This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/Sanguino/cores/Copy of arduino/HardwareSerial.cpp
2011-11-14 18:27:47 +01:00

303 lines
8.2 KiB
C++

/*
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "wiring.h"
#include "wiring_private.h"
// this next line disables the entire HardwareSerial.cpp,
// this is so I can support Attiny series and any other chip without a uart
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)
#include "HardwareSerial.h"
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which rx_buffer_head is the index of the
// location to which to write the next incoming character and rx_buffer_tail
// is the index of the location from which to read.
#if (RAMEND < 1000)
#define RX_BUFFER_SIZE 32
#else
#define RX_BUFFER_SIZE 128
#endif
struct ring_buffer
{
unsigned char buffer[RX_BUFFER_SIZE];
int head;
int tail;
};
#if defined(UBRRH) || defined(UBRR0H)
ring_buffer rx_buffer = { { 0 }, 0, 0 };
#endif
#if defined(UBRR1H)
ring_buffer rx_buffer1 = { { 0 }, 0, 0 };
#endif
#if defined(UBRR2H)
ring_buffer rx_buffer2 = { { 0 }, 0, 0 };
#endif
#if defined(UBRR3H)
ring_buffer rx_buffer3 = { { 0 }, 0, 0 };
#endif
inline void store_char(unsigned char c, ring_buffer *rx_buffer)
{
int i = (unsigned int)(rx_buffer->head + 1) % RX_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != rx_buffer->tail) {
rx_buffer->buffer[rx_buffer->head] = c;
rx_buffer->head = i;
}
}
#if defined(USART_RX_vect)
SIGNAL(USART_RX_vect)
{
#if defined(UDR0)
unsigned char c = UDR0;
#elif defined(UDR)
unsigned char c = UDR; // atmega8535
#else
#error UDR not defined
#endif
store_char(c, &rx_buffer);
}
#elif defined(SIG_USART0_RECV) && defined(UDR0)
SIGNAL(SIG_USART0_RECV)
{
unsigned char c = UDR0;
store_char(c, &rx_buffer);
}
#elif defined(SIG_UART0_RECV) && defined(UDR0)
SIGNAL(SIG_UART0_RECV)
{
unsigned char c = UDR0;
store_char(c, &rx_buffer);
}
//#elif defined(SIG_USART_RECV)
#elif defined(USART0_RX_vect)
// fixed by Mark Sproul this is on the 644/644p
//SIGNAL(SIG_USART_RECV)
SIGNAL(USART0_RX_vect)
{
#if defined(UDR0)
unsigned char c = UDR0;
#elif defined(UDR)
unsigned char c = UDR; // atmega8, atmega32
#else
#error UDR not defined
#endif
store_char(c, &rx_buffer);
}
#elif defined(SIG_UART_RECV)
// this is for atmega8
SIGNAL(SIG_UART_RECV)
{
#if defined(UDR0)
unsigned char c = UDR0; // atmega645
#elif defined(UDR)
unsigned char c = UDR; // atmega8
#endif
store_char(c, &rx_buffer);
}
#elif defined(USBCON)
#warning No interrupt handler for usart 0
#warning Serial(0) is on USB interface
#else
#error No interrupt handler for usart 0
#endif
//#if defined(SIG_USART1_RECV)
#if defined(USART1_RX_vect)
//SIGNAL(SIG_USART1_RECV)
SIGNAL(USART1_RX_vect)
{
unsigned char c = UDR1;
store_char(c, &rx_buffer1);
}
#elif defined(SIG_USART1_RECV)
#error SIG_USART1_RECV
#endif
#if defined(USART2_RX_vect) && defined(UDR2)
SIGNAL(USART2_RX_vect)
{
unsigned char c = UDR2;
store_char(c, &rx_buffer2);
}
#elif defined(SIG_USART2_RECV)
#error SIG_USART2_RECV
#endif
#if defined(USART3_RX_vect) && defined(UDR3)
SIGNAL(USART3_RX_vect)
{
unsigned char c = UDR3;
store_char(c, &rx_buffer3);
}
#elif defined(SIG_USART3_RECV)
#error SIG_USART3_RECV
#endif
// Constructors ////////////////////////////////////////////////////////////////
HardwareSerial::HardwareSerial(ring_buffer *rx_buffer,
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udre, uint8_t u2x)
{
_rx_buffer = rx_buffer;
_ubrrh = ubrrh;
_ubrrl = ubrrl;
_ucsra = ucsra;
_ucsrb = ucsrb;
_udr = udr;
_rxen = rxen;
_txen = txen;
_rxcie = rxcie;
_udre = udre;
_u2x = u2x;
}
// Public Methods //////////////////////////////////////////////////////////////
void HardwareSerial::begin(long baud)
{
uint16_t baud_setting;
bool use_u2x = true;
#if F_CPU == 16000000UL
// hardcoded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards and the firmware on the 8U2
// on the Uno and Mega 2560.
