9db9842aea
=================================================== Hi, Please find the latest report on new defect(s) introduced to ErikZalm/Marlin found with Coverity Scan. Defect(s) Reported-by: Coverity Scan Showing 15 of 15 defect(s) ** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() ** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() ** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() ** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() ** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() ** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() ** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() ** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() ** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() ** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() ** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() ** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() ** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ________________________________________________________________________________________________________ *** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() 2148 } 2149 #endif 2150 } 2151 } 2152 break; 2153 case 85: // M85 CID 59629: Unchecked return value (CHECKED_RETURN) Calling "code_seen" without checking return value (as is done elsewhere 66 out of 67 times). 2154 code_seen('S'); 2155 max_inactive_time = code_value() * 1000; 2156 break; 2157 case 92: // M92 2158 for(int8_t i=0; i < NUM_AXIS; i++) 2159 { ________________________________________________________________________________________________________ *** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() 313 else 314 { 315 // two choices for the 16 bit timers: ck/1 or ck/64 316 ocr = F_CPU / frequency / 2 - 1; 317 318 prescalarbits = 0b001; CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) "ocr > 65535U" is always false regardless of the values of its operands. This occurs as the logical operand of if. 319 if (ocr > 0xffff) 320 { 321 ocr = F_CPU / frequency / 2 / 64 - 1; 322 prescalarbits = 0b011; 323 } 324 ________________________________________________________________________________________________________ *** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() 1181 case 2: // G2 - CW ARC 1182 if(Stopped == false) { 1183 get_arc_coordinates(); 1184 prepare_arc_move(true); 1185 return; 1186 } CID 59631: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } ________________________________________________________________________________________________________ *** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } CID 59632: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1193 case 4: // G4 dwell 1194 LCD_MESSAGEPGM(MSG_DWELL); 1195 codenum = 0; 1196 if(code_seen('P')) codenum = code_value(); // milliseconds to wait 1197 if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait 1198 ________________________________________________________________________________________________________ *** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 913 target_temperature[1]=0; CID 59633: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "1". 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif 919 ________________________________________________________________________________________________________ *** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() 907 #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 CID 59634: Out-of-bounds write (OVERRUN) Overrunning array "target_temperature" of 1 2-byte elements at element index 1 (byte offset 2) using index "1". 913 target_temperature[1]=0; 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif ________________________________________________________________________________________________________ *** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 CID 59635: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbllen_map" of 1 bytes at byte offset 1 using index "e" (which evaluates to 1). 626 for (i=1; i<heater_ttbllen_map[e]; i++) 627 { 628 if (PGM_RD_W((*tt)[i][0]) > raw) 629 { 630 celsius = PGM_RD_W((*tt)[i-1][1]) + 631 (raw - PGM_RD_W((*tt)[i-1][0])) * ________________________________________________________________________________________________________ *** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() 614 if (e == 0) 615 { 616 return 0.25 * raw; 617 } 618 #endif 619 CID 59636: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbl_map" of 1 2-byte elements at element index 1 (byte offset 2) using index "e" (which evaluates to 1). 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 ________________________________________________________________________________________________________ *** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() 196 { 197 soft_pwm_bed = (MAX_BED_POWER)/2; 198 bias = d = (MAX_BED_POWER)/2; 199 } 200 else 201 { CID 59637: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "extruder" (which evaluates to 1). 202 soft_pwm[extruder] = (PID_MAX)/2; 203 bias = d = (PID_MAX)/2; 204 } 205 206 207 ________________________________________________________________________________________________________ *** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() 208 209 for(;;) { 210 211 if(temp_meas_ready == true) { // temp sample ready 212 updateTemperaturesFromRawValues(); 213 CID 59638: Out-of-bounds read (OVERRUN) Overrunning array "current_temperature" of 1 4-byte elements at element index 1 (byte offset 4) using index "extruder" (which evaluates to 1). 214 input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; 215 216 max=max(max,input); 217 min=min(min,input); 218 if(heating == true && input > temp) { 219 if(millis() - t2 > 5000) { ________________________________________________________________________________________________________ *** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() 2272 tmp_extruder = code_value(); 2273 if(tmp_extruder >= EXTRUDERS) { 2274 SERIAL_ECHO_START; 2275 SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); 2276 } 2277 } CID 59639: Out-of-bounds write (OVERRUN) Overrunning array "volumetric_multiplier" of 1 4-byte elements at element index 1 (byte offset 4) using index "tmp_extruder" (which evaluates to 1). 2278 volumetric_multiplier[tmp_extruder] = 1 / area; 2279 } 2280 break; 2281 case 201: // M201 2282 for(int8_t i=0; i < NUM_AXIS; i++) 2283 { ________________________________________________________________________________________________________ *** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() 1796 int pin_status = code_value(); 1797 int pin_number = LED_PIN; 1798 if (code_seen('P') && pin_status >= 0 && pin_status <= 255) 1799 pin_number = code_value(); 1800 for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++) 1801 { CID 59640: Out-of-bounds read (OVERRUN) Overrunning array "sensitive_pins" of 28 2-byte elements at element index 55 (byte offset 110) using index "i" (which evaluates to 55). 