SpaceCadetPinball/SpaceCadetPinball/TFlipperEdge.cpp

490 lines
14 KiB
C++

#include "pch.h"
#include "TFlipperEdge.h"
#include "TLine.h"
#include "TPinballTable.h"
#include "TTableLayer.h"
float TFlipperEdge::flipper_sin_angle, TFlipperEdge::flipper_cos_angle;
vector2 TFlipperEdge::A1, TFlipperEdge::A2, TFlipperEdge::B1, TFlipperEdge::B2, TFlipperEdge::T1;
line_type TFlipperEdge::lineA, TFlipperEdge::lineB;
circle_type TFlipperEdge::circlebase, TFlipperEdge::circleT1;
TFlipperEdge::TFlipperEdge(TCollisionComponent* collComp, char* activeFlag, unsigned int collisionGroup, TPinballTable* table,
vector3* origin, vector3* vecT1, vector3* vecT2, float extendTime, float retractTime,
float collMult, float elasticity, float smoothness): TEdgeSegment(collComp, activeFlag, collisionGroup)
{
vector3 crossProd{}, vecDir1{}, vecDir2{};
Elasticity = elasticity;
Smoothness = smoothness;
ExtendTime = extendTime;
RetractTime = retractTime;
CollisionMult = collMult;
T1Src = static_cast<vector2>(*vecT1);
T2Src = static_cast<vector2>(*vecT2);
RotOrigin.X = origin->X;
RotOrigin.Y = origin->Y;
CirclebaseRadius = origin->Z + table->CollisionCompOffset;
CirclebaseRadiusMSq = CirclebaseRadius * 1.01f * (CirclebaseRadius * 1.01f);
CirclebaseRadiusSq = CirclebaseRadius * CirclebaseRadius;
CircleT1Radius = vecT1->Z + table->CollisionCompOffset;
CircleT1RadiusMSq = CircleT1Radius * 1.01f * (CircleT1Radius * 1.01f);
CircleT1RadiusSq = CircleT1Radius * CircleT1Radius;
vecDir1.X = vecT1->X - origin->X;
vecDir1.Y = vecT1->Y - origin->Y;
vecDir1.Z = 0.0;
maths::normalize_2d(vecDir1);
vecDir2.X = vecT2->X - origin->X;
vecDir2.Y = vecT2->Y - origin->Y;
vecDir2.Z = 0.0;
maths::normalize_2d(vecDir2);
AngleMax = acos(maths::DotProduct(vecDir1, vecDir2));
maths::cross(vecDir1, vecDir2, crossProd);
if (crossProd.Z < 0.0f)
AngleMax = -AngleMax;
FlipperFlag = 0;
Angle1 = 0.0;
auto dirX1 = vecDir1.X;
auto dirY1 = -vecDir1.Y;
A2Src.X = dirY1 * CirclebaseRadius + origin->X;
A2Src.Y = dirX1 * CirclebaseRadius + origin->Y;
A1Src.X = dirY1 * CircleT1Radius + vecT1->X;
A1Src.Y = dirX1 * CircleT1Radius + vecT1->Y;
dirX1 = -dirX1;
dirY1 = -dirY1;
B1Src.X = dirY1 * CirclebaseRadius + origin->X;
B1Src.Y = dirX1 * CirclebaseRadius + origin->Y;
B2Src.X = dirY1 * CircleT1Radius + vecT1->X;
B2Src.Y = dirX1 * CircleT1Radius + vecT1->Y;
if (AngleMax < 0.0f)
{
std::swap(A1Src, B1Src);
std::swap(A2Src, B2Src);
}
auto dx = vecT1->X - RotOrigin.X;
auto dy = vecT1->Y - RotOrigin.Y;
auto distance1 = sqrt(dy * dy + dx * dx) + table->CollisionCompOffset + vecT1->Z;
DistanceDivSq = distance1 * distance1;
float minMoveTime = std::min(ExtendTime, RetractTime);
auto distance = maths::Distance(*vecT1, *vecT2);
CollisionTimeAdvance = minMoveTime / (distance / CircleT1Radius + distance / CircleT1Radius);
TFlipperEdge::place_in_grid();
EdgeCollisionFlag = 0;
InputTime = 0.0;
CollisionFlag1 = 0;
AngleStopTime = 0.0;
AngleMult = 0.0;
}
void TFlipperEdge::port_draw()
{
set_control_points(InputTime);
build_edges_in_motion();
}
float TFlipperEdge::FindCollisionDistance(ray_type* ray)
{
auto ogRay = ray;
ray_type dstRay{}, srcRay{};
if (ogRay->TimeNow > AngleStopTime)
{
FlipperFlag = 0;
}
if (EdgeCollisionFlag == 0)
{
if (FlipperFlag == 0)
