz) {
|
void Planner::apply_leveling(float &lx, float &ly, float &lz) {
|
||||||
|
|
||||||
#if HAS_ABL
|
#if HAS_ABL
|
||||||
|
@ -549,19 +551,7 @@ void Planner::check_axes_activity() {
|
||||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||||
|
|
||||||
float tmp[XYZ] = { lx, ly, 0 };
|
float tmp[XYZ] = { lx, ly, 0 };
|
||||||
|
lz += bilinear_z_offset(tmp);
|
||||||
#if ENABLED(DELTA)
|
|
||||||
|
|
||||||
float offset = bilinear_z_offset(tmp);
|
|
||||||
lx += offset;
|
|
||||||
ly += offset;
|
|
||||||
lz += offset;
|
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
lz += bilinear_z_offset(tmp);
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
@ -601,15 +591,16 @@ void Planner::check_axes_activity() {
|
||||||
#endif // PLANNER_LEVELING
|
#endif // PLANNER_LEVELING
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Planner::buffer_line
|
* Planner::_buffer_line
|
||||||
*
|
*
|
||||||
* Add a new linear movement to the buffer.
|
* Add a new linear movement to the buffer.
|
||||||
|
* Not apply the leveling.
|
||||||
*
|
*
|
||||||
* x,y,z,e - target position in mm
|
* x,y,z,e - target position in mm
|
||||||
* fr_mm_s - (target) speed of the move
|
* fr_mm_s - (target) speed of the move
|
||||||
* extruder - target extruder
|
* extruder - target extruder
|
||||||
*/
|
*/
|
||||||
void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) {
|
void Planner::_buffer_line(const float &lx, const float &ly, const float &lz, const float &e, float fr_mm_s, const uint8_t extruder) {
|
||||||
// Calculate the buffer head after we push this byte
|
// Calculate the buffer head after we push this byte
|
||||||
int next_buffer_head = next_block_index(block_buffer_head);
|
int next_buffer_head = next_block_index(block_buffer_head);
|
||||||
|
|
||||||
|
@ -617,10 +608,6 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
||||||
// Rest here until there is room in the buffer.
|
// Rest here until there is room in the buffer.
|
||||||
while (block_buffer_tail == next_buffer_head) idle();
|
while (block_buffer_tail == next_buffer_head) idle();
|
||||||
|
|
||||||
#if PLANNER_LEVELING
|
|
||||||
apply_leveling(lx, ly, lz);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// The target position of the tool in absolute steps
|
// The target position of the tool in absolute steps
|
||||||
// Calculate target position in absolute steps
|
// Calculate target position in absolute steps
|
||||||
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
||||||
|
@ -1196,12 +1183,8 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
||||||
*
|
*
|
||||||
* On CORE machines stepper ABC will be translated from the given XYZ.
|
* On CORE machines stepper ABC will be translated from the given XYZ.
|
||||||
*/
|
*/
|
||||||
void Planner::set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
|
|
||||||
|
|
||||||
#if PLANNER_LEVELING
|
|
||||||
apply_leveling(lx, ly, lz);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
void Planner::_set_position_mm(const float &lx, const float &ly, const float &lz, const float &e) {
|
||||||
long nx = position[X_AXIS] = lround(lx * axis_steps_per_mm[X_AXIS]),
|
long nx = position[X_AXIS] = lround(lx * axis_steps_per_mm[X_AXIS]),
|
||||||
ny = position[Y_AXIS] = lround(ly * axis_steps_per_mm[Y_AXIS]),
|
ny = position[Y_AXIS] = lround(ly * axis_steps_per_mm[Y_AXIS]),
|
||||||
nz = position[Z_AXIS] = lround(lz * axis_steps_per_mm[Z_AXIS]),
|
nz = position[Z_AXIS] = lround(lz * axis_steps_per_mm[Z_AXIS]),
|
||||||
|
@ -1212,6 +1195,22 @@ void Planner::set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
|
||||||
memset(previous_speed, 0, sizeof(previous_speed));
|
memset(previous_speed, 0, sizeof(previous_speed));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
|
||||||
|
#if PLANNER_LEVELING
|
||||||
|
float pos[XYZ] = { position[X_AXIS], position[Y_AXIS], position[Z_AXIS] };
|
||||||
|
apply_leveling(pos);
|
||||||
|
#else
|
||||||
