This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/pinsDebug.h
2017-06-24 19:07:03 -05:00

580 lines
19 KiB
C

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
bool endstop_monitor_flag = false;
#define NAME_FORMAT "%-35s" // one place to specify the format of all the sources of names
// "-" left justify, "28" minimum width of name, pad with blanks
#define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && ((P) <= analogInputToDigitalPin(15) || (P) <= analogInputToDigitalPin(7)))
/**
* This routine minimizes RAM usage by creating a FLASH resident array to
* store the pin names, pin numbers and analog/digital flag.
*
* Creating the array in FLASH is a two pass process. The first pass puts the
* name strings into FLASH. The second pass actually creates the array.
*
* Both passes use the same pin list. The list contains two macro names. The
* actual macro definitions are changed depending on which pass is being done.
*
*/
// first pass - put the name strings into FLASH
#define _ADD_PIN_2(PIN_NAME, ENTRY_NAME) static const char ENTRY_NAME[] PROGMEM = { PIN_NAME };
#define _ADD_PIN(PIN_NAME, COUNTER) _ADD_PIN_2(PIN_NAME, entry_NAME_##COUNTER)
#define REPORT_NAME_DIGITAL(NAME, COUNTER) _ADD_PIN(#NAME, COUNTER)
#define REPORT_NAME_ANALOG(NAME, COUNTER) _ADD_PIN(#NAME, COUNTER)
#include "pinsDebug_list.h"
#line 51
// manually add pins that have names that are macros which don't play well with these macros
#if SERIAL_PORT == 0 && (AVR_ATmega2560_FAMILY || AVR_ATmega1284_FAMILY)
static const char RXD_NAME[] PROGMEM = { "RXD" };
static const char TXD_NAME[] PROGMEM = { "TXD" };
#endif
/////////////////////////////////////////////////////////////////////////////
// second pass - create the array
#undef _ADD_PIN_2
#undef _ADD_PIN
#undef REPORT_NAME_DIGITAL
#undef REPORT_NAME_ANALOG
#define _ADD_PIN_2(ENTRY_NAME, NAME, IS_DIGITAL) { ENTRY_NAME, NAME, IS_DIGITAL },
#define _ADD_PIN(NAME, COUNTER, IS_DIGITAL) _ADD_PIN_2(entry_NAME_##COUNTER, NAME, IS_DIGITAL)
#define REPORT_NAME_DIGITAL(NAME, COUNTER) _ADD_PIN(NAME, COUNTER, true)
#define REPORT_NAME_ANALOG(NAME, COUNTER) _ADD_PIN(analogInputToDigitalPin(NAME), COUNTER, false)
typedef struct {
const char * const name;
uint8_t pin;
bool is_digital;
} PinInfo;
const PinInfo pin_array[] PROGMEM = {
/**
* [pin name] [pin number] [is digital or analog] 1 = digital, 0 = analog
* Each entry takes up 6 bytes in FLASH:
* 2 byte pointer to location of the name string
* 2 bytes containing the pin number
* analog pin numbers were convereted to digital when the array was created
* 2 bytes containing the digital/analog bool flag
*/
// manually add pins ...
#if SERIAL_PORT == 0
#if AVR_ATmega2560_FAMILY
{ RXD_NAME, 0, true },
{ TXD_NAME, 1, true },
#elif AVR_ATmega1284_FAMILY
{ RXD_NAME, 8, true },
{ TXD_NAME, 9, true },
#endif
#endif
#include "pinsDebug_list.h"
#line 102
};
#define AVR_ATmega2560_FAMILY_PLUS_70 (MOTHERBOARD == BOARD_BQ_ZUM_MEGA_3D \
|| MOTHERBOARD == BOARD_MIGHTYBOARD_REVE \
|| MOTHERBOARD == BOARD_MINIRAMBO \
|| MOTHERBOARD == BOARD_SCOOVO_X9H)
#if AVR_AT90USB1286_FAMILY
// Working with Teensyduino extension so need to re-define some things
#include "pinsDebug_Teensyduino.h"
// Can't use the "digitalPinToPort" function from the Teensyduino type IDEs
