/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * motion.cpp */ #include "motion.h" #include "endstops.h" #include "stepper.h" #include "planner.h" #include "temperature.h" #include "../gcode/gcode.h" #include "../inc/MarlinConfig.h" #if IS_SCARA #include "../libs/buzzer.h" #include "../lcd/ultralcd.h" #endif #if HAS_BED_PROBE #include "probe.h" #endif #if HAS_LEVELING #include "../feature/bedlevel/bedlevel.h" #endif #if HAS_AXIS_UNHOMED_ERR && ENABLED(ULTRA_LCD) #include "../lcd/ultralcd.h" #endif #if ENABLED(SENSORLESS_HOMING) #include "../feature/tmc_util.h" #endif #define XYZ_CONSTS(type, array, CONFIG) const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG } XYZ_CONSTS(float, base_min_pos, MIN_POS); XYZ_CONSTS(float, base_max_pos, MAX_POS); XYZ_CONSTS(float, base_home_pos, HOME_POS); XYZ_CONSTS(float, max_length, MAX_LENGTH); XYZ_CONSTS(float, home_bump_mm, HOME_BUMP_MM); XYZ_CONSTS(signed char, home_dir, HOME_DIR); // Relative Mode. Enable with G91, disable with G90. bool relative_mode = false; /** * Cartesian Current Position * Used to track the native machine position as moves are queued. * Used by 'buffer_line_to_current_position' to do a move after changing it. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'. */ float current_position[XYZE] = { 0.0 }; /** * Cartesian Destination * The destination for a move, filled in by G-code movement commands, * and expected by functions like 'prepare_move_to_destination'. * Set with 'gcode_get_destination' or 'set_destination_from_current'. */ float destination[XYZE] = { 0.0 }; // The active extruder (tool). Set with T command. uint8_t active_extruder = 0; // Extruder offsets #if HOTENDS > 1 float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load() #endif // The feedrate for the current move, often used as the default if // no other feedrate is specified. Overridden for special moves. // Set by the last G0 through G5 command's "F" parameter. // Functions that override this for custom moves *must always* restore it! float feedrate_mm_s = MMM_TO_MMS(1500.0); int16_t feedrate_percentage = 100; // Homing feedrate is const progmem - compare to constexpr in the header const float homing_feedrate_mm_s[4] PROGMEM = { #if ENABLED(DELTA) MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z), #else MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY), #endif MMM_TO_MMS(HOMING_FEEDRATE_Z), 0 }; // Cartesian conversion result goes here: float cartes[XYZ]; // Until kinematics.cpp is created, create this here #if IS_KINEMATIC float delta[ABC]; #endif /** * The workspace can be offset by some commands, or * these offsets may be omitted to save on computation. */ #if HAS_WORKSPACE_OFFSET #if HAS_POSITION_SHIFT // The distance that XYZ has been offset by G92. Reset by G28. float position_shift[XYZ] = { 0 }; #endif #if HAS_HOME_OFFSET // This offset is added to the configured home position. // Set by M206, M428, or menu item. Saved to EEPROM. float home_offset[XYZ] = { 0 }; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT // The above two are combined to save on computes float workspace_offset[XYZ] = { 0 }; #endif #endif #if OLDSCHOOL_ABL float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); #endif /** * Output the current position to serial */ void report_current_position() { SERIAL_PROTOCOLPGM("X:"); SERIAL_PROTOCOL(LOGICAL_X_POSITION(current_position[X_AXIS])); SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOL(LOGICAL_Y_POSITION(current_position[Y_AXIS])); SERIAL_PROTOCOLPGM(" Z:"); SERIAL_PROTOCOL(LOGICAL_Z_POSITION(current_position[Z_AXIS])); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL(current_position[E_AXIS]); stepper.report_positions(); #if IS_SCARA scara_report_positions(); #endif } /** * sync_plan_position * * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); #endif planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } /** * Get the stepper positions in the cartes[] array. * Forward kinematics are applied for DELTA and SCARA. * * The result is in the current coordinate space with * leveling applied. The coordinates need to be run through * unapply_leveling to obtain the "ideal" coordinates * suitable for current_position, etc. */ void get_cartesian_from_steppers() { #if ENABLED(DELTA) forward_kinematics_DELTA( stepper.get_axis_position_mm(A_AXIS), stepper.get_axis_position_mm(B_AXIS), stepper.get_axis_position_mm(C_AXIS) ); #else #if IS_SCARA