|
const float * const pos = position;
|
||||||
|
#endif
|
||||||
|
#if IS_KINEMATIC
|
||||||
|
inverse_kinematics(pos);
|
||||||
|
_set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], position[E_AXIS]);
|
||||||
|
#else
|
||||||
|
_set_position_mm(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], position[E_AXIS]);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sync from the stepper positions. (e.g., after an interrupted move)
|
* Sync from the stepper positions. (e.g., after an interrupted move)
|
||||||
*/
|
*/
|
||||||
|
@ -1237,12 +1236,7 @@ void Planner::reset_acceleration_rates() {
|
||||||
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
|
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
|
||||||
void Planner::refresh_positioning() {
|
void Planner::refresh_positioning() {
|
||||||
LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
|
LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
|
||||||
#if IS_KINEMATIC
|
set_position_mm_kinematic(current_position);
|
||||||
inverse_kinematics(current_position);
|
|
||||||
set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
|
|
||||||
#else
|
|
||||||
set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
||||||
#endif
|
|
||||||
reset_acceleration_rates();
|
reset_acceleration_rates();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -43,6 +43,12 @@
|
||||||
class Planner;
|
class Planner;
|
||||||
extern Planner planner;
|
extern Planner planner;
|
||||||
|
|
||||||
|
#if IS_KINEMATIC
|
||||||
|
// for inline buffer_line_kinematic
|
||||||
|
extern float delta[ABC];
|
||||||
|
void inverse_kinematics(const float logical[XYZ]);
|
||||||
|
#endif
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* struct block_t
|
* struct block_t
|
||||||
*
|
*
|
||||||
|
@ -218,18 +224,63 @@ class Planner {
|
||||||
* as it will be given to the planner and steppers.
|
* as it will be given to the planner and steppers.
|
||||||
*/
|
*/
|
||||||
static void apply_leveling(float &lx, float &ly, float &lz);
|
static void apply_leveling(float &lx, float &ly, float &lz);
|
||||||
|
static void apply_leveling(float logical[XYZ]) { apply_leveling(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS]); }
|
||||||
static void unapply_leveling(float logical[XYZ]);
|
static void unapply_leveling(float logical[XYZ]);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
* Planner::_buffer_line
|
||||||
|
*
|
||||||
* Add a new linear movement to the buffer.
|
* Add a new linear movement to the buffer.
|
||||||
|
* Doesn't apply the leveling.
|
||||||
|
*
|
||||||
|
* x,y,z,e - target position in mm
|
||||||
|
* fr_mm_s - (target) speed of the move
|
||||||
|
* extruder - target extruder
|
||||||
|
*/
|
||||||
|
static void _buffer_line(const float &lx, const float &ly, const float &lz, const float &e, float fr_mm_s, const uint8_t extruder);
|
||||||
|
|
||||||
|
static void _set_position_mm(const float &lx, const float &ly, const float &lz, const float &e);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a new linear movement to the buffer.
|
||||||
|
* The target is NOT translated to delta/scara
|
||||||
*
|
*
|
||||||
* x,y,z,e - target position in mm
|
* x,y,z,e - target position in mm
|
||||||
* fr_mm_s - (target) speed of the move (mm/s)
|
* fr_mm_s - (target) speed of the move (mm/s)
|
||||||
* extruder - target extruder
|
* extruder - target extruder
|
||||||
*/
|
*/
|
||||||
static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float& e, float fr_mm_s, const uint8_t extruder);
|
static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) {
|
||||||
|
#if PLANNER_LEVELING && ! IS_KINEMATIC
|
||||||
|
apply_leveling(lx, ly, lz);
|
||||||
|
#endif
|
||||||
|
_buffer_line(lx, ly, lz, e, fr_mm_s, extruder);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a new linear movement to the buffer.
|
||||||
|
* The target is cartesian, it's translated to delta/scara if
|
||||||
|
* needed.