// portModeRegister takes a different argument
#define digitalPinToTimer_DEBUG(p) digitalPinToTimer(p)
#define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask(p)
#define digitalPinToPort_DEBUG(p) digitalPinToPort_Teensy(p)
#define get_pinMode(pin) (*portModeRegister(pin) & digitalPinToBitMask_DEBUG(pin))
#elif AVR_ATmega2560_FAMILY_PLUS_70 // So we can access/display all the pins on boards using more than 70
#include "pinsDebug_plus_70.h"
#define digitalPinToTimer_DEBUG(p) digitalPinToTimer_plus_70(p)
#define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask_plus_70(p)
#define digitalPinToPort_DEBUG(p) digitalPinToPort_plus_70(p)
bool get_pinMode(int8_t pin) {return *portModeRegister(digitalPinToPort_DEBUG(pin)) & digitalPinToBitMask_DEBUG(pin); }
#else
#define digitalPinToTimer_DEBUG(p) digitalPinToTimer(p)
#define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask(p)
#define digitalPinToPort_DEBUG(p) digitalPinToPort(p)
bool get_pinMode(int8_t pin) {return *portModeRegister(digitalPinToPort_DEBUG(pin)) & digitalPinToBitMask_DEBUG(pin); }
#endif
#if defined(__AVR_ATmega1284P__) // 1284 IDE extensions set this to the number of
#undef NUM_DIGITAL_PINS // digital only pins while all other CPUs have it
#define NUM_DIGITAL_PINS 32 // set to digital only + digital/analog
#endif
#define PWM_PRINT(V) do{ sprintf_P(buffer, PSTR("PWM: %4d"), V); SERIAL_ECHO(buffer); }while(0)
#define PWM_CASE(N,Z) \
case TIMER##N##Z: \
if (TCCR##N##A & (_BV(COM##N##Z##1) | _BV(COM##N##Z##0))) { \
PWM_PRINT(OCR##N##Z); \
return true; \
} else return false
/**
* Print a pin's PWM status.
* Return true if it's currently a PWM pin.
*/
static bool pwm_status(uint8_t pin) {
char buffer[20]; // for the sprintf statements
switch (digitalPinToTimer_DEBUG(pin)) {
#if defined(TCCR0A) && defined(COM0A1)
#ifdef TIMER0A
#if !AVR_AT90USB1286_FAMILY // not available in Teensyduino type IDEs
PWM_CASE(0, A);
#endif
#endif
PWM_CASE(0, B);
#endif
#if defined(TCCR1A) && defined(COM1A1)
PWM_CASE(1, A);
PWM_CASE(1, B);
#if defined(COM1C1) && defined(TIMER1C)
PWM_CASE(1, C);
#endif
#endif
#if defined(TCCR2A) && defined(COM2A1)
PWM_CASE(2, A);
PWM_CASE(2, B);
#endif
#if defined(TCCR3A) && defined(COM3A1)
PWM_CASE(3, A);
PWM_CASE(3, B);
#ifdef COM3C1
PWM_CASE(3, C);
#endif
#endif
#ifdef TCCR4A
PWM_CASE(4, A);
PWM_CASE(4, B);
PWM_CASE(4, C);
#endif
#if defined(TCCR5A) && defined(COM5A1)
PWM_CASE(5, A);
PWM_CASE(5, B);
PWM_CASE(5, C);
#endif
case NOT_ON_TIMER:
default:
return false;
}
SERIAL_PROTOCOL_SP(2);
} // pwm_status
const volatile uint8_t* const PWM_other[][3] PROGMEM = {
{ &TCCR0A, &TCCR0B, &TIMSK0 },
{ &TCCR1A, &TCCR1B, &TIMSK1 },
#if defined(TCCR2A) && defined(COM2A1)
{ &TCCR2A, &TCCR2B, &TIMSK2 },
#endif
#if defined(TCCR3A) && defined(COM3A1)
{ &TCCR3A, &TCCR3B, &TIMSK3 },
#endif
#ifdef TCCR4A
{ &TCCR4A, &TCCR4B, &TIMSK4 },
#endif
#if defined(TCCR5A) && defined(COM5A1)
{ &TCCR5A, &TCCR5B, &TIMSK5 },
#endif
};
const volatile uint8_t* const PWM_OCR[][3] PROGMEM = {
#ifdef TIMER0A
{ &OCR0A, &OCR0B, 0 },
#else
{ 0, &OCR0B, 0 },
#endif
#if defined(COM1C1) && defined(TIMER1C)
{ (const uint8_t*)&OCR1A, (const uint8_t*)&OCR1B, (const uint8_t*)&OCR1C },
#else
{ (const uint8_t*)&OCR1A, (const uint8_t*)&OCR1B, 0 },
#endif
