855 lines
31 KiB
C++
855 lines
31 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* Marlin Firmware -- G26 - Mesh Validation Tool
|
|
*/
|
|
|
|
#include "../../inc/MarlinConfig.h"
|
|
|
|
#if ENABLED(G26_MESH_VALIDATION)
|
|
|
|
#define G26_OK false
|
|
#define G26_ERR true
|
|
|
|
#include "../../gcode/gcode.h"
|
|
#include "../../feature/bedlevel/bedlevel.h"
|
|
|
|
#include "../../MarlinCore.h"
|
|
#include "../../module/planner.h"
|
|
#include "../../module/stepper.h"
|
|
#include "../../module/motion.h"
|
|
#include "../../module/tool_change.h"
|
|
#include "../../module/temperature.h"
|
|
#include "../../lcd/ultralcd.h"
|
|
|
|
#define EXTRUSION_MULTIPLIER 1.0
|
|
#define PRIME_LENGTH 10.0
|
|
#define OOZE_AMOUNT 0.3
|
|
|
|
#define INTERSECTION_CIRCLE_RADIUS 5
|
|
#define CROSSHAIRS_SIZE 3
|
|
|
|
#ifndef G26_RETRACT_MULTIPLIER
|
|
#define G26_RETRACT_MULTIPLIER 1.0 // x 1mm
|
|
#endif
|
|
|
|
#ifndef G26_XY_FEEDRATE
|
|
#define G26_XY_FEEDRATE (PLANNER_XY_FEEDRATE() / 3.0)
|
|
#endif
|
|
|
|
#if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
|
|
#error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
|
|
#endif
|
|
|
|
#define G26_OK false
|
|
#define G26_ERR true
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
void plan_arc(const xyze_pos_t &cart, const ab_float_t &offset, const uint8_t clockwise);
|
|
#endif
|
|
|
|
/**
|
|
* G26 Mesh Validation Tool
|
|
*
|
|
* G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
|
|
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
|
|
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
|
|
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
|
|
* the intersections of those lines (respectively).
|
|
*
|
|
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
|
|
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
|
|
* the user can specify the X and Y position of interest with command parameters. This allows the user to
|
|
* focus on a particular area of the Mesh where attention is needed.
|
|
*
|
|
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
|
|
*
|
|
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
|
|
* as the base for any distance comparison.
|
|
*
|
|
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
|
|
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
|
|
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
|
|
* alters the command's normal behavior and disables the Unified Bed Leveling System even if
|
|
* it is on.
|
|
*
|
|
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
|
|
*
|
|
* F # Filament Used to specify the diameter of the filament being used. If not specified
|
|
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
|
|
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
|
|
* of filament that is being extruded during the printing of the various lines on the bed.
|
|
*
|
|
* K Keep-On Keep the heaters turned on at the end of the command.
|
|
*
|
|
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
|
|
*
|
|
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
|
|
* is over kill, but using this parameter will let you get the very first 'circle' perfect
|
|
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
|
|
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
|
|
*
|
|
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
|
|
* given, no prime action will take place. If the parameter specifies an amount, that much
|
|
* will be purged before continuing. If no amount is specified the command will start
|
|
* purging filament until the user provides an LCD Click and then it will continue with
|
|
* printing the Mesh. You can carefully remove the spent filament with a needle nose
|
|
* pliers while holding the LCD Click wheel in a depressed state. If you do not have
|
|
* an LCD, you must specify a value if you use P.
|
|
*
|
|
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
|
|
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
|
|
*
|
|
* R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
|
|
* If a parameter isn't given, every point will be printed unless G26 is interrupted.
|
|
* This works the same way that the UBL G29 P4 R parameter works.
|
|
*
|
|
* NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
|
|
* aware that there's some risk associated with printing without the ability to abort in
|
|
* cases where mesh point Z value may be inaccurate. As above, if you do not include a
|
|
* parameter, every point will be printed.
|
|
*
|
|
* S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
|
|
*
|
|
* U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
|
|
* un-drawn circle is still done. But the distance to the location for each circle has a
|
|
* random number of the specified size added to it. Specifying S50 will give an interesting
|
|
* deviation from the normal behavior on a 10 x 10 Mesh.
|
|
*
|
|
* X # X Coord. Specify the starting location of the drawing activity.
|
|
*
|
|
* Y # Y Coord. Specify the starting location of the drawing activity.