|
||||||
|
*
|
||||||
|
* target - x,y,z,e CARTESIAN target in mm
|
||||||
|
* fr_mm_s - (target) speed of the move (mm/s)
|
||||||
|
* extruder - target extruder
|
||||||
|
*/
|
||||||
|
static FORCE_INLINE void buffer_line_kinematic(const float target[NUM_AXIS], float fr_mm_s, const uint8_t extruder) {
|
||||||
|
#if PLANNER_LEVELING
|
||||||
|
float pos[XYZ] = { target[X_AXIS], target[Y_AXIS], target[Z_AXIS] };
|
||||||
|
apply_leveling(pos);
|
||||||
|
#else
|
||||||
|
const float * const pos = target;
|
||||||
|
#endif
|
||||||
|
#if IS_KINEMATIC
|
||||||
|
inverse_kinematics(pos);
|
||||||
|
_buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], target[E_AXIS], fr_mm_s, extruder);
|
||||||
|
#else
|
||||||
|
_buffer_line(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], target[E_AXIS], fr_mm_s, extruder);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Set the planner.position and individual stepper positions.
|
* Set the planner.position and individual stepper positions.
|
||||||
|
@ -240,9 +291,14 @@ class Planner {
|
||||||
*
|
*
|
||||||
* Clears previous speed values.
|
* Clears previous speed values.
|
||||||
*/
|
*/
|
||||||
static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float& e);
|
static FORCE_INLINE void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
|
||||||
|
#if PLANNER_LEVELING && ! IS_KINEMATIC
|
||||||
|
apply_leveling(lx, ly, lz);
|
||||||
|
#endif
|
||||||
|
_set_position_mm(lx, ly, lz, e);
|
||||||
|
}
|
||||||
|
static void set_position_mm_kinematic(const float position[NUM_AXIS]);
|
||||||
static void set_position_mm(const AxisEnum axis, const float& v);
|
static void set_position_mm(const AxisEnum axis, const float& v);
|
||||||
|
|
||||||
static FORCE_INLINE void set_z_position_mm(const float& z) { set_position_mm(Z_AXIS, z); }
|
static FORCE_INLINE void set_z_position_mm(const float& z) { set_position_mm(Z_AXIS, z); }
|
||||||
static FORCE_INLINE void set_e_position_mm(const float& e) { set_position_mm(E_AXIS, e); }
|
static FORCE_INLINE void set_e_position_mm(const float& e) { set_position_mm(E_AXIS, e); }
|
||||||
|
|
||||||
|
|
|
@ -187,13 +187,7 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
|
||||||
bez_target[Z_AXIS] = interp(position[Z_AXIS], target[Z_AXIS], t);
|
bez_target[Z_AXIS] = interp(position[Z_AXIS], target[Z_AXIS], t);
|
||||||
bez_target[E_AXIS] = interp(position[E_AXIS], target[E_AXIS], t);
|
bez_target[E_AXIS] = interp(position[E_AXIS], target[E_AXIS], t);
|
||||||
clamp_to_software_endstops(bez_target);
|
clamp_to_software_endstops(bez_target);
|
||||||
|
planner.buffer_line_kinematic(bez_target, fr_mm_s, extruder);
|
||||||
#if IS_KINEMATIC
|
|
||||||
inverse_kinematics(bez_target);
|
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
|
|
||||||
#else
|
|
||||||
planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -561,12 +561,7 @@ void kill_screen(const char* lcd_msg) {
|
||||||
#if ENABLED(ULTIPANEL)
|
#if ENABLED(ULTIPANEL)
|
||||||
|
|
||||||
inline void line_to_current(AxisEnum axis) {
|
inline void line_to_current(AxisEnum axis) {
|
||||||
#if ENABLED(DELTA)
|
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
|
||||||
inverse_kinematics(current_position);
|
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
|
|
||||||
#else // !DELTA
|
|
||||||
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
|
|
||||||
#endif // !DELTA
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#if ENABLED(SDSUPPORT)
|
#if ENABLED(SDSUPPORT)
|
||||||
|
@ -1351,12 +1346,7 @@ void kill_screen(const char* lcd_msg) {
|
||||||
*/
|
*/
|
||||||
inline void manage_manual_move() {
|
inline void manage_manual_move() {
|
||||||
if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
|
if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
|
||||||
#if ENABLED(DELTA)
|
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
|
||||||
inverse_kinematics(current_position);
|
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
|
|
||||||
#else
|
|
||||||
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
|
|
||||||
#endif
|
|
||||||
manual_move_axis = (int8_t)NO_AXIS;
|
manual_move_axis = (int8_t)NO_AXIS;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Reference in a new issue