#if defined(TCCR2A) && defined(COM2A1)
{ &OCR2A, &OCR2B, 0 },
#endif
#if defined(TCCR3A) && defined(COM3A1)
#ifdef COM3C1
{ (const uint8_t*)&OCR3A, (const uint8_t*)&OCR3B, (const uint8_t*)&OCR3C },
#else
{ (const uint8_t*)&OCR3A, (const uint8_t*)&OCR3B, 0 },
#endif
#endif
#ifdef TCCR4A
{ (const uint8_t*)&OCR4A, (const uint8_t*)&OCR4B, (const uint8_t*)&OCR4C },
#endif
#if defined(TCCR5A) && defined(COM5A1)
{ (const uint8_t*)&OCR5A, (const uint8_t*)&OCR5B, (const uint8_t*)&OCR5C },
#endif
};
#define TCCR_A(T) pgm_read_word(&PWM_other[T][0])
#define TCCR_B(T) pgm_read_word(&PWM_other[T][1])
#define TIMSK(T) pgm_read_word(&PWM_other[T][2])
#define CS_0 0
#define CS_1 1
#define CS_2 2
#define WGM_0 0
#define WGM_1 1
#define WGM_2 3
#define WGM_3 4
#define TOIE 0
#define OCR_VAL(T, L) pgm_read_word(&PWM_OCR[T][L])
static void err_is_counter() { SERIAL_PROTOCOLPGM(" non-standard PWM mode"); }
static void err_is_interrupt() { SERIAL_PROTOCOLPGM(" compare interrupt enabled"); }
static void err_prob_interrupt() { SERIAL_PROTOCOLPGM(" overflow interrupt enabled"); }
static void print_is_also_tied() { SERIAL_PROTOCOLPGM(" is also tied to this pin"); SERIAL_PROTOCOL_SP(14); }
void com_print(uint8_t N, uint8_t Z) {
const uint8_t *TCCRA = (uint8_t*)TCCR_A(N);
SERIAL_PROTOCOLPGM(" COM");
SERIAL_PROTOCOLCHAR(N + '0');
switch (Z) {
case 'A':
SERIAL_PROTOCOLPAIR("A: ", ((*TCCRA & (_BV(7) | _BV(6))) >> 6));
break;
case 'B':
SERIAL_PROTOCOLPAIR("B: ", ((*TCCRA & (_BV(5) | _BV(4))) >> 4));
break;
case 'C':
SERIAL_PROTOCOLPAIR("C: ", ((*TCCRA & (_BV(3) | _BV(2))) >> 2));
break;
}
}
void timer_prefix(uint8_t T, char L, uint8_t N) { // T - timer L - pwm N - WGM bit layout
char buffer[20]; // for the sprintf statements
const uint8_t *TCCRB = (uint8_t*)TCCR_B(T),
*TCCRA = (uint8_t*)TCCR_A(T);
uint8_t WGM = (((*TCCRB & _BV(WGM_2)) >> 1) | (*TCCRA & (_BV(WGM_0) | _BV(WGM_1))));
if (N == 4) WGM |= ((*TCCRB & _BV(WGM_3)) >> 1);
SERIAL_PROTOCOLPGM(" TIMER");
SERIAL_PROTOCOLCHAR(T + '0');
SERIAL_PROTOCOLCHAR(L);
SERIAL_PROTOCOL_SP(3);
if (N == 3) {
const uint8_t *OCRVAL8 = (uint8_t*)OCR_VAL(T, L - 'A');
PWM_PRINT(*OCRVAL8);
}
else {
const uint16_t *OCRVAL16 = (uint16_t*)OCR_VAL(T, L - 'A');
PWM_PRINT(*OCRVAL16);
}
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
com_print(T,L);
SERIAL_PROTOCOLPAIR(" CS: ", (*TCCRB & (_BV(CS_0) | _BV(CS_1) | _BV(CS_2)) ));
SERIAL_PROTOCOLPGM(" TCCR");
SERIAL_PROTOCOLCHAR(T + '0');
SERIAL_PROTOCOLPAIR("A: ", *TCCRA);
SERIAL_PROTOCOLPGM(" TCCR");
SERIAL_PROTOCOLCHAR(T + '0');
SERIAL_PROTOCOLPAIR("B: ", *TCCRB);
const uint8_t *TMSK = (uint8_t*)TIMSK(T);
SERIAL_PROTOCOLPGM(" TIMSK");
SERIAL_PROTOCOLCHAR(T + '0');
SERIAL_PROTOCOLPAIR(": ", *TMSK);
const uint8_t OCIE = L - 'A' + 1;
if (N == 3) { if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) err_is_counter(); }
else { if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) err_is_counter(); }
if (TEST(*TMSK, OCIE)) err_is_interrupt();
if (TEST(*TMSK, TOIE)) err_prob_interrupt();
}
static void pwm_details(uint8_t pin) {
switch (digitalPinToTimer_DEBUG(pin)) {
#if defined(TCCR0A) && defined(COM0A1)
#ifdef TIMER0A
#if !AVR_AT90USB1286_FAMILY // not available in Teensyduino type IDEs
case TIMER0A: timer_prefix(0, 'A', 3); break;
#endif
#endif