forward_kinematics_SCARA( stepper.get_axis_position_degrees(A_AXIS), stepper.get_axis_position_degrees(B_AXIS) ); #else cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); #endif cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); #endif } /** * Set the current_position for an axis based on * the stepper positions, removing any leveling that * may have been applied. * * To prevent small shifts in axis position always call * SYNC_PLAN_POSITION_KINEMATIC after updating axes with this. * * To keep hosts in sync, always call report_current_position * after updating the current_position. */ void set_current_from_steppers_for_axis(const AxisEnum axis) { get_cartesian_from_steppers(); #if PLANNER_LEVELING planner.unapply_leveling(cartes); #endif if (axis == ALL_AXES) COPY(current_position, cartes); else current_position[axis] = cartes[axis]; } /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ void line_to_current_position() { planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder); } /** * Move the planner to the position stored in the destination array, which is * used by G0/G1/G2/G3/G5 and many other functions to set a destination. */ void buffer_line_to_destination(const float fr_mm_s) { planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder); } #if IS_KINEMATIC void sync_plan_position_kinematic() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position); #endif planner.set_position_mm_kinematic(current_position); } /** * Calculate delta, start a line, and set current_position to destination */ void prepare_uninterpolated_move_to_destination(const float fr_mm_s/*=0.0*/) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination); #endif gcode.refresh_cmd_timeout(); #if UBL_SEGMENTED // ubl segmented line will do z-only moves in single segment ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s)); #else if ( current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS] && current_position[Z_AXIS] == destination[Z_AXIS] && current_position[E_AXIS] == destination[E_AXIS] ) return; planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder); #endif set_current_from_destination(); } #endif // IS_KINEMATIC /** * Plan a move to (X, Y, Z) and set the current_position * The final current_position may not be the one that was requested */ void do_blocking_move_to(const float &rx, const float &ry, const float &rz, const float &fr_mm_s/*=0.0*/) { const float old_feedrate_mm_s = feedrate_mm_s; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, rx, ry, rz); #endif const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS); #if ENABLED(DELTA) if (!position_is_reachable(rx, ry)) return; feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; set_destination_from_current(); // sync destination at the start #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination); #endif // when in the danger zone if (current_position[Z_AXIS] > delta_clip_start_height) { if (rz > delta_clip_start_height) { // staying in the danger zone destination[X_AXIS] = rx; // move directly (uninterpolated) destination[Y_AXIS] = ry; destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position); #endif return; } destination[Z_AXIS] = delta_clip_start_height; prepare_uninterpolated_move_to_destination(); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position); #endif } if (rz > current_position[Z_AXIS]) { // raising? destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position); #endif } destination[X_AXIS] = rx; destination[Y_AXIS] = ry; prepare_move_to_destination(); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position); #endif if (rz < current_position[Z_AXIS]) { // lowering? destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination() #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position); #endif } #elif IS_SCARA if (!position_is_reachable(rx, ry)) return; set_destination_from_current(); // If Z needs to raise, do it before moving XY if (destination[Z_AXIS] < rz) { destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(z_feedrate); } destination[X_AXIS] = rx; destination[Y_AXIS] = ry; prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S); // If Z needs to lower, do it after moving XY if (destination[Z_AXIS] > rz) { destination[Z_AXIS] = rz; prepare_uninterpolated_move_to_destination(z_feedrate); } #else // If Z needs to raise, do it before moving XY if (current_position[Z_AXIS] < rz) { feedrate_mm_s = z_feedrate; current_position[Z_AXIS] = rz; line_to_current_position(); } feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; current_position[X_AXIS] = rx; current_position[Y_AXIS] = ry; line_to_current_position(); // If Z needs to lower, do it after moving XY if (current_position[Z_AXIS] > rz) { feedrate_mm_s = z_feedrate; current_position[Z_AXIS] = rz; line_to_current_position(); } #endif stepper.synchronize(); feedrate_mm_s = old_feedrate_mm_s; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to"); #endif } void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s); } void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s); } void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s); } // // Prepare to do endstop or probe moves // with custom feedrates. // // - Save current feedrates // - Reset the rate multiplier // - Reset the command timeout // - Enable the endstops (for endstop moves) // void bracket_probe_move(const bool before) { static float saved_feedrate_mm_s; static int16_t saved_feedrate_percentage; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("bracket_probe_move", current_position); #endif if (before) { saved_feedrate_mm_s = feedrate_mm_s; saved_feedrate_percentage = feedrate_percentage; feedrate_percentage = 100; gcode.refresh_cmd_timeout(); } else { feedrate_mm_s = saved_feedrate_mm_s; feedrate_percentage = saved_feedrate_percentage; gcode.refresh_cmd_timeout(); } } void setup_for_endstop_or_probe_move() { bracket_probe_move(true); } void clean_up_after_endstop_or_probe_move() { bracket_probe_move(false); } // Software Endstops are based on the configured limits. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS }; #if HAS_SOFTWARE_ENDSTOPS // Software Endstops are based on the configured limits. bool soft_endstops_enabled = true; #if IS_KINEMATIC float soft_endstop_radius, soft_endstop_radius_2; #endif /** * Constrain the given coordinates to the software endstops. * * For DELTA/SCARA the XY constraint is based on the smallest * radius within the set software endstops. */ void clamp_to_software_endstops(float target[XYZ]) { if (!soft_endstops_enabled) return; #if IS_KINEMATIC const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]); if (dist_2 > soft_endstop_radius_2) { const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66 target[X_AXIS] *= ratio; target[Y_AXIS] *= ratio; } #else #if ENABLED(MIN_SOFTWARE_ENDSTOP_X) NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]); #endif #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y) NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]); #endif #if ENABLED(MAX_SOFTWARE_ENDSTOP_X) NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]); #endif #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y) NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]); #endif #endif #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z) NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]); #endif #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z) NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]); #endif } #endif #if !UBL_SEGMENTED #if IS_KINEMATIC #if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(DELTA) #define ADJUST_DELTA(V) \ if (planner.leveling_active) { \ const float zadj = bilinear_z_offset(V); \ delta[A_AXIS] += zadj; \ delta[B_AXIS] += zadj; \ delta[C_AXIS] += zadj; \ } #else #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); } #endif #else #define ADJUST_DELTA(V) NOOP #endif /** * Prepare a linear move in a DELTA or SCARA setup. * * Called from prepare_move_to_destination as the * default Delta/SCARA segmenter. * * This calls planner.buffer_line several times, adding * small incremental moves for DELTA or SCARA. * * For Unified Bed Leveling (Delta or Segmented Cartesian) * the ubl.prepare_segmented_line_to method replaces this. * * For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES * this is replaced by segmented_line_to_destination below. */ inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) { // Get the top feedrate of the move in the XY plane const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s); const float xdiff = rtarget[X_AXIS] - current_position[X_AXIS], ydiff = rtarget[Y_AXIS] - current_position[Y_AXIS]; // If the move is only in Z/E don't split up the move if (!xdiff && !ydiff) { planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder); return false; // caller will update current_position } // Fail if attempting