1802 if (sensitive_pins[i] == pin_number) 1803 { 1804 pin_number = -1; 1805 break; 1806 } 1807 } ________________________________________________________________________________________________________ *** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59641: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 51 } 52 53 void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, 54 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 55 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 56 { ________________________________________________________________________________________________________ *** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 39 } 40 41 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 42 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 43 { 44 init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59642: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); ________________________________________________________________________________________________________ *** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 26 27 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 28 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 29 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 30 { 31 init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); CID 59643: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 32 } 33 34 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 35 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 36 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 37 { ________________________________________________________________________________________________________ To view the defects in Coverity Scan visit, http://scan.coverity.com/projects/2224?tab=overview
1324 lines
37 KiB
C++
1324 lines
37 KiB
C++
/*
|
|
temperature.c - temperature control
|
|
Part of Marlin
|
|
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
|
|
*/
|
|
|
|
|
|
#include "Marlin.h"
|
|
#include "ultralcd.h"
|
|
#include "temperature.h"
|
|
#include "watchdog.h"
|
|
|
|
//===========================================================================
|
|
//=============================public variables============================
|
|
//===========================================================================
|
|
int target_temperature[EXTRUDERS] = { 0 };
|
|
int target_temperature_bed = 0;
|
|
int current_temperature_raw[EXTRUDERS] = { 0 };
|
|
float current_temperature[EXTRUDERS] = { 0.0 };
|
|
int current_temperature_bed_raw = 0;
|
|
float current_temperature_bed = 0.0;
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
int redundant_temperature_raw = 0;
|
|
float redundant_temperature = 0.0;
|
|
#endif
|
|
#ifdef PIDTEMP
|
|
float Kp=DEFAULT_Kp;
|
|
float Ki=(DEFAULT_Ki*PID_dT);
|
|
float Kd=(DEFAULT_Kd/PID_dT);
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
float Kc=DEFAULT_Kc;
|
|
#endif
|
|
#endif //PIDTEMP
|
|
|
|
#ifdef PIDTEMPBED
|
|
float bedKp=DEFAULT_bedKp;
|
|
float bedKi=(DEFAULT_bedKi*PID_dT);
|
|
float bedKd=(DEFAULT_bedKd/PID_dT);
|
|
#endif //PIDTEMPBED
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
unsigned char fanSpeedSoftPwm;
|
|
#endif
|
|
|
|
unsigned char soft_pwm_bed;
|
|
|
|
#ifdef BABYSTEPPING
|
|
volatile int babystepsTodo[3]={0,0,0};
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//=============================private variables============================
|
|
//===========================================================================
|
|
static volatile bool temp_meas_ready = false;
|
|
|
|
#ifdef PIDTEMP
|
|
//static cannot be external:
|
|
static float temp_iState[EXTRUDERS] = { 0 };
|
|
static float temp_dState[EXTRUDERS] = { 0 };
|
|
static float pTerm[EXTRUDERS];
|
|
static float iTerm[EXTRUDERS];
|
|
static float dTerm[EXTRUDERS];
|
|
//int output;
|
|
static float pid_error[EXTRUDERS];
|
|
static float temp_iState_min[EXTRUDERS];
|
|
static float temp_iState_max[EXTRUDERS];
|
|
// static float pid_input[EXTRUDERS];
|
|
// static float pid_output[EXTRUDERS];
|
|
static bool pid_reset[EXTRUDERS];
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
//static cannot be external:
|
|
static float temp_iState_bed = { 0 };
|
|
static float temp_dState_bed = { 0 };
|
|
static float pTerm_bed;
|
|
static float iTerm_bed;
|
|
static float dTerm_bed;
|
|
//int output;
|
|
static float pid_error_bed;
|
|
static float temp_iState_min_bed;
|
|
static float temp_iState_max_bed;
|
|
#else //PIDTEMPBED
|
|
static unsigned long previous_millis_bed_heater;
|
|
#endif //PIDTEMPBED
|
|
static unsigned char soft_pwm[EXTRUDERS];
|
|
|
|
#ifdef FAN_SOFT_PWM
|
|
static unsigned char soft_pwm_fan;
|
|
#endif
|
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
|
static unsigned long extruder_autofan_last_check;
|
|
#endif
|
|
|
|
#if EXTRUDERS > 3
|
|
# error Unsupported number of extruders
|
|
#elif EXTRUDERS > 2
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
|
|
#elif EXTRUDERS > 1
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
|
|
#else
|
|
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
|
|
#endif
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
|
|
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
|
|
static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
|
|
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
|
|
//static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
|
|
#ifdef BED_MAXTEMP
|
|
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
|
#endif
|
|
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
|
|
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
|
|
#else
|
|
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
|
|
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
|
|
#endif
|
|
|
|
static float analog2temp(int raw, uint8_t e);
|
|
static float analog2tempBed(int raw);
|
|
static void updateTemperaturesFromRawValues();
|
|
|
|
#ifdef WATCH_TEMP_PERIOD
|
|
int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
|
|
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
|
|
#endif //WATCH_TEMP_PERIOD
|
|
|
|
#ifndef SOFT_PWM_SCALE
|
|
#define SOFT_PWM_SCALE 0
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//============================= functions ============================
|
|
//===========================================================================
|
|
|
|
void PID_autotune(float temp, int extruder, int ncycles)
|
|
{
|
|
float input = 0.0;
|
|
int cycles=0;
|
|
bool heating = true;
|
|
|
|
unsigned long temp_millis = millis();
|
|
unsigned long t1=temp_millis;
|
|
unsigned long t2=temp_millis;
|
|
long t_high = 0;
|
|
long t_low = 0;
|
|
|
|
long bias, d;
|
|
float Ku, Tu;
|
|
float Kp, Ki, Kd;
|
|
float max = 0, min = 10000;
|
|
|
|
if ((extruder >= EXTRUDERS)
|
|
#if (TEMP_BED_PIN <= -1)
|
|
||(extruder < 0)
|
|
#endif
|
|
){
|
|
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
|
|
return;
|
|
}
|
|
|
|
SERIAL_ECHOLN("PID Autotune start");
|
|
|
|
disable_heater(); // switch off all heaters.
