This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/UBL.h

334 lines
15 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#include "math.h"
#ifndef UNIFIED_BED_LEVELING_H
#define UNIFIED_BED_LEVELING_H
#if ENABLED(AUTO_BED_LEVELING_UBL)
#define UBL_OK false
#define UBL_ERR true
typedef struct {
int x_index, y_index;
float distance; // Not always used. But when populated, it is the distance
// from the search location
} mesh_index_pair;
typedef struct { double dx, dy, dz; } vector;
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
bool axis_unhomed_error(bool, bool, bool);
void dump(char *str, float f);
bool ubl_lcd_clicked();
void probe_entire_mesh(float, float, bool, bool);
void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
void manually_probe_remaining_mesh(float, float, float, float, bool);
vector tilt_mesh_based_on_3pts(float, float, float);
void new_set_bed_level_equation_3pts(float, float, float);
float measure_business_card_thickness(float);
mesh_index_pair find_closest_mesh_point_of_type(MeshPointType, float, float, bool, unsigned int[16]);
void find_mean_mesh_height();
void shift_mesh_height();
bool g29_parameter_parsing();
void g29_what_command();
void g29_eeprom_dump();
void g29_compare_current_mesh_to_stored_mesh();
void fine_tune_mesh(float, float, bool);
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
char *ftostr43sign(const float&, char);
void gcode_G26();
void gcode_G28();
void gcode_G29();
extern char conv[9];
void save_ubl_active_state_and_disable();
void restore_ubl_active_state_and_leave();
///////////////////////////////////////////////////////////////////////////////////////////////////////
#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[];
void lcd_quick_feedback();
#endif
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
extern bool g26_debug_flag;
extern float last_specified_z;
extern float fade_scaling_factor_for_current_height;
extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
class unified_bed_leveling {
public:
struct ubl_state {
bool active = false;
float z_offset = 0.0;
int eeprom_storage_slot = -1,
n_x = UBL_MESH_NUM_X_POINTS,
n_y = UBL_MESH_NUM_Y_POINTS;
float mesh_x_min = UBL_MESH_MIN_X,
mesh_y_min = UBL_MESH_MIN_Y,
mesh_x_max = UBL_MESH_MAX_X,
mesh_y_max = UBL_MESH_MAX_Y,
mesh_x_dist = MESH_X_DIST,
mesh_y_dist = MESH_Y_DIST,
g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
// point divide. So, we keep this number in both forms. The first
// is for the user. The second one is the one that is actually used
// again and again and again during the correction calculations.
unsigned char padding[24]; // This is just to allow room to add state variables without
// changing the location of data structures in the EEPROM.
// This is for compatability with future versions to keep
// people from having to regenerate thier mesh data.
//
// If you change the contents of this struct, please adjust
// the padding[] to keep the size the same!
} state, pre_initialized;
unified_bed_leveling();
// ~unified_bed_leveling(); // No destructor because this object never goes away!
void display_map(int);
void reset();
void invalidate();
void store_state();
void load_state();
void store_mesh(int);
void load_mesh(int);
bool sanity_check();
FORCE_INLINE float map_x_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
FORCE_INLINE float map_y_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
void set_z(const int8_t px, const int8_t py, const float z) { z_values[px][py] = z; }
int8_t get_cell_index_x(float x) {
int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
int8_t get_cell_index_y(float y) {
int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
int8_t find_closest_x_index(float x) {
int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
}
int8_t find_closest_y_index(float y) {
int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
}
/**
* z2 --|
* z0 | |
* | | + (z2-z1)
* z1 | | |
* ---+-------------+--------+-- --|
* a1 a0 a2
* |<---delta_a---------->|
*
* calc_z0 is the basis for all the Mesh Based correction. It is used to
* find the expected Z Height at a position between two known Z-Height locations
*
* It is farly expensive with its 4 floating point additions and 2 floating point
* multiplications.
*/
inline float calc_z0(float a0, float a1, float z1, float a2, float z2) {
float delta_z = (z2 - z1);
float delta_a = (a0 - a1) / (a2 - a1);
return z1 + delta_a * delta_z;
}
/**
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
* the X index of the x0 intersection available and we don't want to perform any extra floating
* point operations.
*/
inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(float x0, int x1_i, int yi) {
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
}
const float a0ma1diva2ma1 = (x0 - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi],
z2 = z_values[x1_i + 1][yi],
dz = (z2 - z1);
return z1 + a0ma1diva2ma1 * dz;
}
//
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
//
inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(float y0, int xi, int y1_i) {
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
SERIAL_ECHOPAIR(", x1_i=", xi);
SERIAL_ECHOPAIR(", yi=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
}
const float a0ma1diva2ma1 = (y0 - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i],
z2 = z_values[xi][y1_i + 1],
dz = (z2 - z1);
return z1 + a0ma1diva2ma1 * dz;
}
/**
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
* Z-Height at both ends. Then it does a linear interpolation of these heights based
* on the Y position within the cell.
*/
float get_z_correction(float x0, float y0) {
int8_t cx = get_cell_index_x(x0),
cy = get_cell_index_y(y0);
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
SERIAL_ECHOPAIR(", y0=", y0);
SERIAL_CHAR(')');
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
lcd_quick_feedback();
#endif
return 0.0; // this used to return state.z_offset
}
float z1 = calc_z0(x0,
map_x_index_to_bed_location(cx), z_values[cx][cy],
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]);
float z2 = calc_z0(x0,
map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
float z0 = calc_z0(y0,
map_y_index_to_bed_location(cy), z1,
map_y_index_to_bed_location(cy + 1), z2);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
SERIAL_ECHOPAIR(",", y0);
SERIAL_ECHOPGM(")=");
SERIAL_ECHO_F(z0, 6);
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM(" >>>---> ");
SERIAL_ECHO_F(z0, 6);
SERIAL_EOL;
}
#endif
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in ubl.z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( ");
SERIAL_ECHO(x0);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO(y0);
SERIAL_ECHOLNPGM(" )");
}
#endif
}
return z0; // there used to be a +state.z_offset on this line
}
/**
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
* optimized for speed. It avoids floating point operations by checking if the requested scaling
* factor is going to be the same as the last time the function calculated a value. If so, it just
* returns it.
*
* If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active
* or if the current Z Height is past the specified 'Fade Height'
*/
FORCE_INLINE float fade_scaling_factor_for_z(float current_z) {
#ifndef ENABLE_LEVELING_FADE_HEIGHT // if turned off, just return 0.000 Note that we assume the
return 0.000; // compiler will do 'Dead Code' elimination so there is no need
#endif // for an #else clause here.
if (last_specified_z == current_z)
return fade_scaling_factor_for_current_height;
last_specified_z = current_z;
fade_scaling_factor_for_current_height =
state.active && current_z < state.g29_correction_fade_height
? 1.0 - (current_z * state.g29_fade_height_multiplier)
: 0.0;
return fade_scaling_factor_for_current_height;
}
};
extern unified_bed_leveling ubl;
extern int ubl_eeprom_start;
#endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H