/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "utility.h" #include "../Marlin.h" #include "../module/temperature.h" void safe_delay(millis_t ms) { while (ms > 50) { ms -= 50; delay(50); thermalManager.manage_heater(); } delay(ms); thermalManager.manage_heater(); // This keeps us safe if too many small safe_delay() calls are made } #if ENABLED(EEPROM_SETTINGS) || ENABLED(SD_FIRMWARE_UPDATE) void crc16(uint16_t *crc, const void * const data, uint16_t cnt) { uint8_t *ptr = (uint8_t *)data; while (cnt--) { *crc = (uint16_t)(*crc ^ (uint16_t)(((uint16_t)*ptr++) << 8)); for (uint8_t i = 0; i < 8; i++) *crc = (uint16_t)((*crc & 0x8000) ? ((uint16_t)(*crc << 1) ^ 0x1021) : (*crc << 1)); } } #endif // EEPROM_SETTINGS || SD_FIRMWARE_UPDATE #if ENABLED(ULTRA_LCD) || ENABLED(DEBUG_LEVELING_FEATURE) || ENABLED(EXTENSIBLE_UI) char conv[8] = { 0 }; #define DIGIT(n) ('0' + (n)) #define DIGIMOD(n, f) DIGIT((n)/(f) % 10) #define RJDIGIT(n, f) ((n) >= (f) ? DIGIMOD(n, f) : ' ') #define MINUSOR(n, alt) (n >= 0 ? (alt) : (n = -n, '-')) // Convert unsigned 8bit int to string 123 format char* ui8tostr3(const uint8_t i) { conv[4] = RJDIGIT(i, 100); conv[5] = RJDIGIT(i, 10); conv[6] = DIGIMOD(i, 1); return &conv[4]; } // Convert signed 8bit int to rj string with 123 or -12 format char* i8tostr3(const int8_t x) { int xx = x; conv[4] = MINUSOR(xx, RJDIGIT(xx, 100)); conv[5] = RJDIGIT(xx, 10); conv[6] = DIGIMOD(xx, 1); return &conv[4]; } // Convert unsigned 16bit int to string 123 format char* ui16tostr3(const uint16_t xx) { conv[4] = RJDIGIT(xx, 100); conv[5] = RJDIGIT(xx, 10); conv[6] = DIGIMOD(xx, 1); return &conv[4]; } // Convert unsigned 16bit int to string 1234 format char* ui16tostr4(const uint16_t xx) { conv[3] = RJDIGIT(xx, 1000); conv[4] = RJDIGIT(xx, 100); conv[5] = RJDIGIT(xx, 10); conv[6] = DIGIMOD(xx, 1); return &conv[3]; } // Convert signed 16bit int to rj string with 123 or -12 format char* i16tostr3(const int16_t x) { int xx = x; conv[4] = MINUSOR(xx, RJDIGIT(xx, 100)); conv[5] = RJDIGIT(xx, 10); conv[6] = DIGIMOD(xx, 1); return &conv[4]; } // Convert unsigned 16bit int to lj string with 123 format char* i16tostr3left(const int16_t i) { char *str = &conv[6]; *str = DIGIMOD(i, 1); if (i >= 10) { *(--str) = DIGIMOD(i, 10); if (i >= 100) *(--str) = DIGIMOD(i, 100); } return str; } // Convert signed 16bit int to rj string with 1234, _123, -123, _-12, or __-1 format char* i16tostr4sign(const int16_t i) { const bool neg = i < 0; const int ii = neg ? -i : i; if (i >= 1000) { conv[3] = DIGIMOD(ii, 1000); conv[4] = DIGIMOD(ii, 100); conv[5] = DIGIMOD(ii, 10); } else if (ii >= 100) { conv[3] = neg ? '-' : ' '; conv[4] = DIGIMOD(ii, 100); conv[5] = DIGIMOD(ii, 10); } else { conv[3] = ' '; conv[4] = ' '; if (ii >= 10) { conv[4] = neg ? '-' : ' '; conv[5] = DIGIMOD(ii, 10); } else { conv[5] = neg ? '-' : ' '; } } conv[6] = DIGIMOD(ii, 1); return &conv[3]; } // Convert unsigned float to string with 1.23 format char* ftostr12ns(const float &f) { const long i = ((f < 0 ? -f : f) * 1000 + 5) / 10; conv[3] = DIGIMOD(i, 100); conv[4] = '.'; conv[5] = DIGIMOD(i, 10); conv[6] = DIGIMOD(i, 1); return &conv[3]; } // Convert signed float to fixed-length string with 023.45 / -23.45 format char* ftostr52(const float &f) { long i = (f * 1000 + (f < 0 ? -5: 5)) / 10; conv[1] = MINUSOR(i, DIGIMOD(i, 10000)); conv[2] = DIGIMOD(i, 1000); conv[3] = DIGIMOD(i, 100); conv[4] = '.'; conv[5] = DIGIMOD(i, 10); conv[6] = DIGIMOD(i, 1); return &conv[1]; } #if ENABLED(LCD_DECIMAL_SMALL_XY) // Convert float to