move outside printable radius if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true; // Remaining cartesian distances const float zdiff = rtarget[Z_AXIS] - current_position[Z_AXIS], ediff = rtarget[E_AXIS] - current_position[E_AXIS]; // Get the linear distance in XYZ float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff)); // If the move is very short, check the E move distance if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff); // No E move either? Game over. if (UNEAR_ZERO(cartesian_mm)) return true; // Minimum number of seconds to move the given distance const float seconds = cartesian_mm / _feedrate_mm_s; // The number of segments-per-second times the duration // gives the number of segments uint16_t segments = delta_segments_per_second * seconds; // For SCARA minimum segment size is 0.25mm #if IS_SCARA NOMORE(segments, cartesian_mm * 4); #endif // At least one segment is required NOLESS(segments, 1); // The approximate length of each segment const float inv_segments = 1.0 / float(segments), segment_distance[XYZE] = { xdiff * inv_segments, ydiff * inv_segments, zdiff * inv_segments, ediff * inv_segments }; // SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOPAIR(" seconds=", seconds); // SERIAL_ECHOLNPAIR(" segments=", segments); #if ENABLED(SCARA_FEEDRATE_SCALING) // SCARA needs to scale the feed rate from mm/s to degrees/s const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs inverse_secs = inv_segment_length * _feedrate_mm_s; float oldA = stepper.get_axis_position_degrees(A_AXIS), oldB = stepper.get_axis_position_degrees(B_AXIS); #endif // Get the current position as starting point float raw[XYZE]; COPY(raw, current_position); // Calculate and execute the segments while (--segments) { static millis_t next_idle_ms = millis() + 200UL; thermalManager.manage_heater(); // This returns immediately if not really needed. if (ELAPSED(millis(), next_idle_ms)) { next_idle_ms = millis() + 200UL; idle(); } LOOP_XYZE(i) raw[i] += segment_distance[i]; #if ENABLED(DELTA) DELTA_IK(raw); // Delta can inline its kinematics #else inverse_kinematics(raw); #endif ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled #if ENABLED(SCARA_FEEDRATE_SCALING) // For SCARA scale the feed rate from mm/s to degrees/s // i.e., Complete the angular vector in the given time. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder); oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; #else planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder); #endif } // Ensure last segment arrives at target location. #if ENABLED(SCARA_FEEDRATE_SCALING) inverse_kinematics(rtarget); ADJUST_DELTA(rtarget); planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder); #else planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder); #endif return false; // caller will update current_position } #else // !IS_KINEMATIC #if ENABLED(SEGMENT_LEVELED_MOVES) /** * Prepare a segmented move on a CARTESIAN setup. * * This calls planner.buffer_line several times, adding * small incremental moves. This allows the planner to * apply more detailed bed leveling to the full move. */ inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) { const float xdiff = destination[X_AXIS] - current_position[X_AXIS], ydiff = destination[Y_AXIS] - current_position[Y_AXIS]; // If the move is only in Z/E don't split up the move if (!xdiff && !ydiff) { planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder); return; } // Remaining cartesian distances const float zdiff = destination[Z_AXIS] - current_position[Z_AXIS], ediff = destination[E_AXIS] - current_position[E_AXIS]; // Get the linear distance in XYZ // If the move is very short, check the E move distance // No E move either? Game over. float cartesian_mm = SQRT(sq(xdiff) + sq(ydiff) + sq(zdiff)); if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(ediff); if (UNEAR_ZERO(cartesian_mm)) return; // The length divided by the segment size // At least one segment is required uint16_t segments = cartesian_mm / segment_size; NOLESS(segments, 1); // The approximate length of each segment const float inv_segments = 1.0 / float(segments), segment_distance[XYZE] = { xdiff * inv_segments, ydiff * inv_segments, zdiff * inv_segments, ediff * inv_segments }; // SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOLNPAIR(" segments=", segments); // Get the raw current position as starting point float raw[XYZE]; COPY(raw, current_position); // Calculate and execute the segments while (--segments) { static millis_t next_idle_ms = millis() + 200UL; thermalManager.manage_heater(); // This returns immediately if not really needed. if (ELAPSED(millis(), next_idle_ms)) { next_idle_ms = millis() + 200UL; idle(); } LOOP_XYZE(i) raw[i] += segment_distance[i]; planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder); } // Since segment_distance is only approximate, // the final move must be to the exact destination. planner.buffer_line_kinematic(destination, fr_mm_s, active_extruder); } #endif // SEGMENT_LEVELED_MOVES /** * Prepare a linear move in a Cartesian setup. * * When a mesh-based leveling system is active, moves are segmented * according to the configuration of the leveling system. * * Returns true if current_position[] was set to destination[] */ inline bool prepare_move_to_destination_cartesian() { #if HAS_MESH if (planner.leveling_active && planner.leveling_active_at_z(destination[Z_AXIS])) { #if ENABLED(AUTO_BED_LEVELING_UBL) ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about return true; // all moves, including Z-only moves. #elif ENABLED(SEGMENT_LEVELED_MOVES) segmented_line_to_destination(MMS_SCALED(feedrate_mm_s)); return false; // caller will update current_position #else /** * For MBL and ABL-BILINEAR only segment moves when X or Y are involved. * Otherwise fall through to do a direct single move. */ if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) { #if ENABLED(MESH_BED_LEVELING) mesh_line_to_destination(MMS_SCALED(feedrate_mm_s)); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s)); #endif return true; } #endif } #endif // HAS_MESH buffer_line_to_destination(MMS_SCALED(feedrate_mm_s)); return false; // caller will update current_position } #endif // !IS_KINEMATIC #endif // !UBL_SEGMENTED #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) bool extruder_duplication_enabled = false; // Used in Dual X mode 2 #endif #if ENABLED(DUAL_X_CARRIAGE) DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; float inactive_extruder_x_pos = X2_MAX_POS, // used in mode 0 & 1 raised_parked_position[XYZE], // used in mode 1 duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2 bool active_extruder_parked = false; // used in mode 1 & 2 millis_t delayed_move_time = 0; // used in mode 1 int16_t duplicate_extruder_temp_offset = 0; // used in mode 2 float x_home_pos(const int extruder) { if (extruder == 0) return base_home_pos(X_AXIS); else /** * In dual carriage mode the extruder offset provides an override of the * second X-carriage position when homed - otherwise X2_HOME_POS is used. * This allows soft recalibration of the second extruder home position * without firmware reflash (through the M218 command). */ return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS; } /** * Prepare a linear move in a dual X axis setup * * Return true if current_position[] was set to destination[] */ inline bool dual_x_carriage_unpark() { if (active_extruder_parked) { switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: break; case DXC_AUTO_PARK_MODE: if (current_position[E_AXIS] == destination[E_AXIS]) { // This is a travel move (with no extrusion) // Skip it, but keep track of the current position // (so it can be used as the start of the next non-travel move) if (delayed_move_time != 0xFFFFFFFFUL) { set_current_from_destination(); NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]); delayed_move_time = millis(); return true; } } // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower for (uint8_t i = 0; i < 3; i++) planner.buffer_line( i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS], i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS], i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS], current_position[E_AXIS], i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS], active_extruder ); delayed_move_time = 0; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked"); #endif break; case DXC_DUPLICATION_MODE: if (active_extruder == 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos); SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset); } #endif // move duplicate extruder into correct duplication position. planner.set_position_mm( inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] ); planner.buffer_line( current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1 ); SYNC_PLAN_POSITION_KINEMATIC(); stepper.synchronize(); extruder_duplication_enabled = true; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked"); #endif } else { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0"); #endif } break; } } return false; } #endif // DUAL_X_CARRIAGE /** * Prepare a single move and get ready for the next one * * This may result in several calls to planner.buffer_line to * do smaller moves for DELTA, SCARA, mesh moves, etc. * * Make sure current_position[E] and destination[E] are good * before calling or cold/lengthy extrusion may get missed. */ void prepare_move_to_destination() { clamp_to_software_endstops(destination); gcode.refresh_cmd_timeout(); #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) if (!DEBUGGING(DRYRUN)) { if (destination[E_AXIS] != current_position[E_AXIS]) { #if ENABLED(PREVENT_COLD_EXTRUSION) if (thermalManager.tooColdToExtrude(active_extruder)) { current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #endif // PREVENT_COLD_EXTRUSION #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (FABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) { current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif // PREVENT_LENGTHY_EXTRUDE } } #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_unpark()) return; #endif if ( #if UBL_SEGMENTED ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s)) #elif IS_KINEMATIC prepare_kinematic_move_to(destination) #else prepare_move_to_destination_cartesian() #endif ) return; set_current_from_destination(); } #if HAS_AXIS_UNHOMED_ERR bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) { #if ENABLED(HOME_AFTER_DEACTIVATE) const bool xx = x && !axis_known_position[X_AXIS], yy = y && !axis_known_position[Y_AXIS], zz = z && !axis_known_position[Z_AXIS]; #else const bool xx = x && !axis_homed[X_AXIS], yy = y && !axis_homed[Y_AXIS], zz = z && !axis_homed[Z_AXIS]; #endif if (xx || yy || zz) { SERIAL_ECHO_START(); SERIAL_ECHOPGM(MSG_HOME " "); if (xx) SERIAL_ECHOPGM(MSG_X); if (yy) SERIAL_ECHOPGM(MSG_Y); if (zz) SERIAL_ECHOPGM(MSG_Z); SERIAL_ECHOLNPGM(" " MSG_FIRST); #if ENABLED(ULTRA_LCD) lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : ""); #endif return true; } return false; } #endif // HAS_AXIS_UNHOMED_ERR /** * The homing feedrate may vary */ inline float get_homing_bump_feedrate(const AxisEnum axis) { static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR; uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]); if (hbd < 1) { hbd = 10; SERIAL_ECHO_START(); SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1"); } return homing_feedrate(axis) / hbd; } /** * Home an individual linear axis */ static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]); SERIAL_ECHOPAIR(", ", distance); SERIAL_ECHOPAIR(", ", fr_mm_s); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) const bool deploy_bltouch = (axis == Z_AXIS && distance < 0); if (deploy_bltouch) set_bltouch_deployed(true); #endif #if QUIET_PROBING if (axis == Z_AXIS) probing_pause(true); #endif // Tell the planner the axis is at 0 current_position[axis] = 0; #if IS_SCARA SYNC_PLAN_POSITION_KINEMATIC(); current_position[axis] = distance; inverse_kinematics(current_position); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder); #else sync_plan_position(); current_position[axis] = distance; planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder); #endif stepper.synchronize(); #if QUIET_PROBING if (axis == Z_AXIS) probing_pause(false); #endif #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) if (deploy_bltouch) set_bltouch_deployed(false); #endif endstops.hit_on_purpose(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif } /** * Set an axis' current position to its home position (after homing). * * For Core and Cartesian robots this applies one-to-one when an * individual axis has been homed. * * DELTA should wait until all homing is done before setting the XYZ * current_position to home, because homing is a single operation. * In the case where the axis positions are already known and previously * homed, DELTA could home to X or Y individually by moving either one * to the center. However, homing Z always homes XY and Z. * * SCARA should wait until all XY homing is done before setting the XY * current_position to home, because neither X nor Y is at home until * both are at home. Z can however be homed individually. * * Callers must sync the planner position after calling this! */ void set_axis_is_at_home(const AxisEnum axis) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif axis_known_position[axis] = axis_homed[axis] = true; #if HAS_POSITION_SHIFT position_shift[axis] = 0; update_software_endstops(axis); #endif #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { current_position[X_AXIS] = x_home_pos(active_extruder); return; } #endif #if ENABLED(MORGAN_SCARA) scara_set_axis_is_at_home(axis); #elif ENABLED(DELTA) current_position[axis] = (axis == Z_AXIS ? delta_height : base_home_pos(axis)); #else current_position[axis] = base_home_pos(axis); #endif /** * Z Probe Z Homing? Account for the probe's Z offset. */ #if HAS_BED_PROBE && Z_HOME_DIR < 0 if (axis == Z_AXIS) { #if HOMING_Z_WITH_PROBE current_position[Z_AXIS] -= zprobe_zoffset; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***"); SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset); } #endif #elif ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***"); #endif } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { #if HAS_HOME_OFFSET SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]); SERIAL_ECHOLNPAIR("] = ", home_offset[axis]); #endif DEBUG_POS("", current_position); SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif #if ENABLED(I2C_POSITION_ENCODERS) I2CPEM.homed(axis); #endif } /** * Home an individual "raw axis" to its endstop. * This applies to XYZ on Cartesian and Core robots, and * to the individual ABC steppers on DELTA and SCARA. * * At the end of the procedure the axis is marked as * homed and the current position of that axis is updated. * Kinematic robots should wait till all axes are homed * before updating the current position. */ void homeaxis(const AxisEnum axis) { #if IS_SCARA // Only Z homing (with probe) is permitted if (axis != Z_AXIS) { BUZZ(100, 880); return; } #else #define CAN_HOME(A) \ (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0))) if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif const int axis_home_dir = #if ENABLED(DUAL_X_CARRIAGE) (axis == X_AXIS) ? x_home_dir(active_extruder) : #endif home_dir(axis); // Homing Z towards the bed? Deploy the Z probe or endstop. #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS && DEPLOY_PROBE()) return; #endif // Set flags for X, Y, Z motor locking #if ENABLED(X_DUAL_ENDSTOPS) if (axis == X_AXIS) stepper.set_homing_flag_x(true); #endif #if ENABLED(Y_DUAL_ENDSTOPS) if (axis == Y_AXIS) stepper.set_homing_flag_y(true); #endif #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) stepper.set_homing_flag_z(true); #endif // Disable stealthChop if used. Enable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) #if ENABLED(X_IS_TMC2130) if (axis == X_AXIS) tmc_sensorless_homing(stepperX); #endif #if ENABLED(Y_IS_TMC2130) if (axis == Y_AXIS) tmc_sensorless_homing(stepperY); #endif #endif // Fast move towards endstop until triggered #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:"); #endif do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir); // When homing Z with probe respect probe clearance const float bump = axis_home_dir * ( #if HOMING_Z_WITH_PROBE (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) : #endif home_bump_mm(axis) ); // If a second homing move is configured... if (bump) { // Move away from the endstop by the axis HOME_BUMP_MM #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:"); #endif do_homing_move(axis, -bump); // Slow move towards endstop until triggered #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:"); #endif do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis)); } #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) const bool pos_dir = axis_home_dir > 0; #if ENABLED(X_DUAL_ENDSTOPS) if (axis == X_AXIS) { const bool lock_x1 = pos_dir ? (endstops.x_endstop_adj > 0) : (endstops.x_endstop_adj < 0); float adj = FABS(endstops.x_endstop_adj); if (pos_dir) adj = -adj; if (lock_x1) stepper.set_x_lock(true); else stepper.set_x2_lock(true); do_homing_move(axis, adj); if (lock_x1) stepper.set_x_lock(false); else stepper.set_x2_lock(false); stepper.set_homing_flag_x(false); } #endif #if ENABLED(Y_DUAL_ENDSTOPS) if (axis == Y_AXIS) { const bool lock_y1 = pos_dir ? (endstops.y_endstop_adj > 0) : (endstops.y_endstop_adj < 0); float adj = FABS(endstops.y_endstop_adj); if (pos_dir) adj = -adj; if (lock_y1) stepper.set_y_lock(true); else stepper.set_y2_lock(true); do_homing_move(axis, adj); if (lock_y1) stepper.set_y_lock(false); else