#include "imgui_sdl.h" #include "SDL.h" #include "imgui.h" #include #include #include #include #include #include #include #include #include #include namespace { // make_unique is C++14 template std::unique_ptr make_unique(Args&&... args) { return std::unique_ptr(new T(std::forward(args)...)); } struct Device* CurrentDevice = nullptr; namespace TupleHash { template struct Hash { std::size_t operator()(const T& value) const { return std::hash()(value); } }; template void CombineHash(std::size_t& seed, const T& value) { seed ^= TupleHash::Hash()(value) + 0x9e3779b9 + (seed << 6) + (seed >> 2); } template ::value - 1> struct Hasher { static void Hash(std::size_t& seed, const Tuple& tuple) { Hasher::Hash(seed, tuple); CombineHash(seed, std::get(tuple)); } }; template struct Hasher { static void Hash(std::size_t& seed, const Tuple& tuple) { CombineHash(seed, std::get<0>(tuple)); } }; template struct Hash> { std::size_t operator()(const std::tuple& value) const { std::size_t seed = 0; Hasher>::Hash(seed, value); return seed; } }; } template class LRUCache { public: bool Contains(const Key& key) const { return Container.find(key) != Container.end(); } const Value& At(const Key& key) { assert(Contains(key)); const auto location = Container.find(key); Order.splice(Order.begin(), Order, location->second); return location->second->second; } void Insert(const Key& key, Value value) { const auto existingLocation = Container.find(key); if (existingLocation != Container.end()) { Order.erase(existingLocation->second); Container.erase(existingLocation); } Order.push_front(std::make_pair(key, std::move(value))); Container.insert(std::make_pair(key, Order.begin())); Clean(); } void Reset() { Order.clear(); Container.clear(); } private: void Clean() { while (Container.size() > Size) { auto last = Order.end(); last--; Container.erase(last->first); Order.pop_back(); } } std::list> Order; std::unordered_map> Container; }; struct Color { const float R, G, B, A; explicit Color(uint32_t color) : R(((color >> 0) & 0xff) / 255.0f), G(((color >> 8) & 0xff) / 255.0f), B(((color >> 16) & 0xff) / 255.0f), A(((color >> 24) & 0xff) / 255.0f) { } Color(float r, float g, float b, float a) : R(r), G(g), B(b), A(a) { } Color operator*(const Color& c) const { return Color(R * c.R, G * c.G, B * c.B, A * c.A); } Color operator*(float v) const { return Color(R * v, G * v, B * v, A * v); } Color operator+(const Color& c) const { return Color(R + c.R, G + c.G, B + c.B, A + c.A); } uint32_t ToInt() const { return ((static_cast(R * 255) & 0xff) << 0) | ((static_cast(G * 255) & 0xff) << 8) | ((static_cast(B * 255) & 0xff) << 16) | ((static_cast(A * 255) & 0xff) << 24); } void UseAsDrawColor(SDL_Renderer* renderer) const { SDL_SetRenderDrawColor(renderer, static_cast(R * 255), static_cast(G * 255), static_cast(B * 255), static_cast(A * 255)); } }; struct Device { SDL_Renderer* Renderer; bool CacheWasInvalidated = false; struct ClipRect { int X, Y, Width, Height; } Clip; struct TriangleCacheItem { SDL_Texture* Texture = nullptr; int Width = 0, Height = 0; ~TriangleCacheItem() { if (Texture) SDL_DestroyTexture(Texture); } }; // You can tweak these to values that you find that work the best. static constexpr std::size_t UniformColorTriangleCacheSize = 512; static constexpr std::size_t GenericTriangleCacheSize = 64; // Uniform color is identified by its color and the coordinates of the edges. using UniformColorTriangleKey = std::tuple; // The generic triangle cache unfortunately has to be basically a full representation of the triangle. // This includes the (offset) vertex positions, texture coordinates and vertex colors. using