|
|
|
|
if (extruder<0)
|
|
{
|
|
soft_pwm_bed = (MAX_BED_POWER)/2;
|
|
bias = d = (MAX_BED_POWER)/2;
|
|
}
|
|
else
|
|
{
|
|
soft_pwm[extruder] = (PID_MAX)/2;
|
|
bias = d = (PID_MAX)/2;
|
|
}
|
|
|
|
|
|
|
|
|
|
for(;;) {
|
|
|
|
if(temp_meas_ready == true) { // temp sample ready
|
|
updateTemperaturesFromRawValues();
|
|
|
|
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
|
|
|
|
max=max(max,input);
|
|
min=min(min,input);
|
|
if(heating == true && input > temp) {
|
|
if(millis() - t2 > 5000) {
|
|
heating=false;
|
|
if (extruder<0)
|
|
soft_pwm_bed = (bias - d) >> 1;
|
|
else
|
|
soft_pwm[extruder] = (bias - d) >> 1;
|
|
t1=millis();
|
|
t_high=t1 - t2;
|
|
max=temp;
|
|
}
|
|
}
|
|
if(heating == false && input < temp) {
|
|
if(millis() - t1 > 5000) {
|
|
heating=true;
|
|
t2=millis();
|
|
t_low=t2 - t1;
|
|
if(cycles > 0) {
|
|
bias += (d*(t_high - t_low))/(t_low + t_high);
|
|
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
|
|
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
|
|
else d = bias;
|
|
|
|
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
|
|
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
|
|
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
|
|
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
|
|
if(cycles > 2) {
|
|
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
|
|
Tu = ((float)(t_low + t_high)/1000.0);
|
|
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
|
|
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
|
|
Kp = 0.6*Ku;
|
|
Ki = 2*Kp/Tu;
|
|
Kd = Kp*Tu/8;
|
|
SERIAL_PROTOCOLLNPGM(" Classic PID ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
/*
|
|
Kp = 0.33*Ku;
|
|
Ki = Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
Kp = 0.2*Ku;
|
|
Ki = 2*Kp/Tu;
|
|
Kd = Kp*Tu/3;
|
|
SERIAL_PROTOCOLLNPGM(" No overshoot ");
|
|
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
|
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
|
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
|
*/
|
|
}
|
|
}
|
|
if (extruder<0)
|
|
soft_pwm_bed = (bias + d) >> 1;
|
|
else
|
|
soft_pwm[extruder] = (bias + d) >> 1;
|
|
cycles++;
|
|
min=temp;
|
|
}
|
|
}
|
|
}
|
|
if(input > (temp + 20)) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
|
|
return;
|
|
}
|
|
if(millis() - temp_millis > 2000) {
|
|
int p;
|
|
if (extruder<0){
|
|
p=soft_pwm_bed;
|
|
SERIAL_PROTOCOLPGM("ok B:");
|
|
}else{
|
|
p=soft_pwm[extruder];
|
|
SERIAL_PROTOCOLPGM("ok T:");
|
|
}
|
|
|
|
SERIAL_PROTOCOL(input);
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
SERIAL_PROTOCOLLN(p);
|
|
|
|
temp_millis = millis();
|
|
}
|
|
if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
|
|
return;
|
|
}
|
|
if(cycles > ncycles) {
|
|
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
|
|
return;
|
|
}
|
|
lcd_update();
|
|
}
|
|
}
|
|
|
|
void updatePID()
|
|
{
|
|
#ifdef PIDTEMP
|
|
for(int e = 0; e < EXTRUDERS; e++) {
|
|
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
|
|
}
|
|
#endif
|
|
#ifdef PIDTEMPBED
|
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
|
|
#endif
|
|
}
|
|
|
|
int getHeaterPower(int heater) {
|
|
if (heater<0)
|
|
return soft_pwm_bed;
|
|
return soft_pwm[heater];
|
|
}
|
|
|
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
|
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
|
|
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
|
|
#endif
|
|
#if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
|
|
#error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
|
|
#endif
|
|
#if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
|
|
#error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
|
|
#endif
|
|
#endif
|
|
|
|
void setExtruderAutoFanState(int pin, bool state)
|
|
{
|
|
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
|
|
// this idiom allows both digital and PWM fan outputs (see M42 handling).
