/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) #include "ubl.h" #include "../../Marlin.h" #include "../../module/planner.h" #include "../../module/stepper.h" #include "../../module/motion.h" #include extern float destination[XYZE]; #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this inline void set_current_to_destination() { COPY(current_position, destination); } #else extern void set_current_to_destination(); #endif #if ENABLED(DELTA) extern float delta[ABC], endstop_adj[ABC]; extern float delta_radius, delta_tower_angle_trim[2], delta_tower[ABC][2], delta_diagonal_rod, delta_calibration_radius, delta_diagonal_rod_2_tower[ABC], delta_segments_per_second, delta_clip_start_height; extern float delta_safe_distance_from_top(); #endif static void debug_echo_axis(const AxisEnum axis) { if (current_position[axis] == destination[axis]) SERIAL_ECHOPGM("-------------"); else SERIAL_ECHO_F(destination[X_AXIS], 6); } void debug_current_and_destination(const char *title) { // if the title message starts with a '!' it is so important, we are going to // ignore the status of the g26_debug_flag if (*title != '!' && !ubl.g26_debug_flag) return; const float de = destination[E_AXIS] - current_position[E_AXIS]; if (de == 0.0) return; // Printing moves only const float dx = destination[X_AXIS] - current_position[X_AXIS], dy = destination[Y_AXIS] - current_position[Y_AXIS], xy_dist = HYPOT(dx, dy); if (xy_dist == 0.0) return; SERIAL_ECHOPGM(" fpmm="); const float fpmm = de / xy_dist; SERIAL_ECHO_F(fpmm, 6); SERIAL_ECHOPGM(" current=( "); SERIAL_ECHO_F(current_position[X_AXIS], 6); SERIAL_ECHOPGM(", "); SERIAL_ECHO_F(current_position[Y_AXIS], 6); SERIAL_ECHOPGM(", "); SERIAL_ECHO_F(current_position[Z_AXIS], 6); SERIAL_ECHOPGM(", "); SERIAL_ECHO_F(current_position[E_AXIS], 6); SERIAL_ECHOPGM(" ) destination=( "); debug_echo_axis(X_AXIS); SERIAL_ECHOPGM(", "); debug_echo_axis(Y_AXIS); SERIAL_ECHOPGM(", "); debug_echo_axis(Z_AXIS); SERIAL_ECHOPGM(", "); debug_echo_axis(E_AXIS); SERIAL_ECHOPGM(" ) "); SERIAL_ECHO(title); SERIAL_EOL(); } void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) { /** * Much of the nozzle movement will be within the same cell. So we will do as little computation * as possible to determine if this is the case. If this move is within the same cell, we will * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave */ const float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] }, end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] }; const int cell_start_xi = get_cell_index_x(RAW_X_POSITION(start[X_AXIS])), cell_start_yi = get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])), cell_dest_xi = get_cell_index_x(RAW_X_POSITION(end[X_AXIS])), cell_dest_yi = get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS])); if (g26_debug_flag) { SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]); SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); SERIAL_CHAR(')'); SERIAL_EOL(); debug_current_and_destination(PSTR("Start of ubl.line_to_destination()")); } if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell, /** * we don't need to break up the move * * If we are moving off the print bed, we are going to allow the move at this level. * But we detect it and isolate it. For now, we just pass along the request. */ if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) { // Note: There is no Z Correction in this case. We are off the grid and don't know what // a reasonable correction would be. planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + state.z_offset, end[E_AXIS], feed_rate, extruder); set_current_to_destination(); if (g26_debug_flag) debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()")); return; } FINAL_MOVE: /** * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And, * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. */ const float xratio = (RAW_X_POSITION(end[X_AXIS]) - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST)); float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio * (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]), z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]); if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0; // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // are going to apply the Y-Distance into the cell to interpolate the final Z correction. const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST)); float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0; /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + state.z_offset, end[E_AXIS], feed_rate, extruder); if (g26_debug_flag) debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()")); set_current_to_destination(); return; } /** * If we get here, we are processing a move that crosses at least one Mesh Line. We will check * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less * computation and in fact most lines are of this nature. We will check for that in the following * blocks of code: */ const float dx = end[X_AXIS] - start[X_AXIS], dy = end[Y_AXIS] - start[Y_AXIS]; const int left_flag = dx < 0.0 ? 1 : 0, down_flag = dy < 0.0 ? 1 : 0; const float adx = left_flag ? -dx : dx, ady = down_flag ? -dy : dy; const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1, dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1; /** * Compute the scaling factor for the extruder for each partial move. * We need to watch out for zero length moves because it will cause us to * have an infinate scaling factor. We are stuck doing a floating point * divide to get our scaling factor, but after that, we just multiply by this * number. We also pick our scaling factor based on whether the X or Y * component is larger. We use the biggest of the two to preserve precision. */ const bool use_x_dist = adx > ady; float on_axis_distance = use_x_dist ? dx : dy, e_position = end[E_AXIS] - start[E_AXIS], z_position = end[Z_AXIS] - start[Z_AXIS]; const float e_normalized_dist = e_position / on_axis_distance, z_normalized_dist = z_position / on_axis_distance; int current_xi = cell_start_xi, current_yi = cell_start_yi; const float m = dy / dx, c = start[Y_AXIS] - m * start[X_AXIS]; const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0), inf_m_flag = (isinf(m) != 0); /** * This block handles vertical lines. These are lines that stay within the same * X Cell column. They do