This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/G26_Mesh_Validation_Tool.cpp
Roxy-3D c06af63f87 G26's default behaviour ought to be the entire mesh (#6726)
Adding the capability to specify ahead of time how much of the validation pattern to print made it so by default G26 only did one circle and no connecting lines.

It is more natural for the unsophisticated user to just do the entire mesh (bed).   We default the repetition count to GRID_MAX_POINTS+1 to insure we get every last one of them!
2017-05-13 15:53:44 -05:00

879 lines
36 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Marlin Firmware -- G26 - Mesh Validation Tool
*/
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
#include "ubl.h"
#include "Marlin.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "ultralcd.h"
#define EXTRUSION_MULTIPLIER 1.0
#define RETRACTION_MULTIPLIER 1.0
#define NOZZLE 0.4
#define FILAMENT 1.75
#define LAYER_HEIGHT 0.2
#define PRIME_LENGTH 10.0
#define BED_TEMP 60.0
#define HOTEND_TEMP 205.0
#define OOZE_AMOUNT 0.3
#define SIZE_OF_INTERSECTION_CIRCLES 5
#define SIZE_OF_CROSSHAIRS 3
#if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
#error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
#endif
/**
* G26 Mesh Validation Tool
*
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
* the intersections of those lines (respectively).
*
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
* the user can specify the X and Y position of interest with command parameters. This allows the user to
* focus on a particular area of the Mesh where attention is needed.
*
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
*
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
* as the base for any distance comparison.
*
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if
* it is on.
*
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
*
* F # Filament Used to specify the diameter of the filament being used. If not specified
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
* of filament that is being extruded during the printing of the various lines on the bed.
*
* K Keep-On Keep the heaters turned on at the end of the command.
*
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
*
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
*
* M # Random Randomize the order that the circles are drawn on the bed. The search for the closest
* undrawn cicle is still done. But the distance to the location for each circle has a
* random number of the size specified added to it. Specifying R50 will give an interesting
* deviation from the normal behaviour on a 10 x 10 Mesh.
* N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
* 'n' can be used instead if your host program does not appreciate you using 'N'.
*
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
* is over kill, but using this parameter will let you get the very first 'circle' perfect
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
*
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
* given, no prime action will take place. If the parameter specifies an amount, that much
* will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state.
*
* R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
* If a parameter isn't given, every point will be printed unless G26 is interrupted.
* This works the same way that the UBL G29 P4 R parameter works.
*
* X # X Coord. Specify the starting location of the drawing activity.
*
* Y # Y Coord. Specify the starting location of the drawing activity.
*/
// External references
extern float feedrate_mm_s; // must set before calling prepare_move_to_destination
extern Planner planner;
#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[];
#endif
extern float destination[XYZE];
void set_destination_to_current();
void set_current_to_destination();
void prepare_move_to_destination();
float code_value_float();
float code_value_linear_units();
float code_value_axis_units(const AxisEnum axis);
bool code_value_bool();
bool code_has_value();
void lcd_init();
void lcd_setstatuspgm(const char* const message, const uint8_t level);
void sync_plan_position_e();
void chirp_at_user();
// Private functions
void un_retract_filament(float where[XYZE]);
void retract_filament(float where[XYZE]);
void look_for_lines_to_connect();
bool parse_G26_parameters();
void move_to(const float&, const float&, const float&, const float&) ;
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
bool turn_on_heaters();
bool prime_nozzle();
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
float g26_e_axis_feedrate = 0.020,
random_deviation = 0.0,
layer_height = LAYER_HEIGHT;
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
// retracts/recovers won't result in a bad state.