|
|
*/
|
|
|
|
// External references
|
|
|
|
// Private functions
|
|
|
|
static MeshFlags circle_flags, horizontal_mesh_line_flags, vertical_mesh_line_flags;
|
|
float g26_e_axis_feedrate = 0.025,
|
|
random_deviation = 0.0;
|
|
|
|
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
|
|
// retracts/recovers won't result in a bad state.
|
|
|
|
float g26_extrusion_multiplier,
|
|
g26_retraction_multiplier,
|
|
g26_layer_height,
|
|
g26_prime_length;
|
|
|
|
xy_pos_t g26_xy_pos; // = { 0, 0 }
|
|
|
|
int16_t g26_bed_temp,
|
|
g26_hotend_temp;
|
|
|
|
int8_t g26_prime_flag;
|
|
|
|
#if HAS_LCD_MENU
|
|
|
|
/**
|
|
* If the LCD is clicked, cancel, wait for release, return true
|
|
*/
|
|
bool user_canceled() {
|
|
if (!ui.button_pressed()) return false; // Return if the button isn't pressed
|
|
ui.set_status_P(GET_TEXT(MSG_G26_CANCELED), 99);
|
|
#if HAS_LCD_MENU
|
|
ui.quick_feedback();
|
|
#endif
|
|
ui.wait_for_release();
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
mesh_index_pair find_closest_circle_to_print(const xy_pos_t &pos) {
|
|
float closest = 99999.99;
|
|
mesh_index_pair out_point;
|
|
|
|
out_point.pos = -1;
|
|
|
|
GRID_LOOP(i, j) {
|
|
if (!circle_flags.marked(i, j)) {
|
|
// We found a circle that needs to be printed
|
|
const xy_pos_t m = { _GET_MESH_X(i), _GET_MESH_Y(j) };
|
|
|
|
// Get the distance to this intersection
|
|
float f = (pos - m).magnitude();
|
|
|
|
// It is possible that we are being called with the values
|
|
// to let us find the closest circle to the start position.
|
|
// But if this is not the case, add a small weighting to the
|
|
// distance calculation to help it choose a better place to continue.
|
|
f += (g26_xy_pos - m).magnitude() / 15.0f;
|
|
|
|
// Add the specified amount of Random Noise to our search
|
|
if (random_deviation > 1.0) f += random(0.0, random_deviation);
|
|
|
|
if (f < closest) {
|
|
closest = f; // Found a closer un-printed location
|
|
out_point.pos.set(i, j); // Save its data
|
|
out_point.distance = closest;
|
|
}
|
|
}
|
|
}
|
|
circle_flags.mark(out_point); // Mark this location as done.
|
|
return out_point;
|
|
}
|
|
|
|
void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
|
|
static float last_z = -999.99;
|
|
|
|
const xy_pos_t dest = { rx, ry };
|
|
|
|
const bool has_xy_component = dest != current_position; // Check if X or Y is involved in the movement.
|
|
|
|
destination = current_position;
|
|
|
|
if (z != last_z) {
|
|
last_z = destination.z = z;
|
|
const feedRate_t feed_value = planner.settings.max_feedrate_mm_s[Z_AXIS] * 0.5f; // Use half of the Z_AXIS max feed rate
|
|
prepare_internal_move_to_destination(feed_value);
|
|
destination = current_position;
|
|
}
|
|
|
|
// If X or Y is involved do a 'normal' move. Otherwise retract/recover/hop.
|
|
destination = dest;
|
|
destination.e += e_delta;
|
|
const feedRate_t feed_value = has_xy_component ? feedRate_t(G26_XY_FEEDRATE) : planner.settings.max_feedrate_mm_s[E_AXIS] * 0.666f;
|
|
prepare_internal_move_to_destination(feed_value);
|
|
destination = current_position;
|
|
}
|
|
|
|
FORCE_INLINE void move_to(const xyz_pos_t &where, const float &de) { move_to(where.x, where.y, where.z, de); }
|
|
|
|
void retract_filament(const xyz_pos_t &where) {
|
|
if (!g26_retracted) { // Only retract if we are not already retracted!