stepper.set_y2_lock(false); stepper.set_homing_flag_y(false); } #endif #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) { const bool lock_z1 = pos_dir ? (endstops.z_endstop_adj > 0) : (endstops.z_endstop_adj < 0); float adj = FABS(endstops.z_endstop_adj); if (pos_dir) adj = -adj; if (lock_z1) stepper.set_z_lock(true); else stepper.set_z2_lock(true); do_homing_move(axis, adj); if (lock_z1) stepper.set_z_lock(false); else stepper.set_z2_lock(false); stepper.set_homing_flag_z(false); } #endif #endif #if IS_SCARA set_axis_is_at_home(axis); SYNC_PLAN_POSITION_KINEMATIC(); #elif ENABLED(DELTA) // Delta has already moved all three towers up in G28 // so here it re-homes each tower in turn. // Delta homing treats the axes as normal linear axes. // retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:"); #endif do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR); } #else // For cartesian/core machines, // set the axis to its home position set_axis_is_at_home(axis); sync_plan_position(); destination[axis] = current_position[axis]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position); #endif #endif // Re-enable stealthChop if used. Disable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) #if ENABLED(X_IS_TMC2130) if (axis == X_AXIS) tmc_sensorless_homing(stepperX, false); #endif #if ENABLED(Y_IS_TMC2130) if (axis == Y_AXIS) tmc_sensorless_homing(stepperY, false); #endif #endif // Put away the Z probe #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS && STOW_PROBE()) return; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif } // homeaxis() #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) /** * Software endstops can be used to monitor the open end of * an axis that has a hardware endstop on the other end. Or * they can prevent axes from moving past endstops and grinding. * * To keep doing their job as the coordinate system changes, * the software endstop positions must be refreshed to remain * at the same positions relative to the machine. */ void update_software_endstops(const AxisEnum axis) { #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT workspace_offset[axis] = home_offset[axis] + position_shift[axis]; #endif #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { // In Dual X mode hotend_offset[X] is T1's home position float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS); if (active_extruder != 0) { // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger) soft_endstop_min[X_AXIS] = X2_MIN_POS; soft_endstop_max[X_AXIS] = dual_max_x; } else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { // In Duplication Mode, T0 can move as far left as X_MIN_POS // but not so far to the right that T1 would move past the end soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS); soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset); } else { // In other modes, T0 can move from X_MIN_POS to X_MAX_POS soft_endstop_min[axis] = base_min_pos(axis); soft_endstop_max[axis] = base_max_pos(axis); } } #elif ENABLED(DELTA) soft_endstop_min[axis] = base_min_pos(axis); soft_endstop_max[axis] = (axis == Z_AXIS ? delta_height : base_max_pos(axis)); #else soft_endstop_min[axis] = base_min_pos(axis); soft_endstop_max[axis] = base_max_pos(axis); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("For ", axis_codes[axis]); #if HAS_HOME_OFFSET SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]); #endif #if HAS_POSITION_SHIFT SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]); #endif SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]); SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]); } #endif #if ENABLED(DELTA) switch(axis) { case X_AXIS: case Y_AXIS: // Get a minimum radius for clamping soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]); soft_endstop_radius_2 = sq(soft_endstop_radius); break; case Z_AXIS: delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top(); default: break; } #endif } #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE #if HAS_M206_COMMAND /** * Change the home offset for an axis, update the current * position and the software endstops to retain the same * relative distance to the new home. * * Since this changes the current_position, code should * call sync_plan_position soon after this. */ void set_home_offset(const AxisEnum axis, const float v) { current_position[axis] += v - home_offset[axis]; home_offset[axis] = v; update_software_endstops(axis); } #endif // HAS_M206_COMMAND