float valid_trig_angle(float);
mesh_index_pair find_closest_circle_to_print(const float&, const float&);
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
retraction_multiplier = RETRACTION_MULTIPLIER,
nozzle = NOZZLE,
filament_diameter = FILAMENT,
prime_length = PRIME_LENGTH,
x_pos, y_pos,
ooze_amount = OOZE_AMOUNT;
static int16_t bed_temp = BED_TEMP,
hotend_temp = HOTEND_TEMP;
static int8_t prime_flag = 0;
static bool continue_with_closest, keep_heaters_on;
static int16_t g26_repeats;
void G26_line_to_destination(const float &feed_rate) {
const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = feed_rate; // use specified feed rate
prepare_move_to_destination(); // will ultimately call ubl_line_to_destination_cartesian or ubl_prepare_linear_move_to for UBL_DELTA
feedrate_mm_s = save_feedrate; // restore global feed rate
}
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit UBL's Mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*/
void gcode_G26() {
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
float tmp, start_angle, end_angle;
int i, xi, yi;
mesh_index_pair location;
// Don't allow Mesh Validation without homing first,
// or if the parameter parsing did not go OK, abort
if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return;
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
stepper.synchronize();
set_current_to_destination();
}
if (turn_on_heaters()) goto LEAVE;
current_position[E_AXIS] = 0.0;
sync_plan_position_e();
if (prime_flag && prime_nozzle()) goto LEAVE;
/**
* Bed is preheated
*
* Nozzle is at temperature
*
* Filament is primed!
*
* It's "Show Time" !!!
*/
ZERO(circle_flags);
ZERO(horizontal_mesh_line_flags);
ZERO(vertical_mesh_line_flags);
// Move nozzle to the specified height for the first layer
set_destination_to_current();
destination[Z_AXIS] = layer_height;
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
ubl.has_control_of_lcd_panel = true;
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
/**
* Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
* the CPU load and make the arc drawing faster and more smooth
*/
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
for (i = 0; i <= 360 / 30; i++) {
cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
}
do {
if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
#if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
lcd_quick_feedback();
#endif
while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR(""));
}
while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving
lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
}
goto LEAVE;
}
location = continue_with_closest
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
: find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) {
const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
// If this mesh location is outside the printable_radius, skip it.
if (!position_is_reachable_raw_xy(circle_x, circle_y)) continue;
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
yi = location.y_index;
if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
SERIAL_ECHOPAIR(", yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL;
}
start_angle = 0.0; // assume it is going to be a full circle
end_angle = 360.0;
if (xi == 0) { // Check for bottom edge
start_angle = -90.0;
end_angle = 90.0;
if (yi == 0) // it is an edge, check for the two left corners
start_angle = 0.0;
else if (yi == GRID_MAX_POINTS_Y - 1)
end_angle = 0.0;
}
else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
start_angle = 90.0;
end_angle = 270.0;
if (yi == 0) // it is an edge, check for the two right corners
end_angle = 180.0;
else if (yi == GRID_MAX_POINTS_Y - 1)
start_angle = 180.0;
}
else if (yi == 0) {
start_angle = 0.0; // only do the top side of the cirlce
end_angle = 180.0;
}
else if (yi == GRID_MAX_POINTS_Y - 1) {
start_angle = 180.0; // only do the bottom side of the cirlce
end_angle = 360.0;
}
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
int tmp_div_30 = tmp / 30.0;
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
y = circle_y + sin_table[tmp_div_30],
xe = circle_x + cos_table[tmp_div_30 + 1],
ye = circle_y + sin_table[tmp_div_30 + 1];
#if IS_KINEMATIC
// Check to make sure this segment is entirely on the bed, skip if not.