{
CollisionFlag1 = 0;
CollisionFlag2 = 0;
set_control_points(ogRay->TimeNow);
build_edges_in_motion();
auto ballInside = is_ball_inside(ogRay->Origin.X, ogRay->Origin.Y);
srcRay.MinDistance = ogRay->MinDistance;
if (ballInside == 0)
{
srcRay.Direction = ogRay->Direction;
srcRay.MaxDistance = ogRay->MaxDistance;
srcRay.Origin = ogRay->Origin;
auto distance = maths::distance_to_flipper(srcRay, dstRay);
if (distance == 0.0f)
{
NextBallPosition = dstRay.Origin;
NextBallPosition.X -= srcRay.Direction.X * 1e-05f;
NextBallPosition.Y -= srcRay.Direction.Y * 1e-05f;
}
else
{
NextBallPosition = dstRay.Origin;
}
CollisionDirection = dstRay.Direction;
return distance;
}
if (maths::Distance_Squared(ogRay->Origin, RotOrigin) >= CirclebaseRadiusMSq)
{
if (maths::Distance_Squared(ogRay->Origin, T1) >= CircleT1RadiusMSq)
{
srcRay.Direction.Y = lineB.PerpendicularC.Y;
srcRay.Direction.X = lineB.PerpendicularC.X;
if (ballInside == 4)
{
srcRay.Direction.Y = lineA.PerpendicularC.Y;
srcRay.Direction.X = lineA.PerpendicularC.X;
}
srcRay.Direction.X = -srcRay.Direction.X;
srcRay.Direction.Y = -srcRay.Direction.Y;
}
else
{
srcRay.Direction.X = T1.X - ogRay->Origin.X;
srcRay.Direction.Y = T1.Y - ogRay->Origin.Y;
maths::normalize_2d(srcRay.Direction);
}
}
else
{
srcRay.Direction.X = RotOrigin.X - ogRay->Origin.X;
srcRay.Direction.Y = RotOrigin.Y - ogRay->Origin.Y;
maths::normalize_2d(srcRay.Direction);
}
srcRay.Origin.X = ogRay->Origin.X - srcRay.Direction.X * 5.0f;
srcRay.Origin.Y = ogRay->Origin.Y - srcRay.Direction.Y * 5.0f;
srcRay.MaxDistance = ogRay->MaxDistance + 10.0f;
if (maths::distance_to_flipper(srcRay, dstRay) >= 1e+09f)
{
srcRay.Direction.X = RotOrigin.X - ogRay->Origin.X;
srcRay.Direction.Y = RotOrigin.Y - ogRay->Origin.Y;
maths::normalize_2d(srcRay.Direction);
srcRay.Origin.X = ogRay->Origin.X - srcRay.Direction.X * 5.0f;
srcRay.Origin.Y = ogRay->Origin.Y - srcRay.Direction.Y * 5.0f;
if (maths::distance_to_flipper(srcRay, dstRay) >= 1e+09f)
{
return 1e+09;
}
}
NextBallPosition = dstRay.Origin;
CollisionDirection = dstRay.Direction;
NextBallPosition.X -= srcRay.Direction.X * 1e-05f;
NextBallPosition.Y -= srcRay.Direction.Y * 1e-05f;
return 0.0;
}
auto posX = ogRay->Origin.X;
auto posY = ogRay->Origin.Y;
auto posXAdvance = ogRay->Direction.X * CollisionTimeAdvance;
auto posYAdvance = ogRay->Direction.Y * CollisionTimeAdvance;
auto rayMaxDistance = ogRay->MaxDistance * CollisionTimeAdvance;
auto timeNow = ogRay->TimeNow;
auto stopTime = ogRay->TimeDelta + ogRay->TimeNow;
while (timeNow < stopTime)
{
set_control_points(timeNow);
build_edges_in_motion();
auto ballInside = is_ball_inside(posX, posY);
if (ballInside != 0)
{
vector2* linePtr;
if (FlipperFlag == 1 && ballInside != 5)
{
linePtr = &lineA.PerpendicularC;
srcRay.Direction.Y = lineA.PerpendicularC.Y;
srcRay.Direction.X = lineA.PerpendicularC.X;
}
else
{
if (FlipperFlag != 2 || ballInside == 4)
{
CollisionFlag1 = 0;
CollisionFlag2 = 1;
srcRay.Direction.X = RotOrigin.X - posX;
srcRay.Direction.Y = RotOrigin.Y - posY;
maths::normalize_2d(srcRay.Direction);
srcRay.Origin.X = posX - srcRay.Direction.X * 5.0f;
srcRay.Origin.Y = posY - srcRay.Direction.Y * 5.0f;
srcRay.MaxDistance = ogRay->MaxDistance + 10.0f;
