640 lines
18 KiB
C++
640 lines
18 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#ifdef TARGET_LPC1768
|
|
|
|
#include "../../core/macros.h"
|
|
#include "../HAL.h"
|
|
#include "HardwareSerial.h"
|
|
#define UART3 3
|
|
HardwareSerial Serial3 = HardwareSerial(UART3);
|
|
|
|
volatile uint32_t UART0Status, UART1Status, UART2Status, UART3Status;
|
|
volatile uint8_t UART0TxEmpty = 1, UART1TxEmpty = 1, UART2TxEmpty=1, UART3TxEmpty=1;
|
|
volatile uint8_t UART0Buffer[UARTRXQUEUESIZE], UART1Buffer[UARTRXQUEUESIZE], UART2Buffer[UARTRXQUEUESIZE], UART3Buffer[UARTRXQUEUESIZE];
|
|
volatile uint32_t UART0RxQueueWritePos = 0, UART1RxQueueWritePos = 0, UART2RxQueueWritePos = 0, UART3RxQueueWritePos = 0;
|
|
volatile uint32_t UART0RxQueueReadPos = 0, UART1RxQueueReadPos = 0, UART2RxQueueReadPos = 0, UART3RxQueueReadPos = 0;
|
|
volatile uint8_t dummy;
|
|
|
|
void HardwareSerial::begin(uint32_t baudrate) {
|
|
uint32_t Fdiv;
|
|
uint32_t pclkdiv, pclk;
|
|
|
|
if ( PortNum == 0 )
|
|
{
|
|
LPC_PINCON->PINSEL0 &= ~0x000000F0;
|
|
LPC_PINCON->PINSEL0 |= 0x00000050; /* RxD0 is P0.3 and TxD0 is P0.2 */
|
|
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
|
all the peripherals is 1/4 of the SystemFrequency. */
|
|
/* Bit 6~7 is for UART0 */
|
|
pclkdiv = (LPC_SC->PCLKSEL0 >> 6) & 0x03;
|
|
switch ( pclkdiv )
|
|
{
|
|
case 0x00:
|
|
default:
|
|
pclk = SystemCoreClock/4;
|
|
break;
|
|
case 0x01:
|
|
pclk = SystemCoreClock;
|
|
break;
|
|
case 0x02:
|
|
pclk = SystemCoreClock/2;
|
|
break;
|
|
case 0x03:
|
|
pclk = SystemCoreClock/8;
|
|
break;
|
|
}
|
|
|
|
LPC_UART0->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
|
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
|
LPC_UART0->DLM = Fdiv / 256;
|
|
LPC_UART0->DLL = Fdiv % 256;
|
|
LPC_UART0->LCR = 0x03; /* DLAB = 0 */
|
|
LPC_UART0->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
|
|
|
NVIC_EnableIRQ(UART0_IRQn);
|
|
|
|
LPC_UART0->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART0 interrupt */
|
|
}
|
|
else if ( PortNum == 1 )
|
|
{
|
|
LPC_PINCON->PINSEL4 &= ~0x0000000F;
|
|
LPC_PINCON->PINSEL4 |= 0x0000000A; /* Enable RxD1 P2.1, TxD1 P2.0 */
|
|
|
|
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
|
all the peripherals is 1/4 of the SystemFrequency. */
|
|
/* Bit 8,9 are for UART1 */
|
|
pclkdiv = (LPC_SC->PCLKSEL0 >> 8) & 0x03;
|
|
switch ( pclkdiv )
|
|
{
|
|
case 0x00:
|
|
default:
|
|
pclk = SystemCoreClock/4;
|
|
break;
|
|
case 0x01:
|
|
pclk = SystemCoreClock;
|
|
break;
|
|
case 0x02:
|
|
pclk = SystemCoreClock/2;
|
|
break;
|
|
case 0x03:
|
|
pclk = SystemCoreClock/8;
|
|
break;
|
|
}
|
|
|
|
LPC_UART1->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
|
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
|
LPC_UART1->DLM = Fdiv / 256;
|
|
LPC_UART1->DLL = Fdiv % 256;
|
|
LPC_UART1->LCR = 0x03; /* DLAB = 0 */
|
|
LPC_UART1->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
|
|
|
NVIC_EnableIRQ(UART1_IRQn);
|
|
|
|
LPC_UART1->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART1 interrupt */