case TIMER0B: timer_prefix(0, 'B', 3); break;
#endif
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A: timer_prefix(1, 'A', 4); break;
case TIMER1B: timer_prefix(1, 'B', 4); break;
#if defined(COM1C1) && defined(TIMER1C)
case TIMER1C: timer_prefix(1, 'C', 4); break;
#endif
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A: timer_prefix(2, 'A', 3); break;
case TIMER2B: timer_prefix(2, 'B', 3); break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A: timer_prefix(3, 'A', 4); break;
case TIMER3B: timer_prefix(3, 'B', 4); break;
#ifdef COM3C1
case TIMER3C: timer_prefix(3, 'C', 4); break;
#endif
#endif
#ifdef TCCR4A
case TIMER4A: timer_prefix(4, 'A', 4); break;
case TIMER4B: timer_prefix(4, 'B', 4); break;
case TIMER4C: timer_prefix(4, 'C', 4); break;
#endif
#if defined(TCCR5A) && defined(COM5A1)
case TIMER5A: timer_prefix(5, 'A', 4); break;
case TIMER5B: timer_prefix(5, 'B', 4); break;
case TIMER5C: timer_prefix(5, 'C', 4); break;
#endif
case NOT_ON_TIMER: break;
}
SERIAL_PROTOCOLPGM(" ");
// on pins that have two PWMs, print info on second PWM
#if AVR_ATmega2560_FAMILY || AVR_AT90USB1286_FAMILY
// looking for port B7 - PWMs 0A and 1C
if (digitalPinToPort_DEBUG(pin) == 'B' - 64 && 0x80 == digitalPinToBitMask_DEBUG(pin)) {
#if !AVR_AT90USB1286_FAMILY
SERIAL_PROTOCOLPGM("\n .");
SERIAL_PROTOCOL_SP(18);
SERIAL_PROTOCOLPGM("TIMER1C");
print_is_also_tied();
timer_prefix(1, 'C', 4);
#else
SERIAL_PROTOCOLPGM("\n .");
SERIAL_PROTOCOL_SP(18);
SERIAL_PROTOCOLPGM("TIMER0A");
print_is_also_tied();
timer_prefix(0, 'A', 3);
#endif
}
#endif
} // pwm_details
#ifndef digitalRead_mod // Use Teensyduino's version of digitalRead - it doesn't disable the PWMs
int digitalRead_mod(const int8_t pin) { // same as digitalRead except the PWM stop section has been removed
const uint8_t port = digitalPinToPort_DEBUG(pin);
return (port != NOT_A_PIN) && (*portInputRegister(port) & digitalPinToBitMask_DEBUG(pin)) ? HIGH : LOW;
}
#endif
void print_port(int8_t pin) { // print port number
#ifdef digitalPinToPort_DEBUG
uint8_t x;
SERIAL_PROTOCOLPGM(" Port: ");
#if AVR_AT90USB1286_FAMILY
x = (pin == 46 || pin == 47) ? 'E' : digitalPinToPort_DEBUG(pin) + 64;
#else
x = digitalPinToPort_DEBUG(pin) + 64;
#endif
SERIAL_CHAR(x);
#if AVR_AT90USB1286_FAMILY
if (pin == 46)
x = '2';
else if (pin == 47)
x = '3';
else {
uint8_t temp = digitalPinToBitMask_DEBUG(pin);
for (x = '0'; x < '9' && temp != 1; x++) temp >>= 1;
}
#else
uint8_t temp = digitalPinToBitMask_DEBUG(pin);
for (x = '0'; x < '9' && temp != 1; x++) temp >>= 1;
#endif
SERIAL_CHAR(x);
#else
SERIAL_PROTOCOL_SP(10);
#endif
}
static void print_input_or_output(const bool isout) {
serialprintPGM(isout ? PSTR("Output = ") : PSTR("Input = "));
}
// pretty report with PWM info
inline void report_pin_state_extended(int8_t pin, bool ignore, bool extended = false, const char *start_string = "") {
uint8_t temp_char;
char *name_mem_pointer, buffer[30]; // for the sprintf statements
bool found = false, multi_name_pin = false;
for (uint8_t x = 0; x < COUNT(pin_array); x++) { // scan entire array and report all instances of this pin
if (pgm_read_byte(&pin_array[x].pin) == pin) {
if (found) multi_name_pin = true;
found = true;
if (!multi_name_pin) { // report digitial and analog pin number only on the first time through