if (!position_is_reachable_raw_xy(x, y) || !position_is_reachable_raw_xy(xe, ye)) continue;
#else // not, we need to skip
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
//if (ubl.g26_debug_flag) {
// char ccc, *cptr, seg_msg[50], seg_num[10];
// strcpy(seg_msg, " segment: ");
// strcpy(seg_num, " \n");
// cptr = (char*) "01234567890ABCDEF????????";
// ccc = cptr[tmp_div_30];
// seg_num[1] = ccc;
// strcat(seg_msg, seg_num);
// debug_current_and_destination(seg_msg);
//}
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
}
//debug_current_and_destination(PSTR("Looking for lines to connect."));
look_for_lines_to_connect();
//debug_current_and_destination(PSTR("Done with line connect."));
}
//debug_current_and_destination(PSTR("Done with current circle."));
} while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
LEAVE:
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR("Leaving G26"));
retract_filament(destination);
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
//debug_current_and_destination(PSTR("ready to do Z-Raise."));
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
//debug_current_and_destination(PSTR("done doing Z-Raise."));
destination[X_AXIS] = x_pos; // Move back to the starting position
destination[Y_AXIS] = y_pos;
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
//debug_current_and_destination(PSTR("done doing X/Y move."));
ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
if (!keep_heaters_on) {
#if HAS_TEMP_BED
thermalManager.setTargetBed(0);
#endif
thermalManager.setTargetHotend(0, 0);
}
}
float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0;
return d;
}
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
float closest = 99999.99;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (!is_bit_set(circle_flags, i, j)) {
const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed
my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
// Get the distance to this intersection
float f = HYPOT(X - mx, Y - my);
// It is possible that we are being called with the values
// to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue.
f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
// Add in the specified amount of Random Noise to our search
if (random_deviation > 1.0)
f += random(0.0, random_deviation);
if (f < closest) {
closest = f; // We found a closer location that is still
return_val.x_index = i; // un-printed --- save the data for it
return_val.y_index = j;
return_val.distance = closest;
}
}
}
}
bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
return return_val;
}
void look_for_lines_to_connect() {
float sx, sy, ex, ey;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
//
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL;
//debug_current_and_destination(PSTR("Connecting horizontal line."));
}
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
}
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
}
}
if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
//
// We found two circles that need a vertical line to connect them
// Print it!
//
sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL;
debug_current_and_destination(PSTR("Connecting vertical line."));
}
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
}
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
}
}
}
}
}
}
}
void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
float feed_value;
static float last_z = -999.99;
bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
if (z != last_z) {
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_AXIS] = current_position[E_AXIS];
G26_line_to_destination(feed_value);
stepper.synchronize();
set_destination_to_current();
//if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() done with Z move"));
}
// Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or un_retract()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[E_AXIS] += e_delta;
//if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() doing last move"));
G26_line_to_destination(feed_value);
//if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() after last move"));
stepper.synchronize();
set_destination_to_current();
}
void retract_filament(float where[XYZE]) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
}
}
void un_retract_filament(float where[XYZE]) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
g26_retracted = false;
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
}
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
// to save computation time
dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
dy_e = current_position[Y_AXIS] - ey,
dist_end = HYPOT2(dx_e, dy_e),
line_length = HYPOT(ex - sx, ey - sy);
// If the end point of the line is closer to the nozzle, flip the direction,
// moving from the end to the start. On very small lines the optimization isn't worth it.
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
}
// Decide whether to retract & bump
if (dist_start > 2.0) {
retract_filament(destination);
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Z bumping by 0.500 to minimize scraping.");
//todo: parameterize the bump height with a define
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
}
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
un_retract_filament(destination);
//if (ubl.g26_debug_flag) {
// SERIAL_ECHOLNPGM(" doing printing move.");
// debug_current_and_destination(PSTR("doing final move_to() inside print_line_from_here_to_there()"));
//}
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
}
/**
* This function used to be inline code in G26. But there are so many
* parameters it made sense to turn them into static globals and get
* this code out of sight of the main routine.