|
|
}
|
|
else if ( PortNum == 2 )
|
|
{
|
|
//LPC_PINCON->PINSEL4 &= ~0x000F0000; /*Pinsel4 Bits 16-19*/
|
|
//LPC_PINCON->PINSEL4 |= 0x000A0000; /* RxD2 is P2.9 and TxD2 is P2.8, value 10*/
|
|
LPC_PINCON->PINSEL0 &= ~0x00F00000; /*Pinsel0 Bits 20-23*/
|
|
LPC_PINCON->PINSEL0 |= 0x00500000; /* RxD2 is P0.11 and TxD2 is P0.10, value 01*/
|
|
|
|
LPC_SC->PCONP |= 1<<24; //Enable PCUART2
|
|
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
|
all the peripherals is 1/4 of the SystemFrequency. */
|
|
/* Bit 6~7 is for UART3 */
|
|
pclkdiv = (LPC_SC->PCLKSEL1 >> 16) & 0x03;
|
|
switch ( pclkdiv )
|
|
{
|
|
case 0x00:
|
|
default:
|
|
pclk = SystemCoreClock/4;
|
|
break;
|
|
case 0x01:
|
|
pclk = SystemCoreClock;
|
|
break;
|
|
case 0x02:
|
|
pclk = SystemCoreClock/2;
|
|
break;
|
|
case 0x03:
|
|
pclk = SystemCoreClock/8;
|
|
break;
|
|
}
|
|
LPC_UART2->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
|
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
|
LPC_UART2->DLM = Fdiv / 256;
|
|
LPC_UART2->DLL = Fdiv % 256;
|
|
LPC_UART2->LCR = 0x03; /* DLAB = 0 */
|
|
LPC_UART2->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
|
|
|
NVIC_EnableIRQ(UART2_IRQn);
|
|
|
|
LPC_UART2->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
|
|
}
|
|
else if ( PortNum == 3 )
|
|
{
|
|
LPC_PINCON->PINSEL0 &= ~0x0000000F;
|
|
LPC_PINCON->PINSEL0 |= 0x0000000A; /* RxD3 is P0.1 and TxD3 is P0.0 */
|
|
LPC_SC->PCONP |= 1<<4 | 1<<25; //Enable PCUART1
|
|
/* By default, the PCLKSELx value is zero, thus, the PCLK for
|
|
all the peripherals is 1/4 of the SystemFrequency. */
|
|
/* Bit 6~7 is for UART3 */
|
|
pclkdiv = (LPC_SC->PCLKSEL1 >> 18) & 0x03;
|
|
switch ( pclkdiv )
|
|
{
|
|
case 0x00:
|
|
default:
|
|
pclk = SystemCoreClock/4;
|
|
break;
|
|
case 0x01:
|
|
pclk = SystemCoreClock;
|
|
break;
|
|
case 0x02:
|
|
pclk = SystemCoreClock/2;
|
|
break;
|
|
case 0x03:
|
|
pclk = SystemCoreClock/8;
|
|
break;
|
|
}
|
|
LPC_UART3->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
|
|
Fdiv = ( pclk / 16 ) / baudrate ; /*baud rate */
|
|
LPC_UART3->DLM = Fdiv / 256;
|
|
LPC_UART3->DLL = Fdiv % 256;
|
|
LPC_UART3->LCR = 0x03; /* DLAB = 0 */
|
|
LPC_UART3->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
|
|
|
|
NVIC_EnableIRQ(UART3_IRQn);
|
|
|
|
LPC_UART3->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART3 interrupt */
|
|
}
|
|
}
|
|
|
|
int HardwareSerial::read() {
|
|
uint8_t rx;
|
|
if ( PortNum == 0 )
|
|
{
|
|
if (UART0RxQueueReadPos == UART0RxQueueWritePos)
|
|
return -1;
|
|
|
|
// Read from "head"
|
|
rx = UART0Buffer[UART0RxQueueReadPos]; // grab next byte
|
|
UART0RxQueueReadPos = (UART0RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
|
return rx;
|
|
}
|
|
if ( PortNum == 1 )
|
|
{
|
|
if (UART1RxQueueReadPos == UART1RxQueueWritePos)
|
|
return -1;
|
|
|
|
// Read from "head"
|
|
rx = UART1Buffer[UART1RxQueueReadPos]; // grab next byte
|
|
UART1RxQueueReadPos = (UART1RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
|
return rx;
|
|
}
|
|
if ( PortNum == 2 )
|
|
{
|
|
if (UART2RxQueueReadPos == UART2RxQueueWritePos)
|
|
return -1;
|
|
|
|
// Read from "head"
|
|
rx = UART2Buffer[UART2RxQueueReadPos]; // grab next byte
|
|
UART2RxQueueReadPos = (UART2RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
|
return rx;
|
|
}
|
|
if ( PortNum == 3 )
|
|
{
|
|
if (UART3RxQueueReadPos == UART3RxQueueWritePos)
|
|
return -1;
|
|
|
|
// Read from "head"
|
|
rx = UART3Buffer[UART3RxQueueReadPos]; // grab next byte
|
|
UART3RxQueueReadPos = (UART3RxQueueReadPos + 1) % UARTRXQUEUESIZE;
|
|
return rx;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
size_t HardwareSerial::write(uint8_t send) {
|
|
if ( PortNum == 0 )
|
|
{
|
|
/* THRE status, contain valid data */
|
|
while ( !(UART0TxEmpty & 0x01) );
|
|
LPC_UART0->THR = send;
|
|
UART0TxEmpty = 0; /* not empty in the THR until it shifts out */
|
|
}
|
|
else if (PortNum == 1)
|
|
{
|
|
|
|
/* THRE status, contain valid data */
|
|
while ( !(UART1TxEmpty & 0x01) );
|
|
LPC_UART1->THR = send;
|
|
UART1TxEmpty = 0; /* not empty in the THR until it shifts out */
|
|
|
|
|
|
}
|
|
else if ( PortNum == 2 )
|
|
{
|
|
/* THRE status, contain valid data */
|
|
while ( !(UART2TxEmpty & 0x01) );
|
|
LPC_UART2->THR = send;
|
|
UART2TxEmpty = 0; /* not empty in the THR until it shifts out */
|
|
|
|
}
|
|
else if ( PortNum == 3 )
|
|
{
|
|
/* THRE status, contain valid data */
|
|
while ( !(UART3TxEmpty & 0x01) );
|
|
LPC_UART3->THR = send;
|
|
UART3TxEmpty = 0; /* not empty in the THR until it shifts out */
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int HardwareSerial::available() {
|
|
if ( PortNum == 0 )
|
|
{
|
|
return (UART0RxQueueWritePos + UARTRXQUEUESIZE - UART0RxQueueReadPos) % UARTRXQUEUESIZE;
|
|
}
|
|
if ( PortNum == 1 )
|
|
{
|
|
return (UART1RxQueueWritePos + UARTRXQUEUESIZE - UART1RxQueueReadPos) % UARTRXQUEUESIZE;
|
|
}
|
|
if ( PortNum == 2 )
|
|
{
|
|
return (UART2RxQueueWritePos + UARTRXQUEUESIZE - UART2RxQueueReadPos) % UARTRXQUEUESIZE;
|
|
}
|
|
if ( PortNum == 3 )
|
|
{
|
|
return (UART3RxQueueWritePos + UARTRXQUEUESIZE - UART3RxQueueReadPos) % UARTRXQUEUESIZE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void HardwareSerial::flush() {
|
|
if ( PortNum == 0 )
|
|
{
|
|
UART0RxQueueWritePos = 0;
|
|
UART0RxQueueReadPos = 0;
|
|
|
|
}
|
|
if ( PortNum == 1 )
|
|
{
|
|
UART1RxQueueWritePos = 0;
|
|
UART1RxQueueReadPos = 0;
|
|
}
|
|
if ( PortNum == 2 )
|
|
{
|
|
UART2RxQueueWritePos = 0;
|
|
UART2RxQueueReadPos = 0;
|
|
}
|
|
if ( PortNum == 3 )
|
|
{
|
|
UART3RxQueueWritePos = 0;
|
|
UART3RxQueueReadPos = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void HardwareSerial::printf(const char *format, ...) {
|
|
static char buffer[256];
|
|
va_list vArgs;
|
|
va_start(vArgs, format);
|
|
int length = vsnprintf((char *) buffer, 256, (char const *) format, vArgs);
|
|
va_end(vArgs);
|
|
if (length > 0 && length < 256) {
|
|
for (int i = 0; i < length;) {
|
|
write(buffer[i]);