|
|
g26_retracted = true;
|
|
move_to(where, -1.0f * g26_retraction_multiplier);
|
|
}
|
|
}
|
|
|
|
// TODO: Parameterize the Z lift with a define
|
|
void retract_lift_move(const xyz_pos_t &s) {
|
|
retract_filament(destination);
|
|
move_to(current_position.x, current_position.y, current_position.z + 0.5f, 0.0); // Z lift to minimize scraping
|
|
move_to(s.x, s.y, s.z + 0.5f, 0.0); // Get to the starting point with no extrusion while lifted
|
|
}
|
|
|
|
void recover_filament(const xyz_pos_t &where) {
|
|
if (g26_retracted) { // Only un-retract if we are retracted.
|
|
move_to(where, 1.2f * g26_retraction_multiplier);
|
|
g26_retracted = false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
|
|
* to the other. But there are really three sets of coordinates involved. The first coordinate
|
|
* is the present location of the nozzle. We don't necessarily want to print from this location.
|
|
* We first need to move the nozzle to the start of line segment where we want to print. Once
|
|
* there, we can use the two coordinates supplied to draw the line.
|
|
*
|
|
* Note: Although we assume the first set of coordinates is the start of the line and the second
|
|
* set of coordinates is the end of the line, it does not always work out that way. This function
|
|
* optimizes the movement to minimize the travel distance before it can start printing. This saves
|
|
* a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
|
|
* cause a lot of very little short retracement of th nozzle when it draws the very first line
|
|
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
|
|
* cases where the optimization comes into play.
|
|
*/
|
|
void print_line_from_here_to_there(const xyz_pos_t &s, const xyz_pos_t &e) {
|
|
|
|
// Distances to the start / end of the line
|
|
xy_float_t svec = current_position - s, evec = current_position - e;
|
|
|
|
const float dist_start = HYPOT2(svec.x, svec.y),
|
|
dist_end = HYPOT2(evec.x, evec.y),
|
|
line_length = HYPOT(e.x - s.x, e.y - s.y);
|
|
|
|
// If the end point of the line is closer to the nozzle, flip the direction,
|
|
// moving from the end to the start. On very small lines the optimization isn't worth it.
|
|
if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
|
|
return print_line_from_here_to_there(e, s);
|
|
|
|
// Decide whether to retract & lift
|
|
if (dist_start > 2.0) retract_lift_move(s);
|
|
|
|
move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
|
|
|
|
const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
|
|
|
|
recover_filament(destination);
|
|
move_to(e, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
|
|
}
|
|
|
|
inline bool look_for_lines_to_connect() {
|
|
xyz_pos_t s, e;
|
|
s.z = e.z = g26_layer_height;
|
|
|
|
GRID_LOOP(i, j) {
|
|
|
|
#if HAS_LCD_MENU
|
|
if (user_canceled()) return true;
|
|
#endif
|
|
|
|
if (i < (GRID_MAX_POINTS_X)) { // Can't connect to anything farther to the right than GRID_MAX_POINTS_X.
|
|
// Already a half circle at the edge of the bed.
|
|
|
|
if (circle_flags.marked(i, j) && circle_flags.marked(i + 1, j)) { // Test whether a leftward line can be done
|
|
if (!horizontal_mesh_line_flags.marked(i, j)) {
|
|
// Two circles need a horizontal line to connect them
|
|
s.x = _GET_MESH_X( i ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // right edge
|
|
e.x = _GET_MESH_X(i + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // left edge
|
|
|
|
LIMIT(s.x, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
s.y = e.y = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
|
|
if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
|
|
print_line_from_here_to_there(s, e);
|
|
|
|
horizontal_mesh_line_flags.mark(i, j); // Mark done, even if skipped
|
|
}
|
|
}
|
|
|
|
if (j < (GRID_MAX_POINTS_Y)) { // Can't connect to anything further back than GRID_MAX_POINTS_Y.
|
|
// Already a half circle at the edge of the bed.
|
|
|
|
if (circle_flags.marked(i, j) && circle_flags.marked(i, j + 1)) { // Test whether a downward line can be done
|
|
if (!vertical_mesh_line_flags.marked(i, j)) {
|
|
// Two circles that need a vertical line to connect them
|
|
s.y = _GET_MESH_Y( j ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // top edge
|
|
e.y = _GET_MESH_Y(j + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // bottom edge
|
|
|
|
s.x = e.x = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
|
|
LIMIT(s.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
LIMIT(e.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
|
|
if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
|
|
print_line_from_here_to_there(s, e);
|
|
|
|
vertical_mesh_line_flags.mark(i, j); // Mark done, even if skipped
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Turn on the bed and nozzle heat and
|
|
* wait for them to get up to temperature.
