ad05a726c1
Move definition of PIDdT back to temperature.h
1601 lines
47 KiB
C++
1601 lines
47 KiB
C++
/*
|
|
temperature.c - temperature control
|
|
Part of Marlin
|
|
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
|
|
*/
|
|
|
|
|
|
#include "Marlin.h"
|
|
#include "ultralcd.h"
|
|
#include "temperature.h"
|
|
#include "watchdog.h"
|
|
#include "language.h"
|
|
|
|
#include "Sd2PinMap.h"
|
|
|
|
//===========================================================================
|
|
//================================== macros =================================
|
|
//===========================================================================
|
|
|
|
#ifdef K1 // Defined in Configuration.h in the PID settings
|
|
#define K2 (1.0-K1)
|
|
#endif
|
|
|
|
#if defined(PIDTEMPBED) || defined(PIDTEMP)
|
|
#define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//============================= public variables ============================
|
|
//===========================================================================
|
|
|
|
int target_temperature[EXTRUDERS] = { 0 };
|
|
int target_temperature_bed = 0;
|
|
int current_temperature_raw[EXTRUDERS] = { 0 };
|
|
float current_temperature[EXTRUDERS] = { 0.0 };
|
|
int current_temperature_bed_raw = 0;
|
|
float current_temperature_bed = 0.0;
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
int redundant_temperature_raw = 0;
|
|
float redundant_temperature = 0.0;
|
|
#endif
|
|
|
|
#ifdef PIDTEMPBED
|
|
float bedKp=DEFAULT_bedKp;
|
|
float bedKi=(DEFAULT_bedKi*PID_dT);
|
|
float bedKd=(DEFAULT_bedKd/PID_dT);
|
|
#endif //PIDTEMPBED
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
unsigned char fanSpeedSoftPwm;
|
|
#endif
|
|
|
|
unsigned char soft_pwm_bed;
|
|
|
|
#ifdef BABYSTEPPING
|
|
volatile int babystepsTodo[3] = { 0 };
|
|
#endif
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
|
|
#endif
|
|
//===========================================================================
|
|
//=============================private variables============================
|
|
//===========================================================================
|
|
static volatile bool temp_meas_ready = false;
|
|
|
|
#ifdef PIDTEMP
|
|
//static cannot be external:
|
|
static float temp_iState[EXTRUDERS] = { 0 };
|
|
static float temp_dState[EXTRUDERS] = { 0 };
|
|
static float pTerm[EXTRUDERS];
|
|
static float iTerm[EXTRUDERS];
|
|
static float dTerm[EXTRUDERS];
|
|
//int output;
|
|
static float pid_error[EXTRUDERS];
|
|
static float temp_iState_min[EXTRUDERS];
|
|
static float temp_iState_max[EXTRUDERS];
|
|
static bool pid_reset[EXTRUDERS];
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
//static cannot be external:
|
|
static float temp_iState_bed = { 0 };
|
|
static float temp_dState_bed = { 0 };
|
|
static float pTerm_bed;
|
|
static float iTerm_bed;
|
|
static float dTerm_bed;
|
|
//int output;
|
|
static float pid_error_bed;
|
|
static float temp_iState_min_bed;
|
|
static float temp_iState_max_bed;
|
|
#else //PIDTEMPBED
|
|
static unsigned long previous_millis_bed_heater;
|
|
#endif //PIDTEMPBED
|
|
static unsigned char soft_pwm[EXTRUDERS];
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
static unsigned char soft_pwm_fan;
|
|
#endif
|
|
#if HAS_AUTO_FAN
|
|
static unsigned long extruder_autofan_last_check;
|
|
#endif
|
|
|
|
#ifdef PIDTEMP
|
|
#ifdef PID_PARAMS_PER_EXTRUDER
|
|
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
|
|
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
|
|
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
|
|
#endif // PID_ADD_EXTRUSION_RATE
|
|
#else //PID_PARAMS_PER_EXTRUDER
|
|
float Kp = DEFAULT_Kp;
|
|
float Ki = DEFAULT_Ki * PID_dT;
|
|
float Kd = DEFAULT_Kd / PID_dT;
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
float Kc = DEFAULT_Kc;
|
|
#endif // PID_ADD_EXTRUSION_RATE
|
|
#endif // PID_PARAMS_PER_EXTRUDER
|
|
#endif //PIDTEMP
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
|
|
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
|
|
static int minttemp[EXTRUDERS] = { 0 };
|
|
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
|
|
//static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
|
|
#ifdef BED_MAXTEMP
|
|
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
|
#endif
|
|
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
|
|
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
|
|
#else
|
|
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
|
|
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
|
|
#endif
|
|
|
|
static float analog2temp(int raw, uint8_t e);
|
|
static float analog2tempBed(int raw);
|
|
static void updateTemperaturesFromRawValues();
|
|
|
|
#ifdef WATCH_TEMP_PERIOD
|
|
int watch_start_temp[EXTRUDERS] = { 0 };
|
|
unsigned long watchmillis[EXTRUDERS] = { 0 };
|
|
#endif //WATCH_TEMP_PERIOD
|
|
|
|
#ifndef SOFT_PWM_SCALE
|
|
#define SOFT_PWM_SCALE 0
|
|
#endif
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
|
|
#endif
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
static int read_max6675();
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//============================= functions ============================
|
|
//===========================================================================
|
|
|
|
void PID_autotune(float temp, int extruder, int ncycles)
|
|
{
|
|
float input = 0.0;
|
|
int cycles = 0;
|
|
bool heating = true;
|
|
|
|
unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis;
|
|
long t_high = 0, t_low = 0;
|
|
|
|
long bias, d;
|
|
float Ku, Tu;
|
|
float Kp, Ki, Kd;
|
|
float max = 0, min = 10000;
|
|
|
|
#if HAS_AUTO_FAN
|
|
unsigned long extruder_autofan_last_check = temp_millis;
|
|
#endif
|
|
|
|
if (extruder >= EXTRUDERS
|
|
#if !HAS_TEMP_BED
|
|
|| extruder < 0
|
|
#endif
|
|
) {
|
|
SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
|
|
return;
|
|
}
|
|
|
|
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
|
|
|
|
disable_heater(); // switch off all heaters.