if (baud == 57600) {
use_u2x = false;
}
#endif
if (use_u2x) {
*_ucsra = 1 << _u2x;
baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else {
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
sbi(*_ucsrb, _rxen);
sbi(*_ucsrb, _txen);
sbi(*_ucsrb, _rxcie);
}
void HardwareSerial::end()
{
cbi(*_ucsrb, _rxen);
cbi(*_ucsrb, _txen);
cbi(*_ucsrb, _rxcie);
}
int HardwareSerial::available(void)
{
return (unsigned int)(RX_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % RX_BUFFER_SIZE;
}
int HardwareSerial::peek(void)
{
if (_rx_buffer->head == _rx_buffer->tail) {
return -1;
} else {
return _rx_buffer->buffer[_rx_buffer->tail];
}
}
int HardwareSerial::read(void)
{
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer->head == _rx_buffer->tail) {
return -1;
} else {
unsigned char c = _rx_buffer->buffer[_rx_buffer->tail];
_rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % RX_BUFFER_SIZE;
return c;
}
}
void HardwareSerial::flush()
{
// don't reverse this or there may be problems if the RX interrupt
// occurs after reading the value of rx_buffer_head but before writing
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// don't reverse this or there may be problems if the RX interrupt
// occurs after reading the value of rx_buffer_head but before writing
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// were full, not empty.
_rx_buffer->head = _rx_buffer->tail;
}
void HardwareSerial::write(uint8_t c)
{
while (!((*_ucsra) & (1 << _udre)))
;
*_udr = c;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
#if defined(UBRRH) && defined(UBRRL)
HardwareSerial Serial(&rx_buffer, &UBRRH, &UBRRL, &UCSRA, &UCSRB, &UDR, RXEN, TXEN, RXCIE, UDRE, U2X);
#elif defined(UBRR0H) && defined(UBRR0L)
HardwareSerial Serial(&rx_buffer, &UBRR0H, &UBRR0L, &UCSR0A, &UCSR0B, &UDR0, RXEN0, TXEN0, RXCIE0, UDRE0, U2X0);
#elif defined(USBCON)
#warning no serial port defined (port 0)
#else
#error no serial port defined (port 0)
#endif
#if defined(UBRR1H)
HardwareSerial Serial1(&rx_buffer1, &UBRR1H, &UBRR1L, &UCSR1A, &UCSR1B, &UDR1, RXEN1, TXEN1, RXCIE1, UDRE1, U2X1);
#endif
#if defined(UBRR2H)
HardwareSerial Serial2(&rx_buffer2, &UBRR2H, &UBRR2L, &UCSR2A, &UCSR2B, &UDR2, RXEN2, TXEN2, RXCIE2, UDRE2, U2X2);
#endif
#if defined(UBRR3H)
HardwareSerial Serial3(&rx_buffer3, &UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UDR3, RXEN3, TXEN3, RXCIE3, UDRE3, U2X3);
#endif
#endif // whole file