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*****************************************************************************
|
|
** Function name: UART0_IRQHandler
|
|
**
|
|
** Descriptions: UART0 interrupt handler
|
|
**
|
|
** parameters: None
|
|
** Returned value: None
|
|
**
|
|
*****************************************************************************/
|
|
void UART0_IRQHandler (void)
|
|
{
|
|
uint8_t IIRValue, LSRValue;
|
|
uint8_t Dummy = Dummy;
|
|
|
|
IIRValue = LPC_UART0->IIR;
|
|
|
|
IIRValue >>= 1; /* skip pending bit in IIR */
|
|
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
|
|
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
|
|
{
|
|
LSRValue = LPC_UART0->LSR;
|
|
/* Receive Line Status */
|
|
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
|
|
{
|
|
/* There are errors or break interrupt */
|
|
/* Read LSR will clear the interrupt */
|
|
UART0Status = LSRValue;
|
|
Dummy = LPC_UART0->RBR; /* Dummy read on RX to clear
|
|
interrupt, then bail out */
|
|
return;
|
|
}
|
|
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
|
|
{
|
|
/* If no error on RLS, normal ready, save into the data buffer. */
|
|
/* Note: read RBR will clear the interrupt */
|
|
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos)
|
|
{
|
|
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR;
|
|
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
|
}
|
|
else
|
|
dummy = LPC_UART0->RBR;;
|
|
}
|
|
}
|
|
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
|
|
{
|
|
/* Receive Data Available */
|
|
if ((UART0RxQueueWritePos+1) % UARTRXQUEUESIZE != UART0RxQueueReadPos)
|
|
{
|
|
UART0Buffer[UART0RxQueueWritePos] = LPC_UART0->RBR;
|
|
UART0RxQueueWritePos = (UART0RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
|
}
|
|
else
|
|
dummy = LPC_UART1->RBR;;
|
|
}
|
|
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
|
|
{
|
|
/* Character Time-out indicator */
|
|
UART0Status |= 0x100; /* Bit 9 as the CTI error */
|
|
}
|
|
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
|
|
{
|
|
/* THRE interrupt */
|
|
LSRValue = LPC_UART0->LSR; /* Check status in the LSR to see if
|
|
valid data in U0THR or not */
|
|
if ( LSRValue & LSR_THRE )
|
|
{
|
|
UART0TxEmpty = 1;
|
|
}
|
|
else
|
|
{
|
|
UART0TxEmpty = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************
|
|
** Function name: UART1_IRQHandler
|
|
**
|
|
** Descriptions: UART1 interrupt handler
|
|
**
|
|
** parameters: None
|
|
** Returned value: None
|
|
**
|
|
*****************************************************************************/
|
|
void UART1_IRQHandler (void)
|
|
{
|
|
uint8_t IIRValue, LSRValue;
|
|
uint8_t Dummy = Dummy;
|
|
|
|
IIRValue = LPC_UART1->IIR;
|
|
|
|
IIRValue >>= 1; /* skip pending bit in IIR */
|
|
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
|
|
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
|
|
{
|
|
LSRValue = LPC_UART1->LSR;
|
|
/* Receive Line Status */
|
|
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
|
|
{
|
|