|
|
|
|
if (extruder < 0)
|
|
soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
|
|
else
|
|
soft_pwm[extruder] = bias = d = PID_MAX / 2;
|
|
|
|
// PID Tuning loop
|
|
for(;;) {
|
|
|
|
unsigned long ms = millis();
|
|
|
|
if (temp_meas_ready == true) { // temp sample ready
|
|
updateTemperaturesFromRawValues();
|
|
|
|
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
|
|
|
|
max = max(max, input);
|
|
min = min(min, input);
|
|
|
|
#if HAS_AUTO_FAN
|
|
if (ms > extruder_autofan_last_check + 2500) {
|
|
checkExtruderAutoFans();
|
|
extruder_autofan_last_check = ms;
|
|
}
|
|
#endif
|
|
|
|
if (heating == true && input > temp) {
|
|
if (ms - t2 > 5000) {
|
|
heating = false;
|
|
if (extruder < 0)
|
|
soft_pwm_bed = (bias - d) >> 1;
|
|
else
|
|
soft_pwm[extruder] = (bias - d) >> 1;
|
|
t1 = ms;
|
|
t_high = t1 - t2;
|
|
max = temp;
|
|
}
|
|
}
|
|
if (heating == false && input < temp) {
|
|
if (ms - t1 > 5000) {
|
|
heating = true;
|
|
t2 = ms;
|
|
t_low = t2 - t1;
|
|
if (cycles > 0) {
|
|
long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
|
|
bias += (d*(t_high - t_low))/(t_low + t_high);
|
|
bias = constrain(bias, 20, max_pow - 20);
|
|
d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
|
|
|
|
SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
|
|
SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
|
|
SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
|
|
SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
|
|
if (cycles > 2) {
|
|
Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
|
|
Tu = ((float)(t_low + t_high) / 1000.0);
|
|
SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
|
|
SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
|
|
Kp = 0.6 * Ku;
|
|
Ki = 2 * Kp / Tu;
|
|
Kd = Kp * Tu / 8;
|
|
SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
|
|
SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
|
|
/*
|
|
Kp = 0.33*Ku;
|
|
Ki = Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
Kp = 0.2*Ku;
|
|
Ki = 2*Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" No overshoot ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
*/
|
|
}
|
|
}
|
|
if (extruder < 0)
|
|
soft_pwm_bed = (bias + d) >> 1;
|
|
else
|
|
soft_pwm[extruder] = (bias + d) >> 1;
|
|
cycles++;
|
|
min = temp;
|
|
}
|
|
}
|
|
}
|
|
if (input > temp + 20) {
|
|
SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
|
|
return;
|
|
}
|
|
// Every 2 seconds...
|
|
if (ms > temp_millis + 2000) {
|
|
int p;
|
|
if (extruder < 0) {
|
|
p = soft_pwm_bed;
|
|
SERIAL_PROTOCOLPGM(MSG_OK_B);
|
|
}
|
|
else {
|
|
p = soft_pwm[extruder];
|
|
SERIAL_PROTOCOLPGM(MSG_OK_T);
|
|
}
|
|
|
|
SERIAL_PROTOCOL(input);
|
|
SERIAL_PROTOCOLPGM(MSG_AT);
|
|
SERIAL_PROTOCOLLN(p);
|
|
|
|
temp_millis = ms;
|
|
} // every 2 seconds
|
|
// Over 2 minutes?
|
|
if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
|
|
SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
|
|
return;
|
|
}
|
|
if (cycles > ncycles) {
|
|
SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
|
|
return;
|
|
}
|
|
lcd_update();
|
|
}
|
|
}
|
|
|
|
void updatePID() {
|
|
#ifdef PIDTEMP
|
|
for (int e = 0; e < EXTRUDERS; e++) {
|
|
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
|
|
}
|
|
#endif
|
|
#ifdef PIDTEMPBED
|
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
|
|
#endif
|
|
}
|
|
|
|
int getHeaterPower(int heater) {
|
|
return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
|
|
}
|
|
|
|
#if HAS_AUTO_FAN
|
|
|
|
void setExtruderAutoFanState(int pin, bool state)
|
|
{
|
|
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
|
|
// this idiom allows both digital and PWM fan outputs (see M42 handling).
|
|
pinMode(pin, OUTPUT);
|
|
digitalWrite(pin, newFanSpeed);
|
|
analogWrite(pin, newFanSpeed);
|
|
}
|
|
|
|
void checkExtruderAutoFans()
|
|
{
|
|
uint8_t fanState = 0;
|
|
|
|
// which fan pins need to be turned on?