|
|
pinMode(pin, OUTPUT);
|
|
digitalWrite(pin, newFanSpeed);
|
|
analogWrite(pin, newFanSpeed);
|
|
}
|
|
|
|
void checkExtruderAutoFans()
|
|
{
|
|
uint8_t fanState = 0;
|
|
|
|
// which fan pins need to be turned on?
|
|
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
|
|
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
fanState |= 1;
|
|
#endif
|
|
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
|
|
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
{
|
|
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
|
|
fanState |= 1;
|
|
else
|
|
fanState |= 2;
|
|
}
|
|
#endif
|
|
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
|
|
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
{
|
|
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
|
|
fanState |= 1;
|
|
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
|
|
fanState |= 2;
|
|
else
|
|
fanState |= 4;
|
|
}
|
|
#endif
|
|
|
|
// update extruder auto fan states
|
|
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
|
|
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
|
|
#endif
|
|
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
|
|
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
|
|
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
|
|
#endif
|
|
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
|
|
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
|
|
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
|
|
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
|
|
#endif
|
|
}
|
|
|
|
#endif // any extruder auto fan pins set
|
|
|
|
void manage_heater()
|
|
{
|
|
float pid_input;
|
|
float pid_output;
|
|
|
|
if(temp_meas_ready != true) //better readability
|
|
return;
|
|
|
|
updateTemperaturesFromRawValues();
|
|
|
|
for(int e = 0; e < EXTRUDERS; e++)
|
|
{
|
|
|
|
#ifdef PIDTEMP
|
|
pid_input = current_temperature[e];
|
|
|
|
#ifndef PID_OPENLOOP
|
|
pid_error[e] = target_temperature[e] - pid_input;
|
|
if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
|
|
pid_output = BANG_MAX;
|
|
pid_reset[e] = true;
|
|
}
|
|
else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
|
|
pid_output = 0;
|
|
pid_reset[e] = true;
|
|
}
|
|
else {
|
|
if(pid_reset[e] == true) {
|
|
temp_iState[e] = 0.0;
|
|
pid_reset[e] = false;
|
|
}
|
|
pTerm[e] = Kp * pid_error[e];
|
|
temp_iState[e] += pid_error[e];
|
|
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
|
|
iTerm[e] = Ki * temp_iState[e];
|
|
|
|
//K1 defined in Configuration.h in the PID settings
|
|
#define K2 (1.0-K1)
|
|
dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
|
|
pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
|
|
}
|
|
temp_dState[e] = pid_input;
|
|
#else
|
|
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
|
#endif //PID_OPENLOOP
|
|
#ifdef PID_DEBUG
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(" PID_DEBUG ");
|
|
SERIAL_ECHO(e);
|
|
SERIAL_ECHO(": Input ");
|
|
SERIAL_ECHO(pid_input);
|
|
SERIAL_ECHO(" Output ");
|
|
SERIAL_ECHO(pid_output);
|
|
SERIAL_ECHO(" pTerm ");
|
|
SERIAL_ECHO(pTerm[e]);
|
|
SERIAL_ECHO(" iTerm ");
|
|
SERIAL_ECHO(iTerm[e]);
|
|
SERIAL_ECHO(" dTerm ");
|
|
SERIAL_ECHOLN(dTerm[e]);
|
|
#endif //PID_DEBUG
|
|
#else /* PID off */
|
|
pid_output = 0;
|
|
if(current_temperature[e] < target_temperature[e]) {
|
|
pid_output = PID_MAX;
|
|
}
|
|
#endif
|
|
|
|
// Check if temperature is within the correct range
|
|
if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
|
|
{
|
|
soft_pwm[e] = (int)pid_output >> 1;
|
|
}
|
|
else {
|
|
soft_pwm[e] = 0;
|
|
}
|
|
|
|
#ifdef WATCH_TEMP_PERIOD
|
|
if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
|
|
{
|
|
if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
|
|
{
|
|
setTargetHotend(0, e);
|
|
LCD_MESSAGEPGM("Heating failed");
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN("Heating failed");
|
|
}else{
|
|
watchmillis[e] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
|
|
disable_heater();
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
|
|
LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
Stop();
|
|
#endif
|
|
}
|
|
#endif
|
|
} // End extruder for loop
|
|
|
|
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
|
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
|
if(millis() - extruder_autofan_last_check > 2500) // only need to check fan state very infrequently
|
|
{
|
|
checkExtruderAutoFans();
|
|
extruder_autofan_last_check = millis();
|
|
}
|
|
#endif
|
|
|
|
#ifndef PIDTEMPBED
|
|
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
|
return;
|
|
previous_millis_bed_heater = millis();
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_BED != 0
|
|
|
|
#ifdef PIDTEMPBED
|
|
pid_input = current_temperature_bed;
|
|
|
|
#ifndef PID_OPENLOOP
|
|
pid_error_bed = target_temperature_bed - pid_input;
|
|
pTerm_bed = bedKp * pid_error_bed;
|
|
temp_iState_bed += pid_error_bed;
|
|
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
|
iTerm_bed = bedKi * temp_iState_bed;
|
|
|
|
//K1 defined in Configuration.h in the PID settings
|
|
#define K2 (1.0-K1)
|
|
dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
|
|
temp_dState_bed = pid_input;
|
|
|
|
pid_output = constrain(pTerm_bed + iTerm_bed - dTerm_bed, 0, MAX_BED_POWER);
|
|
|
|
#else
|
|
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
|
#endif //PID_OPENLOOP
|
|
|
|
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
|
|
{
|
|
soft_pwm_bed = (int)pid_output >> 1;
|
|
}
|
|
else {
|
|
soft_pwm_bed = 0;
|
|
}
|
|
|
|
#elif !defined(BED_LIMIT_SWITCHING)
|
|
// Check if temperature is within the correct range
|
|
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
|
|
{
|
|
if(current_temperature_bed >= target_temperature_bed)
|
|
{
|
|
soft_pwm_bed = 0;
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = MAX_BED_POWER>>1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = 0;
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
#else //#ifdef BED_LIMIT_SWITCHING
|
|
// Check if temperature is within the correct band
|
|
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
|
|
{
|
|
if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
|
|
{
|
|
soft_pwm_bed = 0;
|
|
}
|
|
else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
|
|
{
|
|
soft_pwm_bed = MAX_BED_POWER>>1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
soft_pwm_bed = 0;
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For hot end temperature measurement.