/* There are errors or break interrupt */
|
|
/* Read LSR will clear the interrupt */
|
|
UART1Status = LSRValue;
|
|
Dummy = LPC_UART1->RBR; /* Dummy read on RX to clear
|
|
interrupt, then bail out */
|
|
return;
|
|
}
|
|
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
|
|
{
|
|
/* If no error on RLS, normal ready, save into the data buffer. */
|
|
/* Note: read RBR will clear the interrupt */
|
|
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos)
|
|
{
|
|
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR;
|
|
UART1RxQueueWritePos =(UART1RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
|
}
|
|
else
|
|
dummy = LPC_UART1->RBR;;
|
|
}
|
|
}
|
|
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
|
|
{
|
|
/* Receive Data Available */
|
|
if ((UART1RxQueueWritePos+1) % UARTRXQUEUESIZE != UART1RxQueueReadPos)
|
|
{
|
|
UART1Buffer[UART1RxQueueWritePos] = LPC_UART1->RBR;
|
|
UART1RxQueueWritePos = (UART1RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
|
}
|
|
else
|
|
dummy = LPC_UART1->RBR;;
|
|
}
|
|
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
|
|
{
|
|
/* Character Time-out indicator */
|
|
UART1Status |= 0x100; /* Bit 9 as the CTI error */
|
|
}
|
|
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
|
|
{
|
|
/* THRE interrupt */
|
|
LSRValue = LPC_UART1->LSR; /* Check status in the LSR to see if
|
|
valid data in U0THR or not */
|
|
if ( LSRValue & LSR_THRE )
|
|
{
|
|
UART1TxEmpty = 1;
|
|
}
|
|
else
|
|
{
|
|
UART1TxEmpty = 0;
|
|
}
|
|
}
|
|
|
|
}
|
|
/*****************************************************************************
|
|
** Function name: UART2_IRQHandler
|
|
**
|
|
** Descriptions: UART2 interrupt handler
|
|
**
|
|
** parameters: None
|
|
** Returned value: None
|
|
**
|
|
*****************************************************************************/
|
|
void UART2_IRQHandler (void)
|
|
{
|
|
uint8_t IIRValue, LSRValue;
|
|
uint8_t Dummy = Dummy;
|
|
|
|
IIRValue = LPC_UART2->IIR;
|
|
|
|
IIRValue >>= 1; /* skip pending bit in IIR */
|
|
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
|
|
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
|
|
{
|
|
LSRValue = LPC_UART2->LSR;
|
|
/* Receive Line Status */
|
|
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
|
|
{
|
|
/* There are errors or break interrupt */
|
|
/* Read LSR will clear the interrupt */
|
|
UART2Status = LSRValue;
|
|
Dummy = LPC_UART2->RBR; /* Dummy read on RX to clear
|
|
interrupt, then bail out */
|
|
return;
|
|
}
|
|
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
|
|
{
|
|
/* If no error on RLS, normal ready, save into the data buffer. */
|
|
/* Note: read RBR will clear the interrupt */
|
|
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos)
|
|
{
|
|
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR;
|
|
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
|
}
|
|
}
|
|
}
|
|
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
|
|
{
|
|
/* Receive Data Available */
|
|