|
|
#if HAS_AUTO_FAN_0
|
|
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
fanState |= 1;
|
|
#endif
|
|
#if HAS_AUTO_FAN_1
|
|
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
{
|
|
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
|
|
fanState |= 1;
|
|
else
|
|
fanState |= 2;
|
|
}
|
|
#endif
|
|
#if HAS_AUTO_FAN_2
|
|
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
{
|
|
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
|
|
fanState |= 1;
|
|
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
|
|
fanState |= 2;
|
|
else
|
|
fanState |= 4;
|
|
}
|
|
#endif
|
|
#if HAS_AUTO_FAN_3
|
|
if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
{
|
|
if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
|
|
fanState |= 1;
|
|
else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
|
|
fanState |= 2;
|
|
else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
|
|
fanState |= 4;
|
|
else
|
|
fanState |= 8;
|
|
}
|
|
#endif
|
|
|
|
// update extruder auto fan states
|
|
#if HAS_AUTO_FAN_0
|
|
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
|
|
#endif
|
|
#if HAS_AUTO_FAN_1
|
|
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
|
|
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
|
|
#endif
|
|
#if HAS_AUTO_FAN_2
|
|
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
|
|
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
|
|
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
|
|
#endif
|
|
#if HAS_AUTO_FAN_3
|
|
if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
|
|
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
|
|
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
|
|
setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
|
|
#endif
|
|
}
|
|
|
|
#endif // any extruder auto fan pins set
|
|
|
|
//
|
|
// Temperature Error Handlers
|
|
//
|
|
inline void _temp_error(int e, const char *msg1, const char *msg2) {
|
|
if (!IsStopped()) {
|
|
SERIAL_ERROR_START;
|
|
if (e >= 0) SERIAL_ERRORLN((int)e);
|
|
serialprintPGM(msg1);
|
|
MYSERIAL.write('\n');
|
|
#ifdef ULTRA_LCD
|
|
lcd_setalertstatuspgm(msg2);
|
|
#endif
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
Stop();
|
|
#endif
|
|
}
|
|
|
|
void max_temp_error(uint8_t e) {
|
|
disable_heater();
|
|
_temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP));
|
|
}
|
|
void min_temp_error(uint8_t e) {
|
|
disable_heater();
|
|
_temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP));
|
|
}
|
|
void bed_max_temp_error(void) {
|
|
#if HAS_HEATER_BED
|
|
WRITE_HEATER_BED(0);
|
|
#endif
|
|
_temp_error(-1, PSTR(MSG_MAXTEMP_BED_OFF), PSTR(MSG_ERR_MAXTEMP_BED));
|
|
}
|
|
|
|
float get_pid_output(int e) {
|
|
float pid_output;
|
|
#ifdef PIDTEMP
|
|
#ifndef PID_OPENLOOP
|
|
pid_error[e] = target_temperature[e] - current_temperature[e];
|
|
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
|
|
pid_output = BANG_MAX;
|
|
pid_reset[e] = true;
|
|
}
|
|
else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
|
|
pid_output = 0;
|
|
pid_reset[e] = true;
|
|
}
|
|
else {
|
|
if (pid_reset[e]) {
|
|
temp_iState[e] = 0.0;
|
|
pid_reset[e] = false;
|
|
}
|
|
pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
|
|
temp_iState[e] += pid_error[e];
|
|
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
|
|
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
|
|
|
|
dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
|
|
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
|
|
if (pid_output > PID_MAX) {
|
|
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
|
pid_output = PID_MAX;
|
|
}
|
|
else if (pid_output < 0) {
|
|
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
|
pid_output = 0;
|
|
}
|
|
}
|
|
temp_dState[e] = current_temperature[e];
|
|
#else
|
|
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
|
#endif //PID_OPENLOOP
|
|
|
|
#ifdef PID_DEBUG
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(MSG_PID_DEBUG);
|
|
SERIAL_ECHO(e);
|
|
SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
|
|
SERIAL_ECHO(current_temperature[e]);
|
|
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
|
|
SERIAL_ECHO(pid_output);
|
|
SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
|
|
SERIAL_ECHO(pTerm[e]);
|
|
SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
|
|
SERIAL_ECHO(iTerm[e]);
|
|
SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
|
|
SERIAL_ECHOLN(dTerm[e]);
|
|
#endif //PID_DEBUG
|
|
|
|
#else /* PID off */
|
|
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
|
|
#endif
|
|
|
|
return pid_output;
|
|
}
|
|
|
|
#ifdef PIDTEMPBED
|
|
float get_pid_output_bed() {
|
|
float pid_output;
|
|
#ifndef PID_OPENLOOP
|
|
pid_error_bed = target_temperature_bed - current_temperature_bed;
|
|
pTerm_bed = bedKp * pid_error_bed;
|
|
temp_iState_bed += pid_error_bed;
|
|
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
|
iTerm_bed = bedKi * temp_iState_bed;
|
|
|
|
dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
|
|
temp_dState_bed = current_temperature_bed;
|
|
|
|
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
|
if (pid_output > MAX_BED_POWER) {
|
|
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
pid_output = MAX_BED_POWER;
|
|
}
|
|
else if (pid_output < 0) {
|
|
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
|
pid_output = 0;
|
|
}
|
|
#else
|
|
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
|
#endif // PID_OPENLOOP
|
|
|
|
#ifdef PID_BED_DEBUG
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(" PID_BED_DEBUG ");
|
|
SERIAL_ECHO(": Input ");
|
|
SERIAL_ECHO(current_temperature_bed);
|
|
SERIAL_ECHO(" Output ");
|
|
SERIAL_ECHO(pid_output);
|
|
SERIAL_ECHO(" pTerm ");
|
|
SERIAL_ECHO(pTerm_bed);
|
|
SERIAL_ECHO(" iTerm ");
|
|
SERIAL_ECHO(iTerm_bed);
|
|
SERIAL_ECHO(" dTerm ");
|
|
SERIAL_ECHOLN(dTerm_bed);
|
|
#endif //PID_BED_DEBUG
|
|
|
|
return pid_output;
|
|
}
|
|
#endif
|
|
|
|
void manage_heater() {
|
|
|
|
if (!temp_meas_ready) return;
|
|
|
|
updateTemperaturesFromRawValues();
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
float ct = current_temperature[0];
|
|
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
|
|
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
|
|
#endif //HEATER_0_USES_MAX6675
|
|
|
|
unsigned long ms = millis();
|
|
|
|
// Loop through all extruders
|
|
for (int e = 0; e < EXTRUDERS; e++) {
|
|
|
|
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
|
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
|
|
#endif
|
|
|
|
float pid_output = get_pid_output(e);
|
|
|
|
// Check if temperature is within the correct range
|
|
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
|
|
|
|
#ifdef WATCH_TEMP_PERIOD
|
|
if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
|
|
if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
|
|
setTargetHotend(0, e);
|
|
LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_HEATING_FAILED);
|
|
}
|
|
else {
|
|
watchmillis[e] = 0;
|
|
}
|
|
}
|
|
#endif //WATCH_TEMP_PERIOD
|
|
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
|
|
disable_heater();
|
|
_temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
|
|
}
|
|
#endif //TEMP_SENSOR_1_AS_REDUNDANT
|
|
|
|
} // Extruders Loop
|
|
|
|
#if HAS_AUTO_FAN
|
|
if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently
|
|
checkExtruderAutoFans();
|
|
extruder_autofan_last_check = ms;
|
|
}
|
|
#endif
|
|
|
|
#ifndef PIDTEMPBED
|
|
if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return;
|
|
previous_millis_bed_heater = ms;
|
|
#endif //PIDTEMPBED
|
|
|
|
#if TEMP_SENSOR_BED != 0
|
|
|
|
#if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0
|
|
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
|
|
#endif
|
|
|
|
#ifdef PIDTEMPBED
|
|
float pid_output = get_pid_output_bed();
|
|
|
|
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
|
|
|
|
#elif !defined(BED_LIMIT_SWITCHING)
|
|
// Check if temperature is within the correct range
|
|
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
|
|
soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
|
|
}
|
|
else {
|
|
soft_pwm_bed = 0;
|
|
WRITE_HEATER_BED(LOW);
|
|
}
|
|
#else //#ifdef BED_LIMIT_SWITCHING
|
|
// Check if temperature is within the correct band
|
|
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
|
|
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
|
|
soft_pwm_bed = 0;
|
|
else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
|
|
soft_pwm_bed = MAX_BED_POWER >> 1;
|
|
}
|
|
else {
|
|
soft_pwm_bed = 0;
|
|
WRITE_HEATER_BED(LOW);
|
|
}
|
|
#endif
|
|
#endif //TEMP_SENSOR_BED != 0
|
|
|
|
// Control the extruder rate based on the width sensor
|
|
#ifdef FILAMENT_SENSOR
|
|
if (filament_sensor) {
|
|
meas_shift_index = delay_index1 - meas_delay_cm;
|
|
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
|
|
|
// Get the delayed info and add 100 to reconstitute to a percent of
|
|
// the nominal filament diameter then square it to get an area
|
|
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
|
|
float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
|
|
if (vm < 0.01) vm = 0.01;
|
|
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
|
|
}
|
|
#endif //FILAMENT_SENSOR
|
|
}
|
|
|
|
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For hot end temperature measurement.
|
|
static float analog2temp(int raw, uint8_t e) {
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
if (e > EXTRUDERS)
|
|
#else
|
|
if (e >= EXTRUDERS)
|
|
#endif
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERROR((int)e);
|
|
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
|
|
kill();
|
|
return 0.0;
|
|
}
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
if (e == 0)
|
|
{
|
|
return 0.25 * raw;
|
|
}
|
|
#endif
|
|
|
|
if(heater_ttbl_map[e] != NULL)
|
|
{
|
|
float celsius = 0;
|
|
uint8_t i;
|
|
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
|
|
|
|
for (i=1; i<heater_ttbllen_map[e]; i++)
|
|
{
|
|
if (PGM_RD_W((*tt)[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W((*tt)[i-1][1]) +
|
|
(raw - PGM_RD_W((*tt)[i-1][0])) *
|
|
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
|
|
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
|
|
|
|
return celsius;
|
|
}
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
}
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For bed temperature measurement.
|
|
static float analog2tempBed(int raw) {
|
|
#ifdef BED_USES_THERMISTOR
|
|
float celsius = 0;
|
|
byte i;
|
|
|
|
for (i=1; i<BEDTEMPTABLE_LEN; i++)
|
|
{
|
|
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