|
|
*/
|
|
inline bool turn_on_heaters() {
|
|
|
|
SERIAL_ECHOLNPGM("Waiting for heatup.");
|
|
|
|
#if HAS_HEATED_BED
|
|
|
|
if (g26_bed_temp > 25) {
|
|
#if HAS_SPI_LCD
|
|
ui.set_status_P(GET_TEXT(MSG_G26_HEATING_BED), 99);
|
|
ui.quick_feedback();
|
|
#if HAS_LCD_MENU
|
|
ui.capture();
|
|
#endif
|
|
#endif
|
|
thermalManager.setTargetBed(g26_bed_temp);
|
|
|
|
// Wait for the temperature to stabilize
|
|
if (!thermalManager.wait_for_bed(true
|
|
#if G26_CLICK_CAN_CANCEL
|
|
, true
|
|
#endif
|
|
)
|
|
) return G26_ERR;
|
|
}
|
|
|
|
#endif // HAS_HEATED_BED
|
|
|
|
// Start heating the active nozzle
|
|
#if HAS_SPI_LCD
|
|
ui.set_status_P(GET_TEXT(MSG_G26_HEATING_NOZZLE), 99);
|
|
ui.quick_feedback();
|
|
#endif
|
|
thermalManager.setTargetHotend(g26_hotend_temp, active_extruder);
|
|
|
|
// Wait for the temperature to stabilize
|
|
if (!thermalManager.wait_for_hotend(active_extruder, true
|
|
#if G26_CLICK_CAN_CANCEL
|
|
, true
|
|
#endif
|
|
)
|
|
) return G26_ERR;
|
|
|
|
#if HAS_SPI_LCD
|
|
ui.reset_status();
|
|
ui.quick_feedback();
|
|
#endif
|
|
|
|
return G26_OK;
|
|
}
|
|
|
|
/**
|
|
* Prime the nozzle if needed. Return true on error.
|
|
*/
|
|
inline bool prime_nozzle() {
|
|
|
|
const feedRate_t fr_slow_e = planner.settings.max_feedrate_mm_s[E_AXIS] / 15.0f;
|
|
#if HAS_LCD_MENU && DISABLED(TOUCH_BUTTONS) // ui.button_pressed issue with touchscreen
|
|
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
float Total_Prime = 0.0;
|
|
#endif
|
|
|
|
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
|
|
ui.capture();
|
|
ui.set_status_P(GET_TEXT(MSG_G26_MANUAL_PRIME), 99);
|
|
ui.chirp();
|
|
|
|
destination = current_position;
|
|
|
|
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
|
|
|
|
while (!ui.button_pressed()) {
|
|
ui.chirp();
|
|
destination.e += 0.25;
|
|
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
Total_Prime += 0.25;
|
|
if (Total_Prime >= EXTRUDE_MAXLENGTH) {
|
|
ui.release();
|
|
return G26_ERR;
|
|
}
|
|
#endif
|
|
prepare_internal_move_to_destination(fr_slow_e);
|
|
destination = current_position;
|
|
planner.synchronize(); // Without this synchronize, the purge is more consistent,
|
|
// but because the planner has a buffer, we won't be able
|
|
// to stop as quickly. So we put up with the less smooth
|
|
// action to give the user a more responsive 'Stop'.
|
|
}
|
|
|
|
ui.wait_for_release();
|
|
|
|
ui.set_status_P(GET_TEXT(MSG_G26_PRIME_DONE), 99);
|
|
ui.quick_feedback();
|
|
ui.release();
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
#if HAS_SPI_LCD
|
|
ui.set_status_P(GET_TEXT(MSG_G26_FIXED_LENGTH), 99);
|
|
ui.quick_feedback();
|
|
#endif
|
|
destination = current_position;
|
|
destination.e += g26_prime_length;
|
|
prepare_internal_move_to_destination(fr_slow_e);
|
|
destination.e -= g26_prime_length;
|
|
retract_filament(destination);
|
|
}
|
|
|
|
return G26_OK;
|
|
}
|
|
|
|
/**
|
|
* G26: Mesh Validation Pattern generation.
|
|
*
|
|
* Used to interactively edit the mesh by placing the
|
|
* nozzle in a problem area and doing a G29 P4 R command.