if (maths::distance_to_flipper(srcRay, dstRay) >= 1e+09f)
{
NextBallPosition.X = posX;
NextBallPosition.Y = posY;
CollisionDirection.X = -srcRay.Direction.X;
CollisionDirection.Y = -srcRay.Direction.Y;
return 0.0;
}
NextBallPosition = dstRay.Origin;
CollisionDirection = dstRay.Direction;
NextBallPosition.X -= srcRay.Direction.X * 1e-05f;
NextBallPosition.Y -= srcRay.Direction.Y * 1e-05f;
return 0.0;
}
linePtr = &lineB.PerpendicularC;
srcRay.Direction.Y = lineB.PerpendicularC.Y;
srcRay.Direction.X = lineB.PerpendicularC.X;
}
CollisionLinePerp = *linePtr;
CollisionFlag2 = 0;
CollisionFlag1 = 1;
srcRay.Direction.X = -srcRay.Direction.X;
srcRay.Direction.Y = -srcRay.Direction.Y;
srcRay.MinDistance = 0.002f;
srcRay.Origin.X = ogRay->Origin.X - srcRay.Direction.X * 5.0f;
srcRay.Origin.Y = ogRay->Origin.Y - srcRay.Direction.Y * 5.0f;
srcRay.MaxDistance = ogRay->MaxDistance + 10.0f;
auto distance = maths::distance_to_flipper(srcRay, dstRay);
CollisionDirection = dstRay.Direction;
if (distance >= 1e+09f)
{
return 1e+09;
}
NextBallPosition = dstRay.Origin;
NextBallPosition.X -= srcRay.Direction.X * 1e-05f;
NextBallPosition.Y -= srcRay.Direction.Y * 1e-05f;
return 0.0;
}
srcRay.Direction = ogRay->Direction;
srcRay.MinDistance = ogRay->MinDistance;
srcRay.Origin = ogRay->Origin;
srcRay.MaxDistance = rayMaxDistance;
auto distance = maths::distance_to_flipper(srcRay, dstRay);
if (distance < 1e+09f)
{
NextBallPosition = dstRay.Origin;
NextBallPosition.X -= srcRay.Direction.X * 1e-05f;
NextBallPosition.Y -= srcRay.Direction.Y * 1e-05f;
vector2* linePtr;
if (FlipperFlag == 2)
{
linePtr = &lineB.PerpendicularC;
CollisionFlag1 = AngleMax <= 0.0f;
}
else
{
CollisionFlag1 = AngleMax > 0.0f;
linePtr = &lineA.PerpendicularC;
}
CollisionLinePerp = *linePtr;
CollisionDirection = dstRay.Direction;
return distance;
}
timeNow = timeNow + CollisionTimeAdvance;
posX = posX + posXAdvance;
posY = posY + posYAdvance;
}
}
else
{
EdgeCollisionFlag = 0;
}
return 1e+09;
}
void TFlipperEdge::EdgeCollision(TBall* ball, float distance)
{
EdgeCollisionFlag = 1;
if (!FlipperFlag || !CollisionFlag2 || CollisionFlag1)
{
float boost = 0.0;
if (CollisionFlag1)
{
float dx = NextBallPosition.X - RotOrigin.X;
float dy = NextBallPosition.Y - RotOrigin.Y;
float distanceSq = dy * dy + dx * dx;
if (circlebase.RadiusSq * 1.01f < distanceSq)
{
float v11;
float v20 = sqrt(distanceSq / DistanceDivSq) * (fabs(AngleMax) / AngleMult);
float dot1 = maths::DotProduct(CollisionLinePerp, CollisionDirection);
if (dot1 >= 0.0f)
v11 = dot1 * v20;
else
v11 = 0.0;
boost = v11 * CollisionMult;
}
}
float threshold = boost <= 0.0f ? 1000000000.0f : -1.0f;
maths::basic_collision(
ball,
&NextBallPosition,
&CollisionDirection,
Elasticity,
Smoothness,
threshold,
boost);
return;
}
float elasticity;
float dx = NextBallPosition.X - RotOrigin.X;
float dy = NextBallPosition.Y - RotOrigin.Y;
float distanceSq = dy * dy + dx * dx;
if (circlebase.RadiusSq * 1.01f < distanceSq)
elasticity = (1.0f - sqrt(distanceSq / DistanceDivSq)) * Elasticity;
else
elasticity = Elasticity;
maths::basic_collision(ball, &NextBallPosition, &CollisionDirection, elasticity, Smoothness, 1000000000.0, 0.0);
}
void TFlipperEdge::place_in_grid()
{
float x0 = RotOrigin.X - CirclebaseRadius;