rj string with 1234, _123, -123, _-12, 12.3, _1.2, or -1.2 format char* ftostr4sign(const float &f) { const int i = (f * 100 + (f < 0 ? -5: 5)) / 10; if (!WITHIN(i, -99, 999)) return i16tostr4sign((int)f); const bool neg = i < 0; const int ii = neg ? -i : i; conv[3] = neg ? '-' : (ii >= 100 ? DIGIMOD(ii, 100) : ' '); conv[4] = DIGIMOD(ii, 10); conv[5] = '.'; conv[6] = DIGIMOD(ii, 1); return &conv[3]; } #endif // LCD_DECIMAL_SMALL_XY // Convert float to fixed-length string with +123.4 / -123.4 format char* ftostr41sign(const float &f) { int i = (f * 100 + (f < 0 ? -5: 5)) / 10; conv[1] = MINUSOR(i, '+'); conv[2] = DIGIMOD(i, 1000); conv[3] = DIGIMOD(i, 100); conv[4] = DIGIMOD(i, 10); conv[5] = '.'; conv[6] = DIGIMOD(i, 1); return &conv[1]; } // Convert signed float to string (6 digit) with -1.234 / _0.000 / +1.234 format char* ftostr43sign(const float &f, char plus/*=' '*/) { long i = (f * 10000 + (f < 0 ? -5: 5)) / 10; conv[1] = i ? MINUSOR(i, plus) : ' '; conv[2] = DIGIMOD(i, 1000); conv[3] = '.'; conv[4] = DIGIMOD(i, 100); conv[5] = DIGIMOD(i, 10); conv[6] = DIGIMOD(i, 1); return &conv[1]; } // Convert unsigned float to rj string with 12345 format char* ftostr5rj(const float &f) { const long i = ((f < 0 ? -f : f) * 10 + 5) / 10; conv[2] = RJDIGIT(i, 10000); conv[3] = RJDIGIT(i, 1000); conv[4] = RJDIGIT(i, 100); conv[5] = RJDIGIT(i, 10); conv[6] = DIGIMOD(i, 1); return &conv[2]; } // Convert signed float to string with +1234.5 format char* ftostr51sign(const float &f) { long i = (f * 100 + (f < 0 ? -5: 5)) / 10; conv[0] = MINUSOR(i, '+'); conv[1] = DIGIMOD(i, 10000); conv[2] = DIGIMOD(i, 1000); conv[3] = DIGIMOD(i, 100); conv[4] = DIGIMOD(i, 10); conv[5] = '.'; conv[6] = DIGIMOD(i, 1); return conv; } // Convert signed float to string with +123.45 format char* ftostr52sign(const float &f) { long i = (f * 1000 + (f < 0 ? -5: 5)) / 10; conv[0] = MINUSOR(i, '+'); conv[1] = DIGIMOD(i, 10000); conv[2] = DIGIMOD(i, 1000); conv[3] = DIGIMOD(i, 100); conv[4] = '.'; conv[5] = DIGIMOD(i, 10); conv[6] = DIGIMOD(i, 1); return conv; } // Convert unsigned float to string with 1234.56 format omitting trailing zeros char* ftostr62rj(const float &f) { const long i = ((f < 0 ? -f : f) * 1000 + 5) / 10; conv[0] = RJDIGIT(i, 100000); conv[1] = RJDIGIT(i, 10000); conv[2] = RJDIGIT(i, 1000); conv[3] = DIGIMOD(i, 100); conv[4] = '.'; conv[5] = DIGIMOD(i, 10); conv[6] = DIGIMOD(i, 1); return conv; } // Convert signed float to space-padded string with -_23.4_ format char* ftostr52sp(const float &f) { long i = (f * 1000 + (f < 0 ? -5: 5)) / 10; uint8_t dig; conv[0] = MINUSOR(i, ' '); conv[1] = RJDIGIT(i, 10000); conv[2] = RJDIGIT(i, 1000); conv[3] = DIGIMOD(i, 100); if ((dig = i % 10)) { // second digit after decimal point? conv[4] = '.'; conv[5] = DIGIMOD(i, 10); conv[6] = DIGIT(dig); } else { if ((dig = (i / 10) % 10)) { // first digit after decimal point? conv[4] = '.'; conv[5] = DIGIT(dig); } else // nothing after decimal point conv[4] = conv[5] = ' '; conv[6] = ' '; } return conv; } #endif // ULTRA_LCD #if ENABLED(DEBUG_LEVELING_FEATURE) #include "../module/probe.h" #include "../module/motion.h" #include "../module/stepper.h" #include "../feature/bedlevel/bedlevel.h" void log_machine_info() { SERIAL_ECHOLNPGM("Machine Type: " #if ENABLED(DELTA) "Delta" #elif IS_SCARA "SCARA" #elif IS_CORE "Core" #else "Cartesian" #endif ); SERIAL_ECHOLNPGM("Probe: " #if ENABLED(PROBE_MANUALLY) "PROBE_MANUALLY" #elif ENABLED(FIX_MOUNTED_PROBE) "FIX_MOUNTED_PROBE" #elif ENABLED(BLTOUCH) "BLTOUCH" #elif