|
|
*
|
|
* Parameters:
|
|
*
|
|
* B Bed Temperature
|
|
* C Continue from the Closest mesh point
|
|
* D Disable leveling before starting
|
|
* F Filament diameter
|
|
* H Hotend Temperature
|
|
* K Keep heaters on when completed
|
|
* L Layer Height
|
|
* O Ooze extrusion length
|
|
* P Prime length
|
|
* Q Retraction multiplier
|
|
* R Repetitions (number of grid points)
|
|
* S Nozzle Size (diameter) in mm
|
|
* T Tool index to change to, if included
|
|
* U Random deviation (50 if no value given)
|
|
* X X position
|
|
* Y Y position
|
|
*/
|
|
void GcodeSuite::G26() {
|
|
SERIAL_ECHOLNPGM("G26 starting...");
|
|
|
|
// Don't allow Mesh Validation without homing first,
|
|
// or if the parameter parsing did not go OK, abort
|
|
if (axis_unhomed_error()) return;
|
|
|
|
// Change the tool first, if specified
|
|
if (parser.seenval('T')) tool_change(parser.value_int());
|
|
|
|
g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
|
|
g26_retraction_multiplier = G26_RETRACT_MULTIPLIER;
|
|
g26_layer_height = MESH_TEST_LAYER_HEIGHT;
|
|
g26_prime_length = PRIME_LENGTH;
|
|
g26_bed_temp = MESH_TEST_BED_TEMP;
|
|
g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
|
|
g26_prime_flag = 0;
|
|
|
|
float g26_nozzle = MESH_TEST_NOZZLE_SIZE,
|
|
g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
|
|
g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
|
|
|
|
bool g26_continue_with_closest = parser.boolval('C'),
|
|
g26_keep_heaters_on = parser.boolval('K');
|
|
|
|
#if HAS_HEATED_BED
|
|
if (parser.seenval('B')) {
|
|
g26_bed_temp = parser.value_celsius();
|
|
if (g26_bed_temp && !WITHIN(g26_bed_temp, 40, (BED_MAXTEMP - 10))) {
|
|
SERIAL_ECHOLNPAIR("?Specified bed temperature not plausible (40-", int(BED_MAXTEMP - 10), "C).");
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (parser.seenval('L')) {
|
|
g26_layer_height = parser.value_linear_units();
|
|
if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
|
|
SERIAL_ECHOLNPGM("?Specified layer height not plausible.");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (parser.seen('Q')) {
|
|
if (parser.has_value()) {
|
|
g26_retraction_multiplier = parser.value_float();
|
|
if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
|
|
SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible.");
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified.");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (parser.seenval('S')) {
|
|
g26_nozzle = parser.value_float();
|
|
if (!WITHIN(g26_nozzle, 0.1, 2.0)) {
|
|
SERIAL_ECHOLNPGM("?Specified nozzle size not plausible.");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (parser.seen('P')) {
|
|
if (!parser.has_value()) {
|
|
#if HAS_LCD_MENU
|
|
g26_prime_flag = -1;
|
|
#else
|
|
SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD.");
|
|
return;
|
|
#endif
|
|
}
|
|
else {
|
|
g26_prime_flag++;
|
|
g26_prime_length = parser.value_linear_units();
|
|
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
|
|
SERIAL_ECHOLNPGM("?Specified prime length not plausible.");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (parser.seenval('F')) {
|
|
g26_filament_diameter = parser.value_linear_units();
|
|
if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
|
|
SERIAL_ECHOLNPGM("?Specified filament size not plausible.");
|
|
return;
|
|
}
|
|
}
|
|
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
|
|
// scale up or down the length needed to get the
|
|
// same volume of filament
|
|
|
|
g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
|
|
|
|
if (parser.seenval('H')) {
|
|
g26_hotend_temp = parser.value_celsius();
|
|
if (!WITHIN(g26_hotend_temp, 165, (HEATER_0_MAXTEMP - 15))) {
|
|
SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible.");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (parser.seen('U')) {
|
|
randomSeed(millis());
|
|
// This setting will persist for the next G26
|
|
random_deviation = parser.has_value() ? parser.value_float() : 50.0;
|
|
}
|
|
|
|
int16_t g26_repeats;
|
|
#if HAS_LCD_MENU
|
|
g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
|
|
#else
|
|
if (!parser.seen('R')) {
|
|
SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD.");
|
|
return;
|
|
}
|
|
else
|
|
g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
|
|
#endif
|
|
if (g26_repeats < 1) {
|
|
SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1.");
|
|
return;
|
|
}
|
|
|
|
g26_xy_pos.set(parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position.x,
|
|
parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position.y);
|
|
if (!position_is_reachable(g26_xy_pos)) {
|
|
SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds.");
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Wait until all parameters are verified before altering the state!
|
|
*/
|
|
set_bed_leveling_enabled(!parser.seen('D'));
|
|
|
|
if (current_position.z < Z_CLEARANCE_BETWEEN_PROBES)
|
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
bool volumetric_was_enabled = parser.volumetric_enabled;
|
|
parser.volumetric_enabled = false;
|
|
planner.calculate_volumetric_multipliers();
|
|
#endif
|
|
|
|
if (turn_on_heaters() != G26_OK) goto LEAVE;
|
|
|
|
current_position.e = 0.0;
|
|
sync_plan_position_e();
|
|
|
|
if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;
|
|
|
|
/**
|
|
* Bed is preheated
|
|
*
|
|
* Nozzle is at temperature
|
|
*
|
|
* Filament is primed!
|
|
*
|
|
* It's "Show Time" !!!
|
|
*/
|
|
|
|
circle_flags.reset();
|
|
horizontal_mesh_line_flags.reset();
|
|
vertical_mesh_line_flags.reset();
|
|
|
|
// Move nozzle to the specified height for the first layer
|
|
destination = current_position;
|
|
destination.z = g26_layer_height;
|
|
move_to(destination, 0.0);
|
|
move_to(destination, g26_ooze_amount);
|
|
|
|
#if HAS_LCD_MENU
|
|
ui.capture();
|
|
#endif
|
|
|
|
#if DISABLED(ARC_SUPPORT)
|
|
|
|
/**
|
|
* Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
|
|
*/
|
|
#define A_INT 30
|
|
#define _ANGS (360 / A_INT)
|
|
#define A_CNT (_ANGS / 2)
|
|
#define _IND(A) ((A + _ANGS * 8) % _ANGS)
|
|
#define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
|
|
#define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
|
|
#if A_CNT & 1
|
|
#error "A_CNT must be a positive value. Please change A_INT."
|
|
#endif
|
|
float trig_table[A_CNT];
|
|
LOOP_L_N(i, A_CNT)
|
|
trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
|
|
|
|
#endif // !ARC_SUPPORT
|
|
|
|
mesh_index_pair location;
|
|
do {
|
|
// Find the nearest confluence
|
|
location = find_closest_circle_to_print(g26_continue_with_closest ? xy_pos_t(current_position) : g26_xy_pos);
|
|
|
|
if (location.valid()) {
|
|
const xy_pos_t circle = _GET_MESH_POS(location.pos);
|
|
|
|
// If this mesh location is outside the printable radius, skip it.
|
|
if (!position_is_reachable(circle)) continue;
|
|
|
|
// Determine where to start and end the circle,
|
|
// which is always drawn counter-clockwise.
|
|
const xy_int8_t st = location;
|
|
const bool f = st.y == 0,
|
|
r = st.x >= GRID_MAX_POINTS_X - 1,
|
|
b = st.y >= GRID_MAX_POINTS_Y - 1;
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
|
|
#define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
|
|
#define INTERSECTION_CIRCLE_DIAM ((INTERSECTION_CIRCLE_RADIUS) * 2)
|
|
|
|
xy_float_t e = { circle.x + INTERSECTION_CIRCLE_RADIUS, circle.y };
|
|
xyz_float_t s = e;
|
|
|
|
// Figure out where to start and end the arc - we always print counterclockwise
|
|
float arc_length = ARC_LENGTH(4);
|
|
if (st.x == 0) { // left edge
|
|
if (!f) { s.x = circle.x; s.y -= INTERSECTION_CIRCLE_RADIUS; }
|
|
if (!b) { e.x = circle.x; e.y += INTERSECTION_CIRCLE_RADIUS; }
|
|
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
|
|
}
|
|
else if (r) { // right edge
|
|
if (b) s.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
|
|
else s.set(circle.x, circle.y + INTERSECTION_CIRCLE_RADIUS);
|
|
if (f) e.set(circle.x - (INTERSECTION_CIRCLE_RADIUS), circle.y);
|
|
else e.set(circle.x, circle.y - (INTERSECTION_CIRCLE_RADIUS));
|
|
arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
|
|
}
|
|
else if (f) {
|
|
e.x -= INTERSECTION_CIRCLE_DIAM;
|
|
arc_length = ARC_LENGTH(2);
|
|
}
|
|
else if (b) {
|
|
s.x -= INTERSECTION_CIRCLE_DIAM;
|
|
arc_length = ARC_LENGTH(2);
|
|
}
|
|
|
|
const ab_float_t arc_offset = circle - s;
|
|
const xy_float_t dist = current_position - s; // Distance from the start of the actual circle
|
|
const float dist_start = HYPOT2(dist.x, dist.y);
|
|
const xyze_pos_t endpoint = {
|
|
e.x, e.y, g26_layer_height,
|
|
current_position.e + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
|
|
};
|
|
|
|
if (dist_start > 2.0) {
|
|
s.z = g26_layer_height + 0.5f;
|
|
retract_lift_move(s);
|
|
}
|
|
|
|
s.z = g26_layer_height;
|
|
move_to(s, 0.0); // Get to the starting point with no extrusion / un-Z lift
|
|
|
|
recover_filament(destination);
|
|
|
|
const feedRate_t old_feedrate = feedrate_mm_s;
|
|
feedrate_mm_s = PLANNER_XY_FEEDRATE() * 0.1f;
|
|
plan_arc(endpoint, arc_offset, false); // Draw a counter-clockwise arc
|
|
feedrate_mm_s = old_feedrate;
|
|
destination = current_position;
|
|
|
|
#if HAS_LCD_MENU
|
|
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
|
|
#endif
|
|
|
|
#else // !ARC_SUPPORT
|
|
|
|
int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
|
|
if (st.x == 0) { // Left edge? Just right half.
|
|
start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
|
|
end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
|
|
}
|
|
else if (r) { // Right edge? Just left half.
|
|
start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
|
|
end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
|
|
}
|
|
else if (f) { // Front edge? Just back half.
|
|
start_ind = 0; // 03:00
|
|
end_ind = 5; // 09:00
|
|
}
|
|
else if (b) { // Back edge? Just front half.
|
|
start_ind = 6; // 09:00
|
|
end_ind = 11; // 03:00
|
|
}
|
|
|
|
for (int8_t ind = start_ind; ind <= end_ind; ind++) {
|
|
|
|
#if HAS_LCD_MENU
|
|
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
|
|
#endif
|
|
|
|
xyz_float_t p = { circle.x + _COS(ind ), circle.y + _SIN(ind ), g26_layer_height },
|
|
q = { circle.x + _COS(ind + 1), circle.y + _SIN(ind + 1), g26_layer_height };
|
|
|
|
#if IS_KINEMATIC
|
|
// Check to make sure this segment is entirely on the bed, skip if not.
|
|
if (!position_is_reachable(p) || !position_is_reachable(q)) continue;
|
|
#else
|
|
LIMIT(p.x, X_MIN_POS + 1, X_MAX_POS - 1); // Prevent hitting the endstops
|
|
LIMIT(p.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
LIMIT(q.x, X_MIN_POS + 1, X_MAX_POS - 1);
|
|
LIMIT(q.y, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
|
#endif
|
|
|
|
print_line_from_here_to_there(p, q);
|
|
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
}
|
|
|
|
#endif // !ARC_SUPPORT
|
|
|
|
if (look_for_lines_to_connect()) goto LEAVE;
|
|
}
|
|
|
|
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
|
|
|
} while (--g26_repeats && location.valid());
|
|
|
|
LEAVE:
|
|
ui.set_status_P(GET_TEXT(MSG_G26_LEAVING), -1);
|
|
|
|
retract_filament(destination);
|
|
destination.z = Z_CLEARANCE_BETWEEN_PROBES;
|
|
move_to(destination, 0); // Raise the nozzle
|
|
|
|
destination = g26_xy_pos; // Move back to the starting XY position
|
|
move_to(destination, 0); // Move back to the starting position
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
parser.volumetric_enabled = volumetric_was_enabled;
|
|
planner.calculate_volumetric_multipliers();
|
|
#endif
|
|
|
|
#if HAS_LCD_MENU
|
|
ui.release(); // Give back control of the LCD
|
|
#endif
|
|
|
|
if (!g26_keep_heaters_on) {
|
|
#if HAS_HEATED_BED
|
|
thermalManager.setTargetBed(0);
|
|
#endif
|
|
thermalManager.setTargetHotend(active_extruder, 0);
|
|
}
|
|
}
|
|
|
|
#endif // G26_MESH_VALIDATION
|