sprintf_P(buffer, PSTR("%sPIN: %3d "), start_string, pin); // digital pin number
SERIAL_ECHO(buffer);
print_port(pin);
if (IS_ANALOG(pin)) {
sprintf_P(buffer, PSTR(" (A%2d) "), int(pin - analogInputToDigitalPin(0))); // analog pin number
SERIAL_ECHO(buffer);
}
else SERIAL_ECHO_SP(8); // add padding if not an analog pin
}
else {
SERIAL_CHAR('.');
SERIAL_ECHO_SP(26 + strlen(start_string)); // add padding if not the first instance found
}
name_mem_pointer = (char*)pgm_read_word(&pin_array[x].name);
for (uint8_t y = 0; y < 28; y++) { // always print pin name
temp_char = pgm_read_byte(name_mem_pointer + y);
if (temp_char != 0)
MYSERIAL.write(temp_char);
else {
for (uint8_t i = 0; i < 28 - y; i++) MYSERIAL.write(' ');
break;
}
}
if (extended) {
if (pin_is_protected(pin) && !ignore)
SERIAL_ECHOPGM("protected ");
else {
#ifdef AVR_AT90USB1286_FAMILY //Teensy IDEs don't know about these pins so must use FASTIO
if (pin == 46 || pin == 47) {
if (pin == 46) {
print_input_or_output(GET_OUTPUT(46));
SERIAL_PROTOCOL(READ(46));
}
else if (pin == 47) {
print_input_or_output(GET_OUTPUT(47));
SERIAL_PROTOCOL(READ(47));
}
}
else
#endif
{
if (!(pgm_read_byte(&pin_array[x].is_digital))) {
sprintf_P(buffer, PSTR("Analog in = %5d"), analogRead(pin - analogInputToDigitalPin(0)));
SERIAL_ECHO(buffer);
}
else {
if (!get_pinMode(pin)) {
//pinMode(pin, INPUT_PULLUP); // make sure input isn't floating - stopped doing this
// because this could interfere with inductive/capacitive
// sensors (high impedance voltage divider) and with PT100 amplifier
print_input_or_output(false);
SERIAL_PROTOCOL(digitalRead_mod(pin));
}
else if (pwm_status(pin)) {
// do nothing
}
else {
print_input_or_output(true);
SERIAL_PROTOCOL(digitalRead_mod(pin));
}
}
if (!multi_name_pin && extended) pwm_details(pin); // report PWM capabilities only on the first pass & only if doing an extended report
}
}
}
SERIAL_EOL();
} // end of IF
} // end of for loop
if (!found) {
sprintf_P(buffer, PSTR("%sPIN: %3d "), start_string, pin);
SERIAL_ECHO(buffer);
print_port(pin);
if (IS_ANALOG(pin)) {
sprintf_P(buffer, PSTR(" (A%2d) "), int(pin - analogInputToDigitalPin(0))); // analog pin number
SERIAL_ECHO(buffer);
}
else
SERIAL_ECHO_SP(8); // add padding if not an analog pin
SERIAL_ECHOPGM("<unused/unknown>");
if (extended) {
#ifdef AVR_AT90USB1286_FAMILY //Teensy IDEs don't know about these pins so must use FASTIO
if (pin == 46 || pin == 47) {
SERIAL_PROTOCOL_SP(12);
if (pin == 46) {
print_input_or_output(GET_OUTPUT(46));
SERIAL_PROTOCOL(READ(46));
}
else {
print_input_or_output(GET_OUTPUT(47));
SERIAL_PROTOCOL(READ(47));
}
}
else
#endif
{
if (get_pinMode(pin)) {
SERIAL_PROTOCOL_SP(12);
print_input_or_output(true);
SERIAL_PROTOCOL(digitalRead_mod(pin));
}
else {
if (IS_ANALOG(pin)) {
sprintf_P(buffer, PSTR(" Analog in = %5d"), analogRead(pin - analogInputToDigitalPin(0)));
SERIAL_ECHO(buffer);
SERIAL_ECHOPGM(" ");
}
else
SERIAL_ECHO_SP(12); // add padding if not an analog pin
print_input_or_output(false);
SERIAL_PROTOCOL(digitalRead_mod(pin));
}
//if (!pwm_status(pin)) SERIAL_CHAR(' '); // add padding if it's not a PWM pin
if (extended) pwm_details(pin); // report PWM capabilities only if doing an extended report
}
}
SERIAL_EOL();
}
}