if ((UART2RxQueueWritePos+1) % UARTRXQUEUESIZE != UART2RxQueueReadPos)
|
|
{
|
|
UART2Buffer[UART2RxQueueWritePos] = LPC_UART2->RBR;
|
|
UART2RxQueueWritePos = (UART2RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
|
}
|
|
else
|
|
dummy = LPC_UART2->RBR;;
|
|
}
|
|
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
|
|
{
|
|
/* Character Time-out indicator */
|
|
UART2Status |= 0x100; /* Bit 9 as the CTI error */
|
|
}
|
|
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
|
|
{
|
|
/* THRE interrupt */
|
|
LSRValue = LPC_UART2->LSR; /* Check status in the LSR to see if
|
|
valid data in U0THR or not */
|
|
if ( LSRValue & LSR_THRE )
|
|
{
|
|
UART2TxEmpty = 1;
|
|
}
|
|
else
|
|
{
|
|
UART2TxEmpty = 0;
|
|
}
|
|
}
|
|
}
|
|
/*****************************************************************************
|
|
** Function name: UART3_IRQHandler
|
|
**
|
|
** Descriptions: UART0 interrupt handler
|
|
**
|
|
** parameters: None
|
|
** Returned value: None
|
|
**
|
|
*****************************************************************************/
|
|
void UART3_IRQHandler (void)
|
|
{
|
|
uint8_t IIRValue, LSRValue;
|
|
uint8_t Dummy = Dummy;
|
|
|
|
IIRValue = LPC_UART3->IIR;
|
|
|
|
IIRValue >>= 1; /* skip pending bit in IIR */
|
|
IIRValue &= 0x07; /* check bit 1~3, interrupt identification */
|
|
if ( IIRValue == IIR_RLS ) /* Receive Line Status */
|
|
{
|
|
LSRValue = LPC_UART3->LSR;
|
|
/* Receive Line Status */
|
|
if ( LSRValue & (LSR_OE|LSR_PE|LSR_FE|LSR_RXFE|LSR_BI) )
|
|
{
|
|
/* There are errors or break interrupt */
|
|
/* Read LSR will clear the interrupt */
|
|
UART3Status = LSRValue;
|
|
Dummy = LPC_UART3->RBR; /* Dummy read on RX to clear
|
|
interrupt, then bail out */
|
|
return;
|
|
}
|
|
if ( LSRValue & LSR_RDR ) /* Receive Data Ready */
|
|
{
|
|
/* If no error on RLS, normal ready, save into the data buffer. */
|
|
/* Note: read RBR will clear the interrupt */
|
|
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos)
|
|
{
|
|
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR;
|
|
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
|
}
|
|
}
|
|
}
|
|
else if ( IIRValue == IIR_RDA ) /* Receive Data Available */
|
|
{
|
|
/* Receive Data Available */
|
|
if ((UART3RxQueueWritePos+1) % UARTRXQUEUESIZE != UART3RxQueueReadPos)
|
|
{
|
|
UART3Buffer[UART3RxQueueWritePos] = LPC_UART3->RBR;
|
|
UART3RxQueueWritePos = (UART3RxQueueWritePos+1) % UARTRXQUEUESIZE;
|
|
}
|
|
else
|
|
dummy = LPC_UART3->RBR;;
|
|
}
|
|
else if ( IIRValue == IIR_CTI ) /* Character timeout indicator */
|
|
{
|
|
/* Character Time-out indicator */
|
|
UART3Status |= 0x100; /* Bit 9 as the CTI error */
|
|
}
|
|
else if ( IIRValue == IIR_THRE ) /* THRE, transmit holding register empty */
|
|
{
|
|
/* THRE interrupt */
|
|
LSRValue = LPC_UART3->LSR; /* Check status in the LSR to see if
|
|
valid data in U0THR or not */
|
|
if ( LSRValue & LSR_THRE )
|
|
{
|
|
UART3TxEmpty = 1;
|
|
}
|
|
else
|
|
{
|
|
UART3TxEmpty = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // TARGET_LPC1768
|