HAS_Z_SERVO_PROBE "SERVO PROBE" #elif ENABLED(Z_PROBE_SLED) "Z_PROBE_SLED" #elif ENABLED(Z_PROBE_ALLEN_KEY) "Z_PROBE_ALLEN_KEY" #else "NONE" #endif ); #if HAS_BED_PROBE SERIAL_ECHOPGM("Probe Offset X:" STRINGIFY(X_PROBE_OFFSET_FROM_EXTRUDER) " Y:" STRINGIFY(Y_PROBE_OFFSET_FROM_EXTRUDER)); SERIAL_ECHOPAIR(" Z:", zprobe_zoffset); if ((X_PROBE_OFFSET_FROM_EXTRUDER) > 0) SERIAL_ECHOPGM(" (Right"); else if ((X_PROBE_OFFSET_FROM_EXTRUDER) < 0) SERIAL_ECHOPGM(" (Left"); else if ((Y_PROBE_OFFSET_FROM_EXTRUDER) != 0) SERIAL_ECHOPGM(" (Middle"); else SERIAL_ECHOPGM(" (Aligned With"); if ((Y_PROBE_OFFSET_FROM_EXTRUDER) > 0) { #if IS_SCARA SERIAL_ECHOPGM("-Distal"); #else SERIAL_ECHOPGM("-Back"); #endif } else if ((Y_PROBE_OFFSET_FROM_EXTRUDER) < 0) { #if IS_SCARA SERIAL_ECHOPGM("-Proximal"); #else SERIAL_ECHOPGM("-Front"); #endif } else if ((X_PROBE_OFFSET_FROM_EXTRUDER) != 0) SERIAL_ECHOPGM("-Center"); if (zprobe_zoffset < 0) SERIAL_ECHOPGM(" & Below"); else if (zprobe_zoffset > 0) SERIAL_ECHOPGM(" & Above"); else SERIAL_ECHOPGM(" & Same Z as"); SERIAL_ECHOLNPGM(" Nozzle)"); #endif #if HAS_ABL SERIAL_ECHOLNPGM("Auto Bed Leveling: " #if ENABLED(AUTO_BED_LEVELING_LINEAR) "LINEAR" #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) "BILINEAR" #elif ENABLED(AUTO_BED_LEVELING_3POINT) "3POINT" #elif ENABLED(AUTO_BED_LEVELING_UBL) "UBL" #endif ); if (planner.leveling_active) { SERIAL_ECHOLNPGM(" (enabled)"); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (planner.z_fade_height) SERIAL_ECHOLNPAIR("Z Fade: ", planner.z_fade_height); #endif #if ABL_PLANAR const float diff[XYZ] = { planner.get_axis_position_mm(X_AXIS) - current_position[X_AXIS], planner.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS], planner.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS] }; SERIAL_ECHOPGM("ABL Adjustment X"); if (diff[X_AXIS] > 0) SERIAL_CHAR('+'); SERIAL_ECHO(diff[X_AXIS]); SERIAL_ECHOPGM(" Y"); if (diff[Y_AXIS] > 0) SERIAL_CHAR('+'); SERIAL_ECHO(diff[Y_AXIS]); SERIAL_ECHOPGM(" Z"); if (diff[Z_AXIS] > 0) SERIAL_CHAR('+'); SERIAL_ECHO(diff[Z_AXIS]); #else #if ENABLED(AUTO_BED_LEVELING_UBL) SERIAL_ECHOPGM("UBL Adjustment Z"); const float rz = ubl.get_z_correction(current_position[X_AXIS], current_position[Y_AXIS]); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) SERIAL_ECHOPGM("ABL Adjustment Z"); const float rz = bilinear_z_offset(current_position); #endif SERIAL_ECHO(ftostr43sign(rz, '+')); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (planner.z_fade_height) { SERIAL_ECHOPAIR(" (", ftostr43sign(rz * planner.fade_scaling_factor_for_z(current_position[Z_AXIS]), '+')); SERIAL_CHAR(')'); } #endif #endif } else SERIAL_ECHOLNPGM(" (disabled)"); SERIAL_EOL(); #elif ENABLED(MESH_BED_LEVELING) SERIAL_ECHOPGM("Mesh Bed Leveling"); if (planner.leveling_active) { SERIAL_ECHOLNPGM(" (enabled)"); SERIAL_ECHOPAIR("MBL Adjustment Z", ftostr43sign(mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS] #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) , 1.0 #endif ), '+')); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (planner.z_fade_height) { SERIAL_ECHOPAIR(" (", ftostr43sign( mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS], planner.fade_scaling_factor_for_z(current_position[Z_AXIS])), '+' )); SERIAL_CHAR(')'); } #endif } else SERIAL_ECHOPGM(" (disabled)"); SERIAL_EOL(); #endif // MESH_BED_LEVELING } #endif // DEBUG_LEVELING_FEATURE void print_bin(const uint16_t val) { for (uint8_t i = 16; i--;) { SERIAL_ECHO(TEST(val, i)); if (!(i & 0x3)) SERIAL_CHAR(' '); } }