|
|
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
|
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
|
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
|
|
|
|
return celsius;
|
|
#elif defined BED_USES_AD595
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
|
|
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
|
|
static void updateTemperaturesFromRawValues() {
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
current_temperature_raw[0] = read_max6675();
|
|
#endif
|
|
for(uint8_t e = 0; e < EXTRUDERS; e++) {
|
|
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
|
|
}
|
|
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
|
|
#endif
|
|
#if HAS_FILAMENT_SENSOR
|
|
filament_width_meas = analog2widthFil();
|
|
#endif
|
|
//Reset the watchdog after we know we have a temperature measurement.
|
|
watchdog_reset();
|
|
|
|
CRITICAL_SECTION_START;
|
|
temp_meas_ready = false;
|
|
CRITICAL_SECTION_END;
|
|
}
|
|
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
|
|
// Convert raw Filament Width to millimeters
|
|
float analog2widthFil() {
|
|
return current_raw_filwidth / 16383.0 * 5.0;
|
|
//return current_raw_filwidth;
|
|
}
|
|
|
|
// Convert raw Filament Width to a ratio
|
|
int widthFil_to_size_ratio() {
|
|
float temp = filament_width_meas;
|
|
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
|
|
else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
|
|
return filament_width_nominal / temp * 100;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
void tp_init()
|
|
{
|
|
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
|
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
|
MCUCR=BIT(JTD);
|
|
MCUCR=BIT(JTD);
|
|
#endif
|
|
|
|
// Finish init of mult extruder arrays
|
|
for (int e = 0; e < EXTRUDERS; e++) {
|
|
// populate with the first value
|
|
maxttemp[e] = maxttemp[0];
|
|
#ifdef PIDTEMP
|
|
temp_iState_min[e] = 0.0;
|
|
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
temp_iState_min_bed = 0.0;
|
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
|
|
#endif //PIDTEMPBED
|
|
}
|
|
|
|
#if HAS_HEATER_0
|
|
SET_OUTPUT(HEATER_0_PIN);
|
|
#endif
|
|
#if HAS_HEATER_1
|
|
SET_OUTPUT(HEATER_1_PIN);
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
SET_OUTPUT(HEATER_2_PIN);
|
|
#endif
|
|
#if HAS_HEATER_3
|
|
SET_OUTPUT(HEATER_3_PIN);
|
|
#endif
|
|
#if HAS_HEATER_BED
|
|
SET_OUTPUT(HEATER_BED_PIN);
|
|
#endif
|
|
#if HAS_FAN
|
|
SET_OUTPUT(FAN_PIN);
|
|
#ifdef FAST_PWM_FAN
|
|
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
soft_pwm_fan = fanSpeedSoftPwm / 2;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
|
|
#ifndef SDSUPPORT
|
|
OUT_WRITE(SCK_PIN, LOW);
|
|
OUT_WRITE(MOSI_PIN, HIGH);
|
|
OUT_WRITE(MISO_PIN, HIGH);
|
|
#else
|
|
pinMode(SS_PIN, OUTPUT);
|
|
digitalWrite(SS_PIN, HIGH);
|
|
#endif
|
|
|
|
OUT_WRITE(MAX6675_SS,HIGH);
|
|
|
|
#endif //HEATER_0_USES_MAX6675
|
|
|
|
#ifdef DIDR2
|
|
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
|
|
#else
|
|
#define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
|
|
#endif
|
|
|
|
// Set analog inputs
|
|
ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
|
|
DIDR0 = 0;
|
|
#ifdef DIDR2
|
|
DIDR2 = 0;
|
|
#endif
|
|
#if HAS_TEMP_0
|
|
ANALOG_SELECT(TEMP_0_PIN);
|
|
#endif
|
|
#if HAS_TEMP_1
|
|
ANALOG_SELECT(TEMP_1_PIN);
|
|
#endif
|
|
#if HAS_TEMP_2
|
|
ANALOG_SELECT(TEMP_2_PIN);
|
|
#endif
|
|
#if HAS_TEMP_3
|
|
ANALOG_SELECT(TEMP_3_PIN);
|
|
#endif
|
|
#if HAS_TEMP_BED
|
|
ANALOG_SELECT(TEMP_BED_PIN);
|
|
#endif
|
|
#if HAS_FILAMENT_SENSOR
|
|
ANALOG_SELECT(FILWIDTH_PIN);
|
|
#endif
|
|
|
|
// Use timer0 for temperature measurement
|
|
// Interleave temperature interrupt with millies interrupt
|
|
OCR0B = 128;
|
|
TIMSK0 |= BIT(OCIE0B);
|
|
|
|
// Wait for temperature measurement to settle
|
|
delay(250);
|
|
|
|
#define TEMP_MIN_ROUTINE(NR) \
|
|
minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
|
|
while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
|
|
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
|
|
minttemp_raw[NR] += OVERSAMPLENR; \
|
|
else \
|
|
minttemp_raw[NR] -= OVERSAMPLENR; \
|
|
}
|
|
#define TEMP_MAX_ROUTINE(NR) \
|
|
maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
|
|
while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
|
|
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
|
|
maxttemp_raw[NR] -= OVERSAMPLENR; \
|
|
else \
|
|
maxttemp_raw[NR] += OVERSAMPLENR; \
|
|
}
|
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
TEMP_MIN_ROUTINE(0);
|
|
#endif
|
|
#ifdef HEATER_0_MAXTEMP
|
|
TEMP_MAX_ROUTINE(0);
|
|
#endif
|
|
#if EXTRUDERS > 1
|
|
#ifdef HEATER_1_MINTEMP
|
|
TEMP_MIN_ROUTINE(1);
|
|
#endif
|
|
#ifdef HEATER_1_MAXTEMP
|
|
TEMP_MAX_ROUTINE(1);
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
#ifdef HEATER_2_MINTEMP
|
|
TEMP_MIN_ROUTINE(2);
|
|
#endif
|
|
#ifdef HEATER_2_MAXTEMP
|
|
TEMP_MAX_ROUTINE(2);
|
|
#endif
|
|
#if EXTRUDERS > 3
|
|
#ifdef HEATER_3_MINTEMP
|
|
TEMP_MIN_ROUTINE(3);
|
|
#endif
|
|
#ifdef HEATER_3_MAXTEMP
|
|
TEMP_MAX_ROUTINE(3);
|
|
#endif
|
|
#endif // EXTRUDERS > 3
|
|
#endif // EXTRUDERS > 2
|
|
#endif // EXTRUDERS > 1
|
|
|
|
#ifdef BED_MINTEMP
|
|
/* No bed MINTEMP error implemented?!? */ /*
|
|
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_minttemp_raw += OVERSAMPLENR;
|
|
#else
|
|
bed_minttemp_raw -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
*/
|
|
#endif //BED_MINTEMP
|
|
#ifdef BED_MAXTEMP
|
|
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_maxttemp_raw -= OVERSAMPLENR;
|
|
#else
|
|
bed_maxttemp_raw += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //BED_MAXTEMP
|
|
}
|
|
|
|
void setWatch() {
|
|
#ifdef WATCH_TEMP_PERIOD
|
|
unsigned long ms = millis();
|
|
for (int e = 0; e < EXTRUDERS; e++) {
|
|
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
|
|
watch_start_temp[e] = degHotend(e);
|
|
watchmillis[e] = ms;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
|
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
|
|
{
|
|
/*
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
|
|
SERIAL_ECHO(heater_id);
|
|
SERIAL_ECHO(" ; State:");
|
|
SERIAL_ECHO(*state);
|
|
SERIAL_ECHO(" ; Timer:");
|
|
SERIAL_ECHO(*timer);
|
|
SERIAL_ECHO(" ; Temperature:");
|
|
SERIAL_ECHO(temperature);
|
|
SERIAL_ECHO(" ; Target Temp:");
|
|
SERIAL_ECHO(target_temperature);
|
|
SERIAL_ECHOLN("");
|
|
*/
|
|
if ((target_temperature == 0) || thermal_runaway)
|
|
{
|
|
*state = 0;
|
|
*timer = 0;
|
|
return;
|
|
}
|
|
switch (*state)
|
|
{
|
|
case 0: // "Heater Inactive" state
|
|
if (target_temperature > 0) *state = 1;
|
|
break;
|
|
case 1: // "First Heating" state
|
|
if (temperature >= target_temperature) *state = 2;
|
|
break;
|
|
case 2: // "Temperature Stable" state
|
|
{
|
|
unsigned long ms = millis();
|
|
if (temperature >= (target_temperature - hysteresis_degc))
|
|
{
|
|
*timer = ms;
|
|
}
|
|
else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
|
|
SERIAL_ERRORLN((int)heater_id);
|
|
LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable
|
|
thermal_runaway = true;
|
|
while(1)
|
|
{
|
|
disable_heater();
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
manage_heater();
|
|
lcd_update();
|
|
}
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
#endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
|
|
|
|
|
|
void disable_heater() {
|
|
for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
|
|
setTargetBed(0);
|
|
|
|
#define DISABLE_HEATER(NR) { \
|
|
target_temperature[NR] = 0; \
|
|
soft_pwm[NR] = 0; \
|
|
WRITE_HEATER_ ## NR (LOW); \
|
|
}
|
|
|
|
#if HAS_TEMP_0
|
|
target_temperature[0] = 0;
|
|
soft_pwm[0] = 0;
|
|
WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
|
|
#endif
|
|
|
|
#if EXTRUDERS > 1 && HAS_TEMP_1
|
|
DISABLE_HEATER(1);
|
|
#endif
|
|
|
|
#if EXTRUDERS > 2 && HAS_TEMP_2
|
|
DISABLE_HEATER(2);
|
|
#endif
|
|
|
|
#if EXTRUDERS > 3 && HAS_TEMP_3
|
|
DISABLE_HEATER(3);
|
|
#endif
|
|
|
|
#if HAS_TEMP_BED
|
|
target_temperature_bed = 0;
|
|
soft_pwm_bed = 0;
|
|
#if HAS_HEATER_BED
|
|
WRITE_HEATER_BED(LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
#define MAX6675_HEAT_INTERVAL 250
|
|
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
|
|
int max6675_temp = 2000;
|
|
|
|
static int read_max6675() {
|
|
|
|
unsigned long ms = millis();
|
|
if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
|
|
return max6675_temp;
|
|
|
|
max6675_previous_millis = ms;
|
|
max6675_temp = 0;
|
|
|
|
#ifdef PRR
|
|
PRR &= ~BIT(PRSPI);
|
|
#elif defined(PRR0)
|
|
PRR0 &= ~BIT(PRSPI);
|
|
#endif
|
|
|
|
SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
|
|
|
|
// enable TT_MAX6675
|
|
WRITE(MAX6675_SS, 0);
|
|
|
|
// ensure 100ns delay - a bit extra is fine
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
|
|
// read MSB
|
|
SPDR = 0;
|
|
for (;(SPSR & BIT(SPIF)) == 0;);
|
|
max6675_temp = SPDR;
|
|
max6675_temp <<= 8;
|
|
|
|
// read LSB
|
|
SPDR = 0;
|
|
for (;(SPSR & BIT(SPIF)) == 0;);
|
|
max6675_temp |= SPDR;
|
|
|
|
// disable TT_MAX6675
|
|
WRITE(MAX6675_SS, 1);
|
|
|
|
if (max6675_temp & 4) {
|
|
// thermocouple open
|
|
max6675_temp = 4000;
|
|
}
|
|
else {
|
|
max6675_temp = max6675_temp >> 3;
|
|
}
|
|
|
|
return max6675_temp;
|
|
}
|
|
|
|
#endif //HEATER_0_USES_MAX6675
|
|
|
|
/**
|
|
* Stages in the ISR loop
|
|
*/
|
|
enum TempState {
|
|
PrepareTemp_0,
|
|
MeasureTemp_0,
|
|
PrepareTemp_BED,
|
|
MeasureTemp_BED,
|
|
PrepareTemp_1,
|
|
MeasureTemp_1,
|
|
PrepareTemp_2,
|
|
MeasureTemp_2,
|
|
PrepareTemp_3,
|
|
MeasureTemp_3,
|
|
Prepare_FILWIDTH,
|
|
Measure_FILWIDTH,
|
|
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
|
|
};
|
|
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
#define TEMP_SENSOR_COUNT 2
|
|
#else
|
|
#define TEMP_SENSOR_COUNT EXTRUDERS
|
|
#endif
|
|
|
|
static unsigned long raw_temp_value[TEMP_SENSOR_COUNT] = { 0 };
|
|
static unsigned long raw_temp_bed_value = 0;
|
|
|
|
static void set_current_temp_raw() {
|
|
#ifndef HEATER_0_USES_MAX6675
|
|
current_temperature_raw[0] = raw_temp_value[0];
|
|
#endif
|
|
#if EXTRUDERS > 1
|
|
current_temperature_raw[1] = raw_temp_value[1];
|
|
#if EXTRUDERS > 2
|
|
current_temperature_raw[2] = raw_temp_value[2];
|
|
#if EXTRUDERS > 3
|
|
current_temperature_raw[3] = raw_temp_value[3];
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
redundant_temperature_raw = raw_temp_value[1];
|
|
#endif
|
|
current_temperature_bed_raw = raw_temp_bed_value;
|
|
}
|
|
|
|
//
|
|
// Timer 0 is shared with millies
|
|
//
|
|
ISR(TIMER0_COMPB_vect) {