not need to be perfectly vertical. They just can * not cross into another X Cell column. */ if (dxi == 0) { // Check for a vertical line current_yi += down_flag; // Line is heading down, we just want to go to the bottom while (current_yi != cell_dest_yi + down_flag) { current_yi += dyi; const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi)); /** * if the slope of the line is infinite, we won't do the calculations * else, we know the next X is the same so we can recover and continue! * Calculate X at the next Y mesh line */ const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); z0 *= fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; const float y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi)); /** * Without this check, it is possible for the algorithm to generate a zero length move in the case * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that * happens, it might be best to remove the check and always 'schedule' the move because * the planner._buffer_line() routine will filter it if that happens. */ if (y != start[Y_AXIS]) { if (!inf_normalized_flag) { on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS]; e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { e_position = end[E_AXIS]; z_position = end[Z_AXIS]; } planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder); } //else printf("FIRST MOVE PRUNED "); } if (g26_debug_flag) debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()")); // // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done. // if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); return; } /** * * This block handles horizontal lines. These are lines that stay within the same * Y Cell row. They do not need to be perfectly horizontal. They just can * not cross into another Y Cell row. * */ if (dyi == 0) { // Check for a horizontal line current_xi += left_flag; // Line is heading left, we just want to go to the left // edge of this cell for the first move. while (current_xi != cell_dest_xi + left_flag) { current_xi += dxi; const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)), y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); z0 *= fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; const float x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)); /** * Without this check, it is possible for the algorithm to generate a zero length move in the case * where the line is heading left and it is starting right on a Mesh Line boundary. For how often * that happens, it might be best to remove the check and always 'schedule' the move because * the planner._buffer_line() routine will filter it if that happens. */ if (x != start[X_AXIS]) { if (!inf_normalized_flag) { on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS]; e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { e_position = end[E_AXIS]; z_position = end[Z_AXIS]; } planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder); } //else printf("FIRST MOVE PRUNED "); } if (g26_debug_flag) debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()")); if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); return; } /** * * This block handles the generic case of a line crossing both X and Y Mesh lines. * */ int xi_cnt = cell_start_xi - cell_dest_xi, yi_cnt = cell_start_yi - cell_dest_yi; if (xi_cnt < 0) xi_cnt = -xi_cnt; if (yi_cnt < 0) yi_cnt = -yi_cnt; current_xi += left_flag; current_yi += down_flag; while (xi_cnt > 0 || yi_cnt > 0) { const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi + dxi)), next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi + dyi)), y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line // (No need to worry about m being zero. // If that was the case, it was already detected // as a vertical line move above.) if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first // Yes! Crossing a Y Mesh Line next float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); z0 *= fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS]; e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { e_position = end[E_AXIS]; z_position = end[Z_AXIS]; } planner._buffer_line(x, next_mesh_line_y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder); current_yi += dyi; yi_cnt--; } else { // Yes! Crossing a X Mesh Line next float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); z0 *= fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN * in z_values[][] and propagate through the * calculations. If our correction is NAN, we throw it out * because part of the Mesh is undefined and we don't have the * information we need to complete the height correction. */ if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS]; e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { e_position = end[E_AXIS]; z_position = end[Z_AXIS]; } planner._buffer_line(next_mesh_line_x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder); current_xi += dxi; xi_cnt--; } if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE } if (g26_debug_flag) debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()")); if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); } #if UBL_DELTA // macro to inline copy exactly 4 floats, don't rely on sizeof operator #define COPY_XYZE( target, source ) { \ target[X_AXIS] = source[X_AXIS]; \ target[Y_AXIS] = source[Y_AXIS]; \ target[Z_AXIS] = source[Z_AXIS]; \ target[E_AXIS] = source[E_AXIS]; \ } #if IS_SCARA // scale the feed rate from mm/s to degrees/s static float scara_feed_factor, scara_oldA, scara_oldB; #endif // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic, // so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first. inline void _O2 ubl_buffer_segment_raw( float rx, float ry, float rz, float le, float fr ) { #if ENABLED(DELTA) // apply delta inverse_kinematics const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx, delta_tower[A_AXIS][Y_AXIS] - ry )); const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS] - HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx, delta_tower[B_AXIS][Y_AXIS] - ry )); const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS] - HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx, delta_tower[C_AXIS][Y_AXIS] - ry )); planner._buffer_line(delta_A, delta_B, delta_C, le, fr, active_extruder); #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw) const float