GenericTriangleVertexKey = std::tuple; using GenericTriangleKey = std::tuple; LRUCache, UniformColorTriangleCacheSize> UniformColorTriangleCache; LRUCache, GenericTriangleCacheSize> GenericTriangleCache; Device(SDL_Renderer* renderer) : Renderer(renderer) { } void SetClipRect(const ClipRect& rect) { Clip = rect; const SDL_Rect clip = { rect.X, rect.Y, rect.Width, rect.Height }; SDL_RenderSetClipRect(Renderer, &clip); } void EnableClip() { SetClipRect(Clip); } void DisableClip() { SDL_RenderSetClipRect(Renderer, nullptr); } void SetAt(int x, int y, const Color& color) { color.UseAsDrawColor(Renderer); SDL_RenderDrawPoint(Renderer, x, y); } SDL_Texture* MakeTexture(int width, int height) { SDL_Texture* texture = SDL_CreateTexture(Renderer, SDL_PIXELFORMAT_RGBA32, SDL_TEXTUREACCESS_TARGET, width, height); SDL_SetTextureBlendMode(texture, SDL_BLENDMODE_BLEND); return texture; } void UseAsRenderTarget(SDL_Texture* texture) { SDL_SetRenderTarget(Renderer, texture); if (texture) { SDL_SetRenderDrawColor(Renderer, 0, 0, 0, 0); SDL_RenderClear(Renderer); } } }; struct Texture { SDL_Surface* Surface; SDL_Texture* Source; ~Texture() { SDL_FreeSurface(Surface); SDL_DestroyTexture(Source); } Color Sample(float u, float v) const { const int x = static_cast(std::round(u * (Surface->w - 1) + 0.5f)); const int y = static_cast(std::round(v * (Surface->h - 1) + 0.5f)); const int location = y * Surface->w + x; assert(location < Surface->w * Surface->h); return Color(static_cast(Surface->pixels)[location]); } }; template class InterpolatedFactorEquation { public: InterpolatedFactorEquation(const T& value0, const T& value1, const T& value2, const ImVec2& v0, const ImVec2& v1, const ImVec2& v2) : Value0(value0), Value1(value1), Value2(value2), V0(v0), V1(v1), V2(v2), Divisor((V1.y - V2.y) * (V0.x - V2.x) + (V2.x - V1.x) * (V0.y - V2.y)) { } T Evaluate(float x, float y) const { const float w1 = ((V1.y - V2.y) * (x - V2.x) + (V2.x - V1.x) * (y - V2.y)) / Divisor; const float w2 = ((V2.y - V0.y) * (x - V2.x) + (V0.x - V2.x) * (y - V2.y)) / Divisor; const float w3 = 1.0f - w1 - w2; return static_cast((Value0 * w1) + (Value1 * w2) + (Value2 * w3)); } private: const T Value0; const T Value1; const T Value2; const ImVec2& V0; const ImVec2& V1; const ImVec2& V2; const float Divisor; }; struct Rect { float MinX, MinY, MaxX, MaxY; float MinU, MinV, MaxU, MaxV; bool IsOnExtreme(const ImVec2& point) const { return (point.x == MinX || point.x == MaxX) && (point.y == MinY || point.y == MaxY); } bool UsesOnlyColor() const { const ImVec2& whitePixel = ImGui::GetIO().Fonts->TexUvWhitePixel; return MinU == MaxU && MinU == whitePixel.x && MinV == MaxV && MaxV == whitePixel.y; } static Rect CalculateBoundingBox(const ImDrawVert& v0, const ImDrawVert& v1, const ImDrawVert& v2) { return Rect{ std::min({ v0.pos.x, v1.pos.x, v2.pos.x }), std::min({ v0.pos.y, v1.pos.y, v2.pos.y }), std::max({ v0.pos.x, v1.pos.x, v2.pos.x }), std::max({ v0.pos.y, v1.pos.y, v2.pos.y }), std::min({ v0.uv.x, v1.uv.x, v2.uv.x }), std::min({ v0.uv.y, v1.uv.y, v2.uv.y }), std::max({ v0.uv.x, v1.uv.x, v2.uv.x }), std::max({ v0.uv.y, v1.uv.y, v2.uv.y }) }; } }; struct FixedPointTriangleRenderInfo { int X1, X2, X3, Y1, Y2, Y3; int MinX, MaxX, MinY, MaxY; static FixedPointTriangleRenderInfo CalculateFixedPointTriangleInfo(const ImVec2& v1, const ImVec2& v2, const ImVec2& v3) { static constexpr float scale = 16.0f; const int x1 = static_cast(std::round(v1.x * scale)); const int x2 = static_cast(std::round(v2.x * scale)); const int x3 = static_cast(std::round(v3.x * scale)); const int y1 = static_cast(std::round(v1.y * scale)); const int y2 = static_cast(std::round(v2.y * scale)); const int y3 = static_cast(std::round(v3.y * scale)); int minX = (std::min({ x1, x2, x3 }) + 0xF) >> 4; int maxX = (std::max({ x1, x2, x3 }) + 0xF) >> 4; int minY = (std::min({ y1, y2, y3 }) + 0xF) >> 4; int maxY = (std::max({ y1, y2, y3 }) + 0xF) >> 4; return FixedPointTriangleRenderInfo{ x1, x2, x3, y1, y2, y3, minX, maxX, minY, maxY }; } }; void DrawTriangleWithColorFunction(const FixedPointTriangleRenderInfo& renderInfo, const std::function& colorFunction, Device::TriangleCacheItem* cacheItem) { // Implementation source: https://web.archive.org/web/20171128164608/http://forum.devmaster.net/t/advanced-rasterization/6145. // This is a fixed point implementation that rounds to top-left. const int deltaX12 = renderInfo.X1 - renderInfo.X2; const int deltaX23 = renderInfo.X2 - renderInfo.X3; const int deltaX31 = renderInfo.X3 - renderInfo.X1; const int deltaY12 = renderInfo.Y1 - renderInfo.Y2; const int deltaY23 = renderInfo.Y2 - renderInfo.Y3; const int deltaY31 = renderInfo.Y3 - renderInfo.Y1; const int fixedDeltaX12 = deltaX12 << 4; const int fixedDeltaX23 = deltaX23 << 4; const int fixedDeltaX31 = deltaX31 << 4; const int fixedDeltaY12 = deltaY12 << 4; const int fixedDeltaY23 = deltaY23 << 4; const int fixedDeltaY31 = deltaY31 << 4; const int width = renderInfo.MaxX - renderInfo.MinX; const int height = renderInfo.MaxY - renderInfo.MinY; if (width == 0 || height == 0) return; int c1 = deltaY12 * renderInfo.X1 - deltaX12 * renderInfo.Y1; int c2 = deltaY23 * renderInfo.X2 - deltaX23 * renderInfo.Y2; int c3 = deltaY31 * renderInfo.X3 - deltaX31 * renderInfo.Y3; if (deltaY12 < 0 || (deltaY12 == 0 && deltaX12 > 0)) c1++; if (deltaY23 < 0 || (deltaY23 == 0 && deltaX23 > 0)) c2++; if (deltaY31 < 0 || (deltaY31 == 0 && deltaX31 > 0)) c3++; int edgeStart1 = c1 + deltaX12 * (renderInfo.MinY << 4) - deltaY12 * (renderInfo.MinX << 4); int edgeStart2 = c2 + deltaX23 * (renderInfo.MinY << 4) - deltaY23 * (renderInfo.MinX << 4); int edgeStart3 = c3 + deltaX31 * (renderInfo.MinY << 4) - deltaY31 * (renderInfo.MinX << 4); SDL_Texture* cache = CurrentDevice->MakeTexture(width, height); CurrentDevice->DisableClip(); CurrentDevice->UseAsRenderTarget(cache); for (int y = renderInfo.MinY; y < renderInfo.MaxY; y++) { int edge1 = edgeStart1; int edge2 = edgeStart2; int edge3 = edgeStart3; for (int x = renderInfo.MinX; x < renderInfo.MaxX; x++) { if (edge1 > 0 && edge2 > 0 && edge3 > 0) { CurrentDevice->SetAt(x - renderInfo.MinX, y - renderInfo.MinY, colorFunction(x + 0.5f, y + 0.5f)); } edge1 -= fixedDeltaY12; edge2 -= fixedDeltaY23; edge3 -= fixedDeltaY31; } edgeStart1 += fixedDeltaX12; edgeStart2 += fixedDeltaX23; edgeStart3 += fixedDeltaX31; } CurrentDevice->UseAsRenderTarget(nullptr); CurrentDevice->EnableClip(); cacheItem->Texture = cache; cacheItem->Width = width; cacheItem->Height = height; } void DrawCachedTriangle(const Device::TriangleCacheItem& triangle, const FixedPointTriangleRenderInfo& renderInfo) { const SDL_Rect destination = { renderInfo.MinX, renderInfo.MinY, triangle.Width, triangle.Height }; SDL_RenderCopy(CurrentDevice->Renderer, triangle.Texture, nullptr, &destination); } void DrawTriangle(const ImDrawVert& v1, const ImDrawVert& v2, const ImDrawVert& v3, const Texture* texture) { // The naming inconsistency in the parameters is intentional. The fixed point algorithm wants the vertices in a counter clockwise order. const auto& renderInfo = FixedPointTriangleRenderInfo::CalculateFixedPointTriangleInfo(v3.pos, v2.pos, v1.pos); // First we check if there is a cached version of this triangle already waiting for us. If so, we can just do a super