float y0 = RotOrigin.Y - CirclebaseRadius;
float x1 = RotOrigin.X + CirclebaseRadius;
float y1 = RotOrigin.Y + CirclebaseRadius;
float v2 = T1Src.X - CircleT1Radius;
if (v2 < x0)
x0 = v2;
float v3 = T1Src.Y - CircleT1Radius;
if (v3 < y0)
y0 = v3;
float v4 = T1Src.X + CircleT1Radius;
if (v4 > x1)
x1 = v4;
float v5 = T1Src.Y + CircleT1Radius;
if (v5 > y1)
y1 = v5;
float v6 = T2Src.X - CircleT1Radius;
if (v6 < x0)
x0 = v6;
float v7 = T2Src.Y - CircleT1Radius;
if (v7 < y0)
y0 = v7;
float v8 = T2Src.X + CircleT1Radius;
if (v8 > x1)
x1 = v8;
float v9 = T2Src.Y + CircleT1Radius;
if (v9 > y1)
y1 = v9;
TTableLayer::edges_insert_square(y0, x0, y1, x1, this, nullptr);
}
void TFlipperEdge::set_control_points(float timeNow)
{
maths::SinCos(flipper_angle(timeNow), flipper_sin_angle, flipper_cos_angle);
A1 = A1Src;
A2 = A2Src;
B1 = B1Src;
B2 = B2Src;
T1 = T1Src;
maths::RotatePt(A1, flipper_sin_angle, flipper_cos_angle, RotOrigin);
maths::RotatePt(A2, flipper_sin_angle, flipper_cos_angle, RotOrigin);
maths::RotatePt(T1, flipper_sin_angle, flipper_cos_angle, RotOrigin);
maths::RotatePt(B1, flipper_sin_angle, flipper_cos_angle, RotOrigin);
maths::RotatePt(B2, flipper_sin_angle, flipper_cos_angle, RotOrigin);
}
void TFlipperEdge::build_edges_in_motion()
{
maths::line_init(lineA, A1.X, A1.Y, A2.X, A2.Y);
maths::line_init(lineB, B1.X, B1.Y, B2.X, B2.Y);
circlebase.RadiusSq = CirclebaseRadiusSq;
circlebase.Center.X = RotOrigin.X;
circlebase.Center.Y = RotOrigin.Y;
circleT1.RadiusSq = CircleT1RadiusSq;
circleT1.Center.X = T1.X;
circleT1.Center.Y = T1.Y;
}
float TFlipperEdge::flipper_angle(float timeNow)
{
if (!FlipperFlag)
return Angle1;
float angle = (Angle1 - Angle2) / AngleMax * AngleMult;
if (angle < 0.0f)
angle = -angle;
if (angle >= 0.0000001f)
angle = (timeNow - InputTime) / angle;
else
angle = 1.0;
angle = std::min(1.0f, std::max(angle, 0.0f));
if (FlipperFlag == 2)
angle = 1.0f - angle;
return angle * AngleMax;
}
int TFlipperEdge::is_ball_inside(float x, float y)
{
vector2 testPoint{};
float dx = RotOrigin.X - x;
float dy = RotOrigin.Y - y;
if (((A2.X - A1.X) * (y - A1.Y) - (A2.Y - A1.Y) * (x - A1.X) >= 0.0f &&
(B1.X - A2.X) * (y - A2.Y) - (B1.Y - A2.Y) * (x - A2.X) >= 0.0f &&
(B2.X - B1.X) * (y - B1.Y) - (B2.Y - B1.Y) * (x - B1.X) >= 0.0f &&
(A1.X - B2.X) * (y - B2.Y) - (A1.Y - B2.Y) * (x - B2.X) >= 0.0f) ||
dy * dy + dx * dx <= CirclebaseRadiusSq ||
(T1.Y - y) * (T1.Y - y) + (T1.X - x) * (T1.X - x) < CircleT1RadiusSq)
{
float flipperLR = AngleMax < 0.0f ? -1.0f : 1.0f;
if (FlipperFlag == 1)
testPoint = AngleMax < 0.0f ? B1 : B2;
else if (FlipperFlag == 2)
testPoint = AngleMax < 0.0f ? A2 : A1;
else
testPoint = T1;
if (((y - testPoint.Y) * (RotOrigin.X - testPoint.X) -
(x - testPoint.X) * (RotOrigin.Y - testPoint.Y)) * flipperLR < 0.0f)
return 4;
return 5;
}
return 0;
}
void TFlipperEdge::SetMotion(int code, float value)
{
switch (code)
{
case 1:
Angle2 = flipper_angle(value);
Angle1 = AngleMax;
AngleMult = ExtendTime;
break;
case 2:
Angle2 = flipper_angle(value);
Angle1 = 0.0;
AngleMult = RetractTime;
break;
case 1024:
FlipperFlag = 0;
Angle1 = 0.0;
return;
default: break;
}
if (!FlipperFlag)
InputTime = value;
FlipperFlag = code;
AngleStopTime = AngleMult + InputTime;
}