|
|
//these variables are only accesible from the ISR, but static, so they don't lose their value
|
|
static unsigned char temp_count = 0;
|
|
static TempState temp_state = StartupDelay;
|
|
static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
|
|
|
|
// Static members for each heater
|
|
#ifdef SLOW_PWM_HEATERS
|
|
static unsigned char slow_pwm_count = 0;
|
|
#define ISR_STATICS(n) \
|
|
static unsigned char soft_pwm_ ## n; \
|
|
static unsigned char state_heater_ ## n = 0; \
|
|
static unsigned char state_timer_heater_ ## n = 0
|
|
#else
|
|
#define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
|
|
#endif
|
|
|
|
// Statics per heater
|
|
ISR_STATICS(0);
|
|
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
|
|
ISR_STATICS(1);
|
|
#if EXTRUDERS > 2
|
|
ISR_STATICS(2);
|
|
#if EXTRUDERS > 3
|
|
ISR_STATICS(3);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#if HAS_HEATER_BED
|
|
ISR_STATICS(BED);
|
|
#endif
|
|
|
|
#if HAS_FILAMENT_SENSOR
|
|
static unsigned long raw_filwidth_value = 0;
|
|
#endif
|
|
|
|
#ifndef SLOW_PWM_HEATERS
|
|
/**
|
|
* standard PWM modulation
|
|
*/
|
|
if (pwm_count == 0) {
|
|
soft_pwm_0 = soft_pwm[0];
|
|
if (soft_pwm_0 > 0) {
|
|
WRITE_HEATER_0(1);
|
|
}
|
|
else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
|
|
|
|
#if EXTRUDERS > 1
|
|
soft_pwm_1 = soft_pwm[1];
|
|
WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
|
|
#if EXTRUDERS > 2
|
|
soft_pwm_2 = soft_pwm[2];
|
|
WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
|
|
#if EXTRUDERS > 3
|
|
soft_pwm_3 = soft_pwm[3];
|
|
WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_HEATER_BED
|
|
soft_pwm_BED = soft_pwm_bed;
|
|
WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
soft_pwm_fan = fanSpeedSoftPwm / 2;
|
|
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
|
|
#endif
|
|
}
|
|
|
|
if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
|
|
#if EXTRUDERS > 1
|
|
if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
|
|
#if EXTRUDERS > 2
|
|
if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
|
|
#if EXTRUDERS > 3
|
|
if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_HEATER_BED
|
|
if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
|
|
#endif
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
|
#endif
|
|
|
|
pwm_count += BIT(SOFT_PWM_SCALE);
|
|
pwm_count &= 0x7f;
|
|
|
|
#else // SLOW_PWM_HEATERS
|
|
/*
|
|
* SLOW PWM HEATERS
|
|
*
|
|
* for heaters drived by relay
|
|
*/
|
|
#ifndef MIN_STATE_TIME
|
|
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
|
|
#endif
|
|
|
|
// Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
|
|
#define _SLOW_PWM_ROUTINE(NR, src) \
|
|
soft_pwm_ ## NR = src; \
|
|
if (soft_pwm_ ## NR > 0) { \
|
|
if (state_timer_heater_ ## NR == 0) { \
|
|
if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
|
|
state_heater_ ## NR = 1; \
|
|
WRITE_HEATER_ ## NR(1); \
|
|
} \
|
|
} \
|
|
else { \
|
|
if (state_timer_heater_ ## NR == 0) { \
|
|
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
|
|
state_heater_ ## NR = 0; \
|
|
WRITE_HEATER_ ## NR(0); \
|
|
} \
|
|
}
|
|
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
|
|
|
|
#define PWM_OFF_ROUTINE(NR) \
|
|
if (soft_pwm_ ## NR < slow_pwm_count) { \
|
|
if (state_timer_heater_ ## NR == 0) { \
|
|
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
|
|
state_heater_ ## NR = 0; \
|
|
WRITE_HEATER_ ## NR (0); \
|
|
} \
|
|
}
|
|
|
|
if (slow_pwm_count == 0) {
|
|
|
|
SLOW_PWM_ROUTINE(0); // EXTRUDER 0
|
|
#if EXTRUDERS > 1
|
|
SLOW_PWM_ROUTINE(1); // EXTRUDER 1
|
|
#if EXTRUDERS > 2
|
|
SLOW_PWM_ROUTINE(2); // EXTRUDER 2
|
|
#if EXTRUDERS > 3
|
|
SLOW_PWM_ROUTINE(3); // EXTRUDER 3
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#if HAS_HEATER_BED
|
|
_SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
|
|
#endif
|
|
|
|
} // slow_pwm_count == 0
|
|
|
|
PWM_OFF_ROUTINE(0); // EXTRUDER 0
|
|
#if EXTRUDERS > 1
|
|
PWM_OFF_ROUTINE(1); // EXTRUDER 1
|
|
#if EXTRUDERS > 2
|
|
PWM_OFF_ROUTINE(2); // EXTRUDER 2
|
|
#if EXTRUDERS > 3
|
|
PWM_OFF_ROUTINE(3); // EXTRUDER 3
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#if HAS_HEATER_BED
|
|
PWM_OFF_ROUTINE(BED); // BED
|
|
#endif
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
if (pwm_count == 0) {
|
|
soft_pwm_fan = fanSpeedSoftPwm / 2;
|
|
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
|
|
}
|
|
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
|
#endif //FAN_SOFT_PWM
|
|
|
|
pwm_count += BIT(SOFT_PWM_SCALE);
|
|
pwm_count &= 0x7f;
|
|
|
|
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
|
|
if ((pwm_count % 64) == 0) {
|
|
slow_pwm_count++;
|
|
slow_pwm_count &= 0x7f;
|
|
|
|
// EXTRUDER 0
|
|
if (state_timer_heater_0 > 0) state_timer_heater_0--;
|
|
#if EXTRUDERS > 1 // EXTRUDER 1
|
|
if (state_timer_heater_1 > 0) state_timer_heater_1--;
|
|
#if EXTRUDERS > 2 // EXTRUDER 2
|
|
if (state_timer_heater_2 > 0) state_timer_heater_2--;
|
|
#if EXTRUDERS > 3 // EXTRUDER 3
|
|
if (state_timer_heater_3 > 0) state_timer_heater_3--;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#if HAS_HEATER_BED
|
|
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
|
|
#endif
|
|
} // (pwm_count % 64) == 0
|
|
|
|
#endif // SLOW_PWM_HEATERS
|
|
|
|