fast texture copy. const auto key = std::make_tuple( std::make_tuple(static_cast(std::round(v1.pos.x)) - renderInfo.MinX, static_cast(std::round(v1.pos.y)) - renderInfo.MinY, v1.uv.x, v1.uv.y, v1.col), std::make_tuple(static_cast(std::round(v2.pos.x)) - renderInfo.MinX, static_cast(std::round(v2.pos.y)) - renderInfo.MinY, v2.uv.x, v2.uv.y, v2.col), std::make_tuple(static_cast(std::round(v3.pos.x)) - renderInfo.MinX, static_cast(std::round(v3.pos.y)) - renderInfo.MinY, v3.uv.x, v3.uv.y, v3.col)); if (CurrentDevice->GenericTriangleCache.Contains(key)) { const auto& cached = CurrentDevice->GenericTriangleCache.At(key); DrawCachedTriangle(*cached, renderInfo); return; } const InterpolatedFactorEquation textureU(v1.uv.x, v2.uv.x, v3.uv.x, v1.pos, v2.pos, v3.pos); const InterpolatedFactorEquation textureV(v1.uv.y, v2.uv.y, v3.uv.y, v1.pos, v2.pos, v3.pos); const InterpolatedFactorEquation shadeColor(Color(v1.col), Color(v2.col), Color(v3.col), v1.pos, v2.pos, v3.pos); auto cached = make_unique(); DrawTriangleWithColorFunction(renderInfo, [&](float x, float y) { const float u = textureU.Evaluate(x, y); const float v = textureV.Evaluate(x, y); const Color sampled = texture->Sample(u, v); const Color shade = shadeColor.Evaluate(x, y); return sampled * shade; }, cached.get()); if (!cached->Texture) return; const SDL_Rect destination = { renderInfo.MinX, renderInfo.MinY, cached->Width, cached->Height }; SDL_RenderCopy(CurrentDevice->Renderer, cached->Texture, nullptr, &destination); CurrentDevice->GenericTriangleCache.Insert(key, std::move(cached)); } void DrawUniformColorTriangle(const ImDrawVert& v1, const ImDrawVert& v2, const ImDrawVert& v3) { const Color color(v1.col); // The naming inconsistency in the parameters is intentional. The fixed point algorithm wants the vertices in a counter clockwise order. const auto& renderInfo = FixedPointTriangleRenderInfo::CalculateFixedPointTriangleInfo(v3.pos, v2.pos, v1.pos); const auto key =std::make_tuple(v1.col, static_cast(std::round(v1.pos.x)) - renderInfo.MinX, static_cast(std::round(v1.pos.y)) - renderInfo.MinY, static_cast(std::round(v2.pos.x)) - renderInfo.MinX, static_cast(std::round(v2.pos.y)) - renderInfo.MinY, static_cast(std::round(v3.pos.x)) - renderInfo.MinX, static_cast(std::round(v3.pos.y)) - renderInfo.MinY); if (CurrentDevice->UniformColorTriangleCache.Contains(key)) { const auto& cached = CurrentDevice->UniformColorTriangleCache.At(key); DrawCachedTriangle(*cached, renderInfo); return; } auto cached = make_unique(); DrawTriangleWithColorFunction(renderInfo, [&color](float, float) { return color; }, cached.get()); if (!cached->Texture) return; const SDL_Rect destination = { renderInfo.MinX, renderInfo.MinY, cached->Width, cached->Height }; SDL_RenderCopy(CurrentDevice->Renderer, cached->Texture, nullptr, &destination); CurrentDevice->UniformColorTriangleCache.Insert(key, std::move(cached)); } void DrawRectangle(const Rect& bounding, SDL_Texture* texture, int textureWidth, int textureHeight, const Color& color, bool doHorizontalFlip, bool doVerticalFlip) { // We are safe to assume uniform color here, because the caller checks it and and uses the triangle renderer to render those. const SDL_Rect destination = { static_cast(bounding.MinX), static_cast(bounding.MinY), static_cast(bounding.MaxX - bounding.MinX), static_cast(bounding.MaxY - bounding.MinY) }; // If the area isn't textured, we can just draw a rectangle with the correct color. if (bounding.UsesOnlyColor()) { color.UseAsDrawColor(CurrentDevice->Renderer); SDL_RenderFillRect(CurrentDevice->Renderer, &destination); } else { // We can now just calculate the correct source