lseg[XYZ] = { LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz) }; inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ] // should move the feedrate scaling to scara inverse_kinematics const float adiff = FABS(delta[A_AXIS] - scara_oldA), bdiff = FABS(delta[B_AXIS] - scara_oldB); scara_oldA = delta[A_AXIS]; scara_oldB = delta[B_AXIS]; float s_feedrate = max(adiff, bdiff) * scara_feed_factor; planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], le, s_feedrate, active_extruder); #else // CARTESIAN // Cartesian _buffer_line seems to take LOGICAL, not RAW coordinates const float lx = LOGICAL_X_POSITION(rx), ly = LOGICAL_Y_POSITION(ry), lz = LOGICAL_Z_POSITION(rz); planner._buffer_line(lx, ly, lz, le, fr, active_extruder); #endif } /** * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics. * This calls planner._buffer_line multiple times for small incremental moves. * Returns true if did NOT move, false if moved (requires current_position update). */ bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate) { if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary return true; // did not move, so current_position still accurate const float tot_dx = ltarget[X_AXIS] - current_position[X_AXIS], tot_dy = ltarget[Y_AXIS] - current_position[Y_AXIS], tot_dz = ltarget[Z_AXIS] - current_position[Z_AXIS], tot_de = ltarget[E_AXIS] - current_position[E_AXIS]; const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance #if IS_KINEMATIC const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments) #else uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length #endif NOLESS(segments, 1); // must have at least one segment const float inv_segments = 1.0 / segments; // divide once, multiply thereafter #if IS_SCARA // scale the feed rate from mm/s to degrees/s scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate; scara_oldA = stepper.get_axis_position_degrees(A_AXIS); scara_oldB = stepper.get_axis_position_degrees(B_AXIS); #endif const float seg_dx = tot_dx * inv_segments, seg_dy = tot_dy * inv_segments, seg_dz = tot_dz * inv_segments, seg_de = tot_de * inv_segments; // Note that E segment distance could vary slightly as z mesh height // changes for each segment, but small enough to ignore. float seg_rx = RAW_X_POSITION(current_position[X_AXIS]), seg_ry = RAW_Y_POSITION(current_position[Y_AXIS]), seg_rz = RAW_Z_POSITION(current_position[Z_AXIS]), seg_le = current_position[E_AXIS]; const bool above_fade_height = ( #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) planner.z_fade_height != 0 && planner.z_fade_height < RAW_Z_POSITION(ltarget[Z_AXIS]) #else false #endif ); // Only compute leveling per segment if ubl active and target below z_fade_height. if (!state.active || above_fade_height) { // no mesh leveling const float z_offset = state.active ? state.z_offset : 0.0; do { if (--segments) { // not the last segment seg_rx += seg_dx; seg_ry += seg_dy; seg_rz += seg_dz; seg_le += seg_de; } else { // last segment, use exact destination seg_rx = RAW_X_POSITION(ltarget[X_AXIS]); seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]); seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]); seg_le = ltarget[E_AXIS]; } ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_offset, seg_le, feedrate ); } while (segments); return false; // moved but did not set_current_to_destination(); } // Otherwise perform per-segment leveling #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]); #endif // increment to first segment destination seg_rx += seg_dx; seg_ry += seg_dy; seg_rz += seg_dz; seg_le += seg_de; for(;;) { // for each mesh cell encountered during the move // Compute mesh cell invariants that remain constant for all segments within cell. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter) // the bilinear interpolation from the adjacent cell within the mesh will still work. // Inner loop will exit each time (because out of cell bounds) but will come back // in top of loop and again re-find same adjacent cell and use it, just less efficient // for mesh inset area. int8_t cell_xi = (seg_rx - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)), cell_yi = (seg_ry - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_X_DIST)); cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add y0 = mesh_index_to_ypos(cell_yi); float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating state.active (G29 A) if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell, if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points float cx = seg_rx - x0, // cell-relative x and y cy = seg_ry - y0; const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right) z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right) float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell) const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1 float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell) // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop) // As subsequent segments step through this cell, the z_cxy0 intercept will change // and the z_cxym slope will change, both as a function of cx within the cell, and // each change by a constant for fixed segment lengths. const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0 z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym for(;;) { // for all segments within this mesh cell float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height #endif z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z if (--segments == 0) { // if this is last segment, use ltarget for exact seg_rx = RAW_X_POSITION(ltarget[X_AXIS]); seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]); seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]); seg_le = ltarget[E_AXIS]; } ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate ); if (segments == 0 ) // done with last segment return false; // did not set_current_to_destination() seg_rx += seg_dx; seg_ry += seg_dy; seg_rz += seg_dz; seg_le += seg_de; cx += seg_dx; cy += seg_dy; if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next break; } // Next segment still within same mesh cell, adjust the per-segment // slope and intercept to compute next z height. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0 z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym } // segment loop } // cell loop } #endif // UBL_DELTA #endif // AUTO_BED_LEVELING_UBL