/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * module/probe.h - Move, deploy, enable, etc. */ #include "../inc/MarlinConfig.h" #include "motion.h" #if HAS_BED_PROBE enum ProbePtRaise : uint8_t { PROBE_PT_NONE, // No raise or stow after run_z_probe PROBE_PT_STOW, // Do a complete stow after run_z_probe PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe }; #endif class Probe { public: #if HAS_BED_PROBE static xyz_pos_t offset; static bool set_deployed(const bool deploy); #if IS_KINEMATIC #if HAS_PROBE_XY_OFFSET // Return true if the both nozzle and the probe can reach the given point. // Note: This won't work on SCARA since the probe offset rotates with the arm. static inline bool can_reach(const float &rx, const float &ry) { return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y) // The nozzle can go where it needs to go? && position_is_reachable(rx, ry, ABS(PROBING_MARGIN)); // Can the nozzle also go near there? } #else FORCE_INLINE static bool can_reach(const float &rx, const float &ry) { return position_is_reachable(rx, ry, PROBING_MARGIN); } #endif #else /** * Return whether the given position is within the bed, and whether the nozzle * can reach the position required to put the probe at the given position. * * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the * nozzle must be be able to reach +10,-10. */ static inline bool can_reach(const float &rx, const float &ry) { return position_is_reachable(rx - offset_xy.x, ry - offset_xy.y) && WITHIN(rx, min_x() - fslop, max_x() + fslop) && WITHIN(ry, min_y() - fslop, max_y() + fslop); } #endif #ifdef Z_AFTER_PROBING static void move_z_after_probing(); #endif static float probe_at_point(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true, const bool sanity_check=true); static inline float probe_at_point(const xy_pos_t &pos, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true, const bool sanity_check=true) { return probe_at_point(pos.x, pos.y, raise_after, verbose_level, probe_relative, sanity_check); } #else static constexpr xyz_pos_t offset = xyz_pos_t({ 0, 0, 0 }); // See #16767 static bool set_deployed(const bool) { return false; } FORCE_INLINE static bool can_reach(const float &rx, const float &ry) { return position_is_reachable(rx, ry); } #endif FORCE_INLINE static bool can_reach(const xy_pos_t &pos) { return can_reach(pos.x, pos.y); } FORCE_INLINE static bool good_bounds(const xy_pos_t &lf, const xy_pos_t &rb) { return ( #if IS_KINEMATIC can_reach(lf.x, 0) && can_reach(rb.x, 0) && can_reach(0, lf.y) && can_reach(0, rb.y) #else can_reach(lf) && can_reach(rb) #endif ); } // Use offset_xy for read only access // More optimal the XY offset is known to always be zero. #if HAS_PROBE_XY_OFFSET static const xyz_pos_t &offset_xy; #else static constexpr xy_pos_t offset_xy = xy_pos_t({ 0, 0 }); // See #16767 #endif static inline bool deploy() { return set_deployed(true); } static inline bool stow() { return set_deployed(false); } #if HAS_BED_PROBE || HAS_LEVELING #if IS_KINEMATIC static constexpr float printable_radius = ( #if ENABLED(DELTA) DELTA_PRINTABLE_RADIUS #elif IS_SCARA SCARA_PRINTABLE_RADIUS #endif ); static inline float probe_radius() { return printable_radius - _MAX(PROBING_MARGIN, HYPOT(offset_xy.x, offset_xy.y)); } #endif static inline float min_x() { return ( #if IS_KINEMATIC (X_CENTER) - probe_radius() #else _MAX((X_MIN_BED) + (PROBING_MARGIN_LEFT), (X_MIN_POS) + offset_xy.x) #endif ); } static inline float max_x() { return ( #if IS_KINEMATIC (X_CENTER) + probe_radius() #else _MIN((X_MAX_BED) - (PROBING_MARGIN_RIGHT), (X_MAX_POS) + offset_xy.x) #endif ); } static inline float min_y() { return ( #if IS_KINEMATIC (Y_CENTER) - probe_radius() #else _MAX((Y_MIN_BED) + (PROBING_MARGIN_FRONT), (Y_MIN_POS) + offset_xy.y) #endif ); } static inline float max_y() { return ( #if IS_KINEMATIC (Y_CENTER) + probe_radius() #else _MIN((Y_MAX_BED) - (PROBING_MARGIN_BACK), (Y_MAX_POS) + offset_xy.y) #endif ); } #if NEEDS_THREE_PROBE_POINTS // Retrieve three points to probe the bed. Any type exposing set(X,Y) may be used. template static inline void get_three_points(T points[3]) { #if HAS_FIXED_3POINT points[0].set(PROBE_PT_1_X, PROBE_PT_1_Y); points[1].set(PROBE_PT_2_X, PROBE_PT_2_Y); points[2].set(PROBE_PT_3_X, PROBE_PT_3_Y); #else #if IS_KINEMATIC constexpr float SIN0 = 0.0, SIN120 = 0.866025, SIN240 = -0.866025, COS0 = 1.0, COS120 = -0.5 , COS240 = -0.5; points[0].set((X_CENTER) + probe_radius() * COS0, (Y_CENTER) + probe_radius() * SIN0); points[1].set((X_CENTER) + probe_radius() * COS120, (Y_CENTER) + probe_radius() * SIN120); points[2].set((X_CENTER) + probe_radius() * COS240, (Y_CENTER) + probe_radius() * SIN240); #else points[0].set(min_x(), min_y()); points[1].set(max_x(), min_y()); points[2].set((max_x() - min_x()) / 2, max_y()); #endif #endif } #endif #endif // HAS_BED_PROBE #if HAS_Z_SERVO_PROBE static void servo_probe_init(); #endif #if QUIET_PROBING static void set_probing_paused(const bool p); #endif private: static bool probe_down_to_z(const float z, const feedRate_t fr_mm_s); static void do_z_raise(const float z_raise); static float run_z_probe(const bool sanity_check=true); }; extern Probe probe;