rectangle and draw it. const SDL_Rect source = { static_cast(bounding.MinU * textureWidth), static_cast(bounding.MinV * textureHeight), static_cast((bounding.MaxU - bounding.MinU) * textureWidth), static_cast((bounding.MaxV - bounding.MinV) * textureHeight) }; const SDL_RendererFlip flip = static_cast((doHorizontalFlip ? SDL_FLIP_HORIZONTAL : 0) | (doVerticalFlip ? SDL_FLIP_VERTICAL : 0)); SDL_SetTextureColorMod(texture, static_cast(color.R * 255), static_cast(color.G * 255), static_cast(color.B * 255)); SDL_RenderCopyEx(CurrentDevice->Renderer, texture, &source, &destination, 0.0, nullptr, flip); } } void DrawRectangle(const Rect& bounding, const Texture* texture, const Color& color, bool doHorizontalFlip, bool doVerticalFlip) { DrawRectangle(bounding, texture->Source, texture->Surface->w, texture->Surface->h, color, doHorizontalFlip, doVerticalFlip); } void DrawRectangle(const Rect& bounding, SDL_Texture* texture, const Color& color, bool doHorizontalFlip, bool doVerticalFlip) { int width, height; SDL_QueryTexture(texture, nullptr, nullptr, &width, &height); DrawRectangle(bounding, texture, width, height, color, doHorizontalFlip, doVerticalFlip); } } namespace ImGuiSDL { static int ImGuiSDLEventWatch(void* userdata, SDL_Event* event) { if (event->type == SDL_RENDER_TARGETS_RESET) { // Device lost event, applies to DirectX and some mobile devices. CurrentDevice->CacheWasInvalidated = true; } return 0; } void Initialize(SDL_Renderer* renderer, int windowWidth, int windowHeight) { ImGuiIO& io = ImGui::GetIO(); io.DisplaySize.x = static_cast(windowWidth); io.DisplaySize.y = static_cast(windowHeight); ImGui::GetStyle().WindowRounding = 0.0f; ImGui::GetStyle().AntiAliasedFill = false; ImGui::GetStyle().AntiAliasedLines = false; ImGui::GetStyle().ChildRounding = 0.0f; ImGui::GetStyle().PopupRounding = 0.0f; ImGui::GetStyle().FrameRounding = 0.0f; ImGui::GetStyle().ScrollbarRounding = 0.0f; ImGui::GetStyle().GrabRounding = 0.0f; ImGui::GetStyle().TabRounding = 0.0f; // Loads the font texture. unsigned char* pixels; int width, height; io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height); static constexpr uint32_t rmask = 0x000000ff, gmask = 0x0000ff00, bmask = 0x00ff0000, amask = 0xff000000; SDL_Surface* surface = SDL_CreateRGBSurfaceFrom(pixels, width, height, 32, 4 * width, rmask, gmask, bmask, amask); Texture* texture = new Texture(); texture->Surface = surface; texture->Source = SDL_CreateTextureFromSurface(renderer, surface); io.Fonts->TexID = (void*)texture; CurrentDevice = new Device(renderer); SDL_AddEventWatch(ImGuiSDLEventWatch, nullptr); } void Deinitialize() { // Frees up the memory of the font texture. ImGuiIO& io = ImGui::GetIO(); Texture* texture = static_cast(io.Fonts->TexID); delete texture; delete CurrentDevice; SDL_DelEventWatch(ImGuiSDLEventWatch, nullptr); } void Render(ImDrawData* drawData) { if (CurrentDevice->CacheWasInvalidated) { CurrentDevice->CacheWasInvalidated = false; CurrentDevice->GenericTriangleCache.Reset(); CurrentDevice->UniformColorTriangleCache.Reset(); } SDL_BlendMode blendMode; SDL_GetRenderDrawBlendMode(CurrentDevice->Renderer, &blendMode); SDL_SetRenderDrawBlendMode(CurrentDevice->Renderer, SDL_BLENDMODE_BLEND); Uint8 initialR, initialG, initialB, initialA; SDL_GetRenderDrawColor(CurrentDevice->Renderer, &initialR, &initialG, &initialB, &initialA); SDL_bool initialClipEnabled = SDL_RenderIsClipEnabled(CurrentDevice->Renderer); SDL_Rect initialClipRect; SDL_RenderGetClipRect(CurrentDevice->Renderer, &initialClipRect); SDL_Texture* initialRenderTarget = SDL_GetRenderTarget(CurrentDevice->Renderer); ImGuiIO& io = ImGui::GetIO(); for (int n = 0; n < drawData->CmdListsCount; n++) { auto commandList = drawData->CmdLists[n]; auto vertexBuffer = commandList->VtxBuffer; for (int cmd_i = 0; cmd_i < commandList->CmdBuffer.Size; cmd_i++) { const ImDrawCmd* drawCommand = &commandList->CmdBuffer[cmd_i]; auto indexBuffer = commandList->IdxBuffer.Data + drawCommand->IdxOffset; const Device::ClipRect clipRect = { static_cast(drawCommand->ClipRect.x), static_cast(drawCommand->ClipRect.y), static_cast(drawCommand->ClipRect.z - drawCommand->ClipRect.x), static_cast(drawCommand->ClipRect.w - drawCommand->ClipRect.y) }; CurrentDevice->SetClipRect(clipRect); if (drawCommand->UserCallback) { drawCommand->UserCallback(commandList, drawCommand); } else { const bool isWrappedTexture = drawCommand->TextureId == io.Fonts->TexID; // Loops over triangles. for (unsigned int i = 0; i + 3 <= drawCommand->ElemCount; i += 3) { const ImDrawVert& v0 = vertexBuffer[indexBuffer[i + 0]]; const ImDrawVert& v1 = vertexBuffer[indexBuffer[i + 1]]; const ImDrawVert& v2 = vertexBuffer[indexBuffer[i + 2]]; const Rect& bounding = Rect::CalculateBoundingBox(v0, v1, v2); const bool isTriangleUniformColor = v0.col == v1.col && v1.col == v2.col; const bool doesTriangleUseOnlyColor = bounding.UsesOnlyColor(); // Actually, since we render a whole bunch of rectangles, we try to first detect those, and render them more efficiently. // How are rectangles detected? It's actually pretty simple: If all 6 vertices lie on the extremes of the bounding box, // it's a rectangle. if (i + 6 <= drawCommand->ElemCount) { const ImDrawVert& v3 = vertexBuffer[indexBuffer[i + 3]]; const ImDrawVert& v4 = vertexBuffer[indexBuffer[i + 4]]; const ImDrawVert& v5 = vertexBuffer[indexBuffer[i + 5]]; const bool isUniformColor = isTriangleUniformColor && v2.col == v3.col && v3.col == v4.col && v4.col == v5.col; if (isUniformColor && bounding.IsOnExtreme(v0.pos) && bounding.IsOnExtreme(v1.pos) && bounding.IsOnExtreme(v2.pos) && bounding.IsOnExtreme(v3.pos) && bounding.IsOnExtreme(v4.pos) && bounding.IsOnExtreme(v5.pos)) { // ImGui gives the triangles in a nice order: the first vertex happens to be the topleft corner of our rectangle. // We need to check for the orientation of the texture, as I believe in theory ImGui could feed us a flipped texture, // so that the larger texture coordinates are at topleft instead of bottomright. // We don't consider equal texture coordinates to require a flip, as then the rectangle is mostlikely simply a colored rectangle. const bool doHorizontalFlip = v2.uv.x < v0.uv.x; const bool doVerticalFlip = v2.uv.x < v0.uv.x; if (isWrappedTexture) { DrawRectangle(bounding, static_cast(drawCommand->TextureId), Color(v0.col), doHorizontalFlip, doVerticalFlip); } else { DrawRectangle(bounding, static_cast(drawCommand->TextureId), Color(v0.col), doHorizontalFlip, doVerticalFlip); } i += 3; // Additional increment to account for the extra 3 vertices we consumed. continue; } } if (isTriangleUniformColor && doesTriangleUseOnlyColor) { DrawUniformColorTriangle(v0, v1, v2); } else { // Currently we assume that any non rectangular texture samples the font texture. Dunno if that's what actually happens, but it seems to work. assert(isWrappedTexture); DrawTriangle(v0, v1, v2, static_cast(drawCommand->TextureId)); } } } } } CurrentDevice->DisableClip(); SDL_SetRenderTarget(CurrentDevice->Renderer, initialRenderTarget); SDL_RenderSetClipRect(CurrentDevice->Renderer, initialClipEnabled ? &initialClipRect : nullptr); SDL_SetRenderDrawColor(CurrentDevice->Renderer, initialR, initialG, initialB, initialA); SDL_SetRenderDrawBlendMode(CurrentDevice->Renderer, blendMode); } }