#define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
|
|
#ifdef MUX5
|
|
#define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
|
#else
|
|
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
|
#endif
|
|
|
|
switch(temp_state) {
|
|
case PrepareTemp_0:
|
|
#if HAS_TEMP_0
|
|
START_ADC(TEMP_0_PIN);
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = MeasureTemp_0;
|
|
break;
|
|
case MeasureTemp_0:
|
|
#if HAS_TEMP_0
|
|
raw_temp_value[0] += ADC;
|
|
#endif
|
|
temp_state = PrepareTemp_BED;
|
|
break;
|
|
|
|
case PrepareTemp_BED:
|
|
#if HAS_TEMP_BED
|
|
START_ADC(TEMP_BED_PIN);
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = MeasureTemp_BED;
|
|
break;
|
|
case MeasureTemp_BED:
|
|
#if HAS_TEMP_BED
|
|
raw_temp_bed_value += ADC;
|
|
#endif
|
|
temp_state = PrepareTemp_1;
|
|
break;
|
|
|
|
case PrepareTemp_1:
|
|
#if HAS_TEMP_1
|
|
START_ADC(TEMP_1_PIN);
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = MeasureTemp_1;
|
|
break;
|
|
case MeasureTemp_1:
|
|
#if HAS_TEMP_1
|
|
raw_temp_value[1] += ADC;
|
|
#endif
|
|
temp_state = PrepareTemp_2;
|
|
break;
|
|
|
|
case PrepareTemp_2:
|
|
#if HAS_TEMP_2
|
|
START_ADC(TEMP_2_PIN);
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = MeasureTemp_2;
|
|
break;
|
|
case MeasureTemp_2:
|
|
#if HAS_TEMP_2
|
|
raw_temp_value[2] += ADC;
|
|
#endif
|
|
temp_state = PrepareTemp_3;
|
|
break;
|
|
|
|
case PrepareTemp_3:
|
|
#if HAS_TEMP_3
|
|
START_ADC(TEMP_3_PIN);
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = MeasureTemp_3;
|
|
break;
|
|
case MeasureTemp_3:
|
|
#if HAS_TEMP_3
|
|
raw_temp_value[3] += ADC;
|
|
#endif
|
|
temp_state = Prepare_FILWIDTH;
|
|
break;
|
|
|
|
case Prepare_FILWIDTH:
|
|
#if HAS_FILAMENT_SENSOR
|
|
START_ADC(FILWIDTH_PIN);
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = Measure_FILWIDTH;
|
|
break;
|
|
case Measure_FILWIDTH:
|
|
#if HAS_FILAMENT_SENSOR
|
|
// raw_filwidth_value += ADC; //remove to use an IIR filter approach
|
|
if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
|
|
raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
|
|
raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
|
|
}
|
|
#endif
|
|
temp_state = PrepareTemp_0;
|
|
temp_count++;
|
|
break;
|
|
|
|
case StartupDelay:
|
|
temp_state = PrepareTemp_0;
|
|
break;
|
|
|
|
// default:
|
|
// SERIAL_ERROR_START;
|
|
// SERIAL_ERRORLNPGM("Temp measurement error!");
|
|
// break;
|
|
} // switch(temp_state)
|
|
|
|
if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
|
|
if (!temp_meas_ready) { //Only update the raw values if they have been read. Else we could be updating them during reading.
|
|
set_current_temp_raw();
|
|
} //!temp_meas_ready
|
|
|
|
// Filament Sensor - can be read any time since IIR filtering is used
|
|
#if HAS_FILAMENT_SENSOR
|
|
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
|
#endif
|
|
|
|
temp_meas_ready = true;
|
|
temp_count = 0;
|
|
for (int i = 0; i < TEMP_SENSOR_COUNT; i++) raw_temp_value[i] = 0;
|
|
raw_temp_bed_value = 0;
|
|
|
|
#ifndef HEATER_0_USES_MAX6675
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
#define GE0 <=
|
|
#else
|
|
#define GE0 >=
|
|
#endif
|
|
if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
|
|
if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
|
|
#endif
|
|
|
|
#if EXTRUDERS > 1
|
|
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
|
|
#define GE1 <=
|
|
#else
|
|
#define GE1 >=
|
|
#endif
|
|
if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
|
|
if (minttemp_raw[1] GE0 current_temperature_raw[1]) min_temp_error(1);
|
|
|
|
#if EXTRUDERS > 2
|
|
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
|
|
#define GE2 <=
|
|
#else
|
|
#define GE2 >=
|
|
#endif
|
|
if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
|
|
if (minttemp_raw[2] GE0 current_temperature_raw[2]) min_temp_error(2);
|
|
|
|
#if EXTRUDERS > 3
|
|
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
|
|
#define GE3 <=
|
|
#else
|
|
#define GE3 >=
|
|
#endif
|
|
if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
|
|
if (minttemp_raw[3] GE0 current_temperature_raw[3]) min_temp_error(3);
|
|
|
|
#endif // EXTRUDERS > 3
|
|
#endif // EXTRUDERS > 2
|
|
#endif // EXTRUDERS > 1
|
|
|
|
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
|
|
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
|
#define GEBED <=
|
|
#else
|
|
#define GEBED >=
|
|
#endif
|
|
if (current_temperature_bed_raw GEBED bed_maxttemp_raw) {
|
|
target_temperature_bed = 0;
|
|
bed_max_temp_error();
|
|
}
|
|
#endif
|
|
|
|
} // temp_count >= OVERSAMPLENR
|
|
|
|
#ifdef BABYSTEPPING
|
|
for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
|
|
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
|
|
|
|
if (curTodo > 0) {
|
|
babystep(axis,/*fwd*/true);
|
|
babystepsTodo[axis]--; //less to do next time
|
|
}
|
|
else if(curTodo < 0) {
|
|
babystep(axis,/*fwd*/false);
|
|
babystepsTodo[axis]++; //less to do next time
|
|
}
|
|
}
|
|
#endif //BABYSTEPPING
|
|
}
|
|
|
|
#ifdef PIDTEMP
|
|
// Apply the scale factors to the PID values
|
|
float scalePID_i(float i) { return i * PID_dT; }
|
|
float unscalePID_i(float i) { return i / PID_dT; }
|
|
float scalePID_d(float d) { return d / PID_dT; }
|
|
float unscalePID_d(float d) { return d * PID_dT; }
|
|
#endif //PIDTEMP
|