|
|
static float analog2temp(int raw, uint8_t e) {
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
if(e > EXTRUDERS)
|
|
#else
|
|
if(e >= EXTRUDERS)
|
|
#endif
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERROR((int)e);
|
|
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
|
|
kill();
|
|
}
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
if (e == 0)
|
|
{
|
|
return 0.25 * raw;
|
|
}
|
|
#endif
|
|
|
|
if(heater_ttbl_map[e] != NULL)
|
|
{
|
|
float celsius = 0;
|
|
uint8_t i;
|
|
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
|
|
|
|
for (i=1; i<heater_ttbllen_map[e]; i++)
|
|
{
|
|
if (PGM_RD_W((*tt)[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W((*tt)[i-1][1]) +
|
|
(raw - PGM_RD_W((*tt)[i-1][0])) *
|
|
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
|
|
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
|
|
|
|
return celsius;
|
|
}
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
}
|
|
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For bed temperature measurement.
|
|
static float analog2tempBed(int raw) {
|
|
#ifdef BED_USES_THERMISTOR
|
|
float celsius = 0;
|
|
byte i;
|
|
|
|
for (i=1; i<BEDTEMPTABLE_LEN; i++)
|
|
{
|
|
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
|
|
{
|
|
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
|
|
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
|
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
|
|
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Overflow: Set to last value in the table
|
|
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
|
|
|
|
return celsius;
|
|
#elif defined BED_USES_AD595
|
|
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
|
|
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
|
|
static void updateTemperaturesFromRawValues()
|
|
{
|
|
for(uint8_t e=0;e<EXTRUDERS;e++)
|
|
{
|
|
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
|
|
}
|
|
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
|
|
#endif
|
|
//Reset the watchdog after we know we have a temperature measurement.
|
|
watchdog_reset();
|
|
|
|
CRITICAL_SECTION_START;
|
|
temp_meas_ready = false;
|
|
CRITICAL_SECTION_END;
|
|
}
|
|
|
|
void tp_init()
|
|
{
|
|
#if (MOTHERBOARD == 80) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
|
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
|
MCUCR=(1<<JTD);
|
|
MCUCR=(1<<JTD);
|
|
#endif
|
|
|
|
// Finish init of mult extruder arrays
|
|
for(int e = 0; e < EXTRUDERS; e++) {
|
|
// populate with the first value
|
|
maxttemp[e] = maxttemp[0];
|
|
#ifdef PIDTEMP
|
|
temp_iState_min[e] = 0.0;
|
|
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
|
|
#endif //PIDTEMP
|
|
#ifdef PIDTEMPBED
|
|
temp_iState_min_bed = 0.0;
|
|
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
|
|
#endif //PIDTEMPBED
|
|
}
|
|
|
|
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
|
|
SET_OUTPUT(HEATER_0_PIN);
|
|
#endif
|
|
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
|
|
SET_OUTPUT(HEATER_1_PIN);
|
|
#endif
|
|
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
|
|
SET_OUTPUT(HEATER_2_PIN);
|
|
#endif
|
|
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
|
|
SET_OUTPUT(HEATER_BED_PIN);
|
|
#endif
|
|
#if defined(FAN_PIN) && (FAN_PIN > -1)
|
|
SET_OUTPUT(FAN_PIN);
|
|
#ifdef FAST_PWM_FAN
|
|
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
soft_pwm_fan = fanSpeedSoftPwm / 2;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
#ifndef SDSUPPORT
|
|
SET_OUTPUT(MAX_SCK_PIN);
|
|
WRITE(MAX_SCK_PIN,0);
|
|
|
|
SET_OUTPUT(MAX_MOSI_PIN);
|
|
WRITE(MAX_MOSI_PIN,1);
|
|
|
|
SET_INPUT(MAX_MISO_PIN);
|
|
WRITE(MAX_MISO_PIN,1);
|
|
#endif
|
|
|
|
SET_OUTPUT(MAX6675_SS);
|
|
WRITE(MAX6675_SS,1);
|
|
#endif
|
|
|
|
// Set analog inputs
|
|
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
|
DIDR0 = 0;
|
|
#ifdef DIDR2
|
|
DIDR2 = 0;
|
|
#endif
|
|
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
|
|
#if TEMP_0_PIN < 8
|
|
DIDR0 |= 1 << TEMP_0_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_0_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
|
|
#if TEMP_1_PIN < 8
|
|
DIDR0 |= 1<<TEMP_1_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_1_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
|
|
#if TEMP_2_PIN < 8
|
|
DIDR0 |= 1 << TEMP_2_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_2_PIN - 8);
|
|
#endif
|
|
#endif
|
|
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
|
|
#if TEMP_BED_PIN < 8
|
|
DIDR0 |= 1<<TEMP_BED_PIN;
|
|
#else
|
|
DIDR2 |= 1<<(TEMP_BED_PIN - 8);
|
|
#endif
|
|
#endif
|
|
|
|
// Use timer0 for temperature measurement
|
|
// Interleave temperature interrupt with millies interrupt
|
|
OCR0B = 128;
|
|
TIMSK0 |= (1<<OCIE0B);
|
|
|
|
// Wait for temperature measurement to settle
|
|
delay(250);
|
|
|
|
#ifdef HEATER_0_MINTEMP
|
|
minttemp[0] = HEATER_0_MINTEMP;
|
|
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
|
|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
|
minttemp_raw[0] += OVERSAMPLENR;
|
|
#else
|
|
minttemp_raw[0] -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MINTEMP
|
|
#ifdef HEATER_0_MAXTEMP
|
|
maxttemp[0] = HEATER_0_MAXTEMP;
|
|
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
|
|
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
|
maxttemp_raw[0] -= OVERSAMPLENR;
|
|
#else
|
|
maxttemp_raw[0] += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MAXTEMP
|
|
|
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
|
|
minttemp[1] = HEATER_1_MINTEMP;
|
|
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
|
|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
|
minttemp_raw[1] += OVERSAMPLENR;
|
|
#else
|
|
minttemp_raw[1] -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif // MINTEMP 1
|
|
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
|
|
maxttemp[1] = HEATER_1_MAXTEMP;
|
|
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
|
|
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
|
maxttemp_raw[1] -= OVERSAMPLENR;
|
|
#else
|
|
maxttemp_raw[1] += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MAXTEMP 1
|
|
|
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
|
|
minttemp[2] = HEATER_2_MINTEMP;
|
|
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
|
|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
|
minttemp_raw[2] += OVERSAMPLENR;
|
|
#else
|
|
minttemp_raw[2] -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MINTEMP 2
|
|
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
|
|
maxttemp[2] = HEATER_2_MAXTEMP;
|
|
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
|
|
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
|
maxttemp_raw[2] -= OVERSAMPLENR;
|
|
#else
|
|
maxttemp_raw[2] += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //MAXTEMP 2
|
|
|
|
#ifdef BED_MINTEMP
|
|
/* No bed MINTEMP error implemented?!? */ /*
|
|
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_minttemp_raw += OVERSAMPLENR;
|
|
#else
|
|
bed_minttemp_raw -= OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
*/
|
|
#endif //BED_MINTEMP
|
|
#ifdef BED_MAXTEMP
|
|
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
|
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
|
bed_maxttemp_raw -= OVERSAMPLENR;
|
|
#else
|
|
bed_maxttemp_raw += OVERSAMPLENR;
|
|
#endif
|
|
}
|
|
#endif //BED_MAXTEMP
|
|
}
|
|
|
|
void setWatch()
|
|
{
|
|
#ifdef WATCH_TEMP_PERIOD
|
|
for (int e = 0; e < EXTRUDERS; e++)
|
|
{
|
|
if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
|
|
{
|
|
watch_start_temp[e] = degHotend(e);
|
|
watchmillis[e] = millis();
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void disable_heater()
|
|
{
|
|
for(int i=0;i<EXTRUDERS;i++)
|
|
setTargetHotend(0,i);
|
|
setTargetBed(0);
|
|
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
|
target_temperature[0]=0;
|
|
soft_pwm[0]=0;
|
|
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
|
|
WRITE(HEATER_0_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
|
|
target_temperature[1]=0;
|
|
soft_pwm[1]=0;
|
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
|
WRITE(HEATER_1_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
|
|
target_temperature[2]=0;
|
|
soft_pwm[2]=0;
|
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
|
WRITE(HEATER_2_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
|
target_temperature_bed=0;
|
|
soft_pwm_bed=0;
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
WRITE(HEATER_BED_PIN,LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void max_temp_error(uint8_t e) {
|
|
disable_heater();
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLN((int)e);
|
|
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
|
|
LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
Stop();
|
|
#endif
|
|
}
|
|
|
|
void min_temp_error(uint8_t e) {
|
|
disable_heater();
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLN((int)e);
|
|
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
|
|
LCD_ALERTMESSAGEPGM("Err: MINTEMP");
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
Stop();
|
|
#endif
|
|
}
|
|
|
|
void bed_max_temp_error(void) {
|
|
#if HEATER_BED_PIN > -1
|
|
WRITE(HEATER_BED_PIN, 0);
|
|
#endif
|
|
if(IsStopped() == false) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
|
|
LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
|
|
}
|
|
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
|
|
Stop();
|
|
#endif
|
|
}
|
|
|
|
#ifdef HEATER_0_USES_MAX6675
|
|
#define MAX6675_HEAT_INTERVAL 250
|
|
long max6675_previous_millis = -HEAT_INTERVAL;
|
|
int max6675_temp = 2000;
|
|
|
|
int read_max6675()
|
|
{
|
|
if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
|
|
return max6675_temp;
|
|
|
|
max6675_previous_millis = millis();
|
|
max6675_temp = 0;
|
|
|
|
#ifdef PRR
|
|
PRR &= ~(1<<PRSPI);
|
|
#elif defined PRR0
|
|
PRR0 &= ~(1<<PRSPI);
|
|
#endif
|
|
|
|
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
|
|
|
|
// enable TT_MAX6675
|
|
WRITE(MAX6675_SS, 0);
|
|
|
|
// ensure 100ns delay - a bit extra is fine
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
|
|
|
|
// read MSB
|
|
SPDR = 0;
|
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
|
max6675_temp = SPDR;
|
|
max6675_temp <<= 8;
|
|
|
|
// read LSB
|
|
SPDR = 0;
|
|
for (;(SPSR & (1<<SPIF)) == 0;);
|
|
max6675_temp |= SPDR;
|
|
|
|
// disable TT_MAX6675
|
|
WRITE(MAX6675_SS, 1);
|
|
|
|
if (max6675_temp & 4)
|
|
{
|
|
// thermocouple open
|
|
max6675_temp = 2000;
|
|
}
|
|
else
|
|
{
|
|
max6675_temp = max6675_temp >> 3;
|
|
}
|
|
|
|
return max6675_temp;
|
|
}
|
|
#endif
|
|
|
|
|
|
// Timer 0 is shared with millies
|
|
ISR(TIMER0_COMPB_vect)
|
|
{
|
|
//these variables are only accesible from the ISR, but static, so they don't lose their value
|
|
static unsigned char temp_count = 0;
|
|
static unsigned long raw_temp_0_value = 0;
|
|
static unsigned long raw_temp_1_value = 0;
|
|
static unsigned long raw_temp_2_value = 0;
|
|
static unsigned long raw_temp_bed_value = 0;
|
|
static unsigned char temp_state = 8;
|
|
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
|
|
static unsigned char soft_pwm_0;
|
|
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
|
|
static unsigned char soft_pwm_1;
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
static unsigned char soft_pwm_2;
|
|
#endif
|
|
#if HEATER_BED_PIN > -1
|
|
static unsigned char soft_pwm_b;
|
|
#endif
|
|
|
|
if(pwm_count == 0){
|
|
soft_pwm_0 = soft_pwm[0];
|
|
if(soft_pwm_0 > 0) {
|
|
WRITE(HEATER_0_PIN,1);
|
|
#ifdef HEATERS_PARALLEL
|
|
WRITE(HEATER_1_PIN,1);
|
|
#endif
|
|
} else WRITE(HEATER_0_PIN,0);
|
|
|
|
#if EXTRUDERS > 1
|
|
soft_pwm_1 = soft_pwm[1];
|
|
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
soft_pwm_2 = soft_pwm[2];
|
|
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
|
|
#endif
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
soft_pwm_b = soft_pwm_bed;
|
|
if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
soft_pwm_fan = fanSpeedSoftPwm / 2;
|
|
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
|
|
#endif
|
|
}
|
|
if(soft_pwm_0 < pwm_count) {
|
|
WRITE(HEATER_0_PIN,0);
|
|
#ifdef HEATERS_PARALLEL
|
|
WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
}
|
|
#if EXTRUDERS > 1
|
|
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
|
|
#endif
|
|
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
|
if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
|
|
#endif
|
|
#ifdef FAN_SOFT_PWM
|
|
if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
|
|
#endif
|
|
|
|
pwm_count += (1 << SOFT_PWM_SCALE);
|
|
pwm_count &= 0x7f;
|
|
|
|
switch(temp_state) {
|
|
case 0: // Prepare TEMP_0
|
|
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
|
|
#if TEMP_0_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = 1;
|
|
break;
|
|
case 1: // Measure TEMP_0
|
|
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
|
|
raw_temp_0_value += ADC;
|
|
#endif
|
|
#ifdef HEATER_0_USES_MAX6675 // TODO remove the blocking
|
|
raw_temp_0_value = read_max6675();
|
|
#endif
|
|
temp_state = 2;
|
|
break;
|
|
case 2: // Prepare TEMP_BED
|
|
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
|
|
#if TEMP_BED_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = 3;
|
|
break;
|
|
case 3: // Measure TEMP_BED
|
|
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
|
|
raw_temp_bed_value += ADC;
|
|
#endif
|
|
temp_state = 4;
|
|
break;
|
|
case 4: // Prepare TEMP_1
|
|
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
|
|
#if TEMP_1_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = 5;
|
|
break;
|
|
case 5: // Measure TEMP_1
|
|
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
|
|
raw_temp_1_value += ADC;
|
|
#endif
|
|
temp_state = 6;
|
|
break;
|
|
case 6: // Prepare TEMP_2
|
|
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
|
|
#if TEMP_2_PIN > 7
|
|
ADCSRB = 1<<MUX5;
|
|
#else
|
|
ADCSRB = 0;
|
|
#endif
|
|
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
|
ADCSRA |= 1<<ADSC; // Start conversion
|
|
#endif
|
|
lcd_buttons_update();
|
|
temp_state = 7;
|
|
break;
|
|
case 7: // Measure TEMP_2
|
|
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
|
|
raw_temp_2_value += ADC;
|
|
#endif
|
|
temp_state = 0;
|
|
temp_count++;
|
|
break;
|
|
case 8: //Startup, delay initial temp reading a tiny bit so the hardware can settle.
|
|
temp_state = 0;
|
|
break;
|
|
// default:
|
|
// SERIAL_ERROR_START;
|
|
// SERIAL_ERRORLNPGM("Temp measurement error!");
|
|
// break;
|
|
}
|
|
|
|
if(temp_count >= OVERSAMPLENR) // 8 * 16 * 1/(16000000/64/256) = 131ms.
|
|
{
|
|
if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
|
|
{
|
|
current_temperature_raw[0] = raw_temp_0_value;
|
|
#if EXTRUDERS > 1
|
|
current_temperature_raw[1] = raw_temp_1_value;
|
|
#endif
|
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
|
redundant_temperature_raw = raw_temp_1_value;
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
current_temperature_raw[2] = raw_temp_2_value;
|
|
#endif
|
|
current_temperature_bed_raw = raw_temp_bed_value;
|
|
}
|
|
|
|
temp_meas_ready = true;
|
|
temp_count = 0;
|
|
raw_temp_0_value = 0;
|
|
raw_temp_1_value = 0;
|
|
raw_temp_2_value = 0;
|
|
raw_temp_bed_value = 0;
|
|
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
if(current_temperature_raw[0] <= maxttemp_raw[0]) {
|
|
#else
|
|
if(current_temperature_raw[0] >= maxttemp_raw[0]) {
|
|
#endif
|
|
max_temp_error(0);
|
|
}
|
|
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
|
if(current_temperature_raw[0] >= minttemp_raw[0]) {
|
|
#else
|
|
if(current_temperature_raw[0] <= minttemp_raw[0]) {
|
|
#endif
|
|
min_temp_error(0);
|
|
}
|
|
#if EXTRUDERS > 1
|
|
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
|
|
if(current_temperature_raw[1] <= maxttemp_raw[1]) {
|
|
#else
|
|
if(current_temperature_raw[1] >= maxttemp_raw[1]) {
|
|
#endif
|
|
max_temp_error(1);
|
|
}
|
|
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
|
|
if(current_temperature_raw[1] >= minttemp_raw[1]) {
|
|
#else
|
|
if(current_temperature_raw[1] <= minttemp_raw[1]) {
|
|
#endif
|
|
min_temp_error(1);
|
|
}
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
|
|
if(current_temperature_raw[2] <= maxttemp_raw[2]) {
|
|
#else
|
|
if(current_temperature_raw[2] >= maxttemp_raw[2]) {
|
|
#endif
|
|
max_temp_error(2);
|
|
}
|
|
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
|
|
if(current_temperature_raw[2] >= minttemp_raw[2]) {
|
|
#else
|
|
if(current_temperature_raw[2] <= minttemp_raw[2]) {
|
|
#endif
|
|
min_temp_error(2);
|
|
}
|
|
#endif
|
|
|
|
/* No bed MINTEMP error? */
|
|
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
|
|
# if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
|
if(current_temperature_bed_raw <= bed_maxttemp_raw) {
|
|
#else
|
|
if(current_temperature_bed_raw >= bed_maxttemp_raw) {
|
|
#endif
|
|
target_temperature_bed = 0;
|
|
bed_max_temp_error();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef BABYSTEPPING
|
|
for(uint8_t axis=0;axis<3;axis++)
|
|
{
|
|
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
|
|
|
|
if(curTodo>0)
|
|
{
|
|
babystep(axis,/*fwd*/true);
|
|
babystepsTodo[axis]--; //less to do next time
|
|
}
|
|
else
|
|
if(curTodo<0)
|
|
{
|
|
babystep(axis,/*fwd*/false);
|
|
babystepsTodo[axis]++; //less to do next time
|
|
}
|
|
}
|
|
#endif //BABYSTEPPING
|
|
}
|
|
|
|
#ifdef PIDTEMP
|
|
// Apply the scale factors to the PID values
|
|
|
|
|
|
float scalePID_i(float i)
|
|
{
|
|
return i*PID_dT;
|
|
}
|
|
|
|
float unscalePID_i(float i)
|
|
{
|
|
return i/PID_dT;
|
|
}
|
|
|
|
float scalePID_d(float d)
|
|
{
|
|
return d/PID_dT;
|
|
}
|
|
|
|
float unscalePID_d(float d)
|
|
{
|
|
return d*PID_dT;
|
|
}
|
|
|
|
#endif //PIDTEMP
|
|
|
|
|