2017-09-06 13:28:31 +02:00
|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2017-09-16 03:57:52 +02:00
|
|
|
#include "../../inc/MarlinConfig.h"
|
|
|
|