*/
bool parse_G26_parameters() {
extrusion_multiplier = EXTRUSION_MULTIPLIER;
retraction_multiplier = RETRACTION_MULTIPLIER;
nozzle = NOZZLE;
filament_diameter = FILAMENT;
layer_height = LAYER_HEIGHT;
prime_length = PRIME_LENGTH;
bed_temp = BED_TEMP;
hotend_temp = HOTEND_TEMP;
prime_flag = 0;
ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT;
keep_heaters_on = code_seen('K') && code_value_bool();
continue_with_closest = code_seen('C') && code_value_bool();
if (code_seen('B')) {
bed_temp = code_value_temp_abs();
if (!WITHIN(bed_temp, 15, 140)) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return UBL_ERR;
}
}
if (code_seen('L')) {
layer_height = code_value_linear_units();
if (!WITHIN(layer_height, 0.0, 2.0)) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR;
}
}
if (code_seen('Q')) {
if (code_has_value()) {
retraction_multiplier = code_value_float();
if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR;
}
}
else {
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
return UBL_ERR;
}
}
if (code_seen('N') || code_seen('n')) { // Warning! Use of 'N' / lowercase flouts established standards.
nozzle = code_value_float();
if (!WITHIN(nozzle, 0.1, 1.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR;
}
}
if (code_seen('P')) {
if (!code_has_value())
prime_flag = -1;
else {
prime_flag++;
prime_length = code_value_linear_units();
if (!WITHIN(prime_length, 0.0, 25.0)) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR;
}
}
}
if (code_seen('F')) {
filament_diameter = code_value_linear_units();
if (!WITHIN(filament_diameter, 1.0, 4.0)) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR;
}
}
extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
if (code_seen('H')) {
hotend_temp = code_value_temp_abs();
if (!WITHIN(hotend_temp, 165, 280)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return UBL_ERR;
}
}
if (code_seen('M')) { // Warning! Use of 'M' flouts established standards.
randomSeed(millis());
// This setting will persist for the next G26
random_deviation = code_has_value() ? code_value_float() : 50.0;
}
g26_repeats = code_seen('R') ? (code_has_value() ? code_value_int() : GRID_MAX_POINTS+1) : GRID_MAX_POINTS+1;
if (g26_repeats < 1) {
SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
return UBL_ERR;
}
x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS];
y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS];
if (!position_is_reachable_xy(x_pos, y_pos)) {
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
return UBL_ERR;
}
/**
* Wait until all parameters are verified before altering the state!
*/
ubl.state.active = !code_seen('D');
return UBL_OK;
}
bool exit_from_g26() {
//strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR("Leaving G26"));
while (ubl_lcd_clicked()) idle();
return UBL_ERR;
}
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
bool turn_on_heaters() {
millis_t next;
#if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD)
if (bed_temp > 25) {
lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback();
#endif
ubl.has_control_of_lcd_panel = true;
thermalManager.setTargetBed(bed_temp);
next = millis() + 5000UL;
while (abs(thermalManager.degBed() - bed_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26();
if (PENDING(millis(), next)) {
next = millis() + 5000UL;
print_heaterstates();
}
idle();
}
#if ENABLED(ULTRA_LCD)
}
lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
lcd_quick_feedback();
#endif
#endif
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26();
if (PENDING(millis(), next)) {
next = millis() + 5000UL;
print_heaterstates();
}
idle();
}
#if ENABLED(ULTRA_LCD)
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR(""));
lcd_quick_feedback();
#endif
return UBL_OK;
}
/**
* Prime the nozzle if needed. Return true on error.
*/
bool prime_nozzle() {
float Total_Prime = 0.0;
if (prime_flag == -1) { // The user wants to control how much filament gets purged
ubl.has_control_of_lcd_panel = true;
lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
chirp_at_user();
set_destination_to_current();
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ubl_lcd_clicked()) {
chirp_at_user();
destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
set_destination_to_current();
idle();
}
while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
#if ENABLED(ULTRA_LCD)
strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
// So... We cheat to get a message up.
lcd_setstatuspgm(PSTR("Done Priming"), 99);
lcd_quick_feedback();
#endif
ubl.has_control_of_lcd_panel = false;
}
else {
#if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
lcd_quick_feedback();
#endif
set_destination_to_current();
destination[E_AXIS] += prime_length;
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize();
set_destination_to_current();
retract_filament(destination);
}
return UBL_OK;
}
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING