This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/src/feature/bedlevel/bedlevel.cpp
Scott Lahteine a0c795b097
Encapsulate common display code in a singleton (#12395)
* Encapsulate common LCD code in a singleton
* Depend more UBL code on UBL_DEVEL_DEBUGGING
  - Since most users don't need the debugging on at all times, this helps reduce the default build size for UBL by over 2K, a little closer to fitting on 128K boards.
2018-11-11 12:16:24 -06:00

242 lines
7.2 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if HAS_LEVELING
#include "bedlevel.h"
#include "../../module/planner.h"
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
#include "../../module/motion.h"
#endif
#if ENABLED(PROBE_MANUALLY)
bool g29_in_progress = false;
#endif
#if ENABLED(LCD_BED_LEVELING)
#include "../../lcd/ultralcd.h"
#endif
#if ENABLED(G26_MESH_VALIDATION)
bool g26_debug_flag; // = false
#endif
bool leveling_is_valid() {
return
#if ENABLED(MESH_BED_LEVELING)
mbl.has_mesh()
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
!!bilinear_grid_spacing[X_AXIS]
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.mesh_is_valid()
#else // 3POINT, LINEAR
true
#endif
;
}
/**
* Turn bed leveling on or off, fixing the current
* position as-needed.
*
* Disable: Current position = physical position
* Enable: Current position = "unleveled" physical position
*/
void set_bed_leveling_enabled(const bool enable/*=true*/) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
const bool can_change = (!enable || leveling_is_valid());
#else
constexpr bool can_change = true;
#endif
if (can_change && enable != planner.leveling_active) {
planner.synchronize();
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Force bilinear_z_offset to re-calculate next time
const float reset[XYZ] = { -9999.999, -9999.999, 0 };
(void)bilinear_z_offset(reset);
#endif
if (planner.leveling_active) { // leveling from on to off
// change unleveled current_position to physical current_position without moving steppers.
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
planner.leveling_active = false; // disable only AFTER calling apply_leveling
}
else { // leveling from off to on
planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
// change physical current_position to unleveled current_position without moving steppers.
planner.unapply_leveling(current_position);
}
sync_plan_position();
}
}
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
void set_z_fade_height(const float zfh, const bool do_report/*=true*/) {
if (planner.z_fade_height == zfh) return;
const bool leveling_was_active = planner.leveling_active;
set_bed_leveling_enabled(false);
planner.set_z_fade_height(zfh);
if (leveling_was_active) {
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
set_bed_leveling_enabled(true);
if (do_report && memcmp(oldpos, current_position, sizeof(oldpos)))
report_current_position();
}
}
#endif // ENABLE_LEVELING_FADE_HEIGHT
/**
* Reset calibration results to zero.
*/
void reset_bed_level() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
#endif
set_bed_leveling_enabled(false);
#if ENABLED(MESH_BED_LEVELING)
mbl.reset();
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.reset();
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
z_values[x][y] = NAN;
#elif ABL_PLANAR
planner.bed_level_matrix.set_to_identity();
#endif
}
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
/**
* Enable to produce output in JSON format suitable
* for SCAD or JavaScript mesh visualizers.
*
* Visualize meshes in OpenSCAD using the included script.
*
* buildroot/shared/scripts/MarlinMesh.scad
*/
//#define SCAD_MESH_OUTPUT
/**
* Print calibration results for plotting or manual frame adjustment.
*/
void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, element_2d_fn fn) {
#ifndef SCAD_MESH_OUTPUT
for (uint8_t x = 0; x < sx; x++) {
serial_spaces(precision + (x < 10 ? 3 : 2));
SERIAL_PROTOCOL(int(x));
}
SERIAL_EOL();
#endif
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
#endif
for (uint8_t y = 0; y < sy; y++) {
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLPGM(" ["); // open sub-array
#else
if (y < 10) SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL(int(y));
#endif
for (uint8_t x = 0; x < sx; x++) {
SERIAL_PROTOCOLCHAR(' ');
const float offset = fn(x, y);
if (!isnan(offset)) {
if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
SERIAL_PROTOCOL_F(offset, int(precision));
}
else {
#ifdef SCAD_MESH_OUTPUT
for (uint8_t i = 3; i < precision + 3; i++)
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOLPGM("NAN");
#else
for (uint8_t i = 0; i < precision + 3; i++)
SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
#endif
}
#ifdef SCAD_MESH_OUTPUT
if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
#endif
}
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOLCHAR(']'); // close sub-array
if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
#endif
SERIAL_EOL();
}
#ifdef SCAD_MESH_OUTPUT
SERIAL_PROTOCOLPGM("];"); // close 2D array
#endif
SERIAL_EOL();
}
#endif // AUTO_BED_LEVELING_BILINEAR || MESH_BED_LEVELING
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
void _manual_goto_xy(const float &rx, const float &ry) {
#ifdef MANUAL_PROBE_START_Z
#if MANUAL_PROBE_HEIGHT > 0
do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
do_blocking_move_to_z(MAX(0,MANUAL_PROBE_START_Z));
#else
do_blocking_move_to(rx, ry, MAX(0,MANUAL_PROBE_START_Z));
#endif
#elif MANUAL_PROBE_HEIGHT > 0
const float prev_z = current_position[Z_AXIS];
do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
do_blocking_move_to_z(prev_z);
#else
do_blocking_move_to_xy(rx, ry);
#endif
current_position[X_AXIS] = rx;
current_position[Y_AXIS] = ry;
#if ENABLED(LCD_BED_LEVELING)
ui.wait_for_bl_move = false;
#endif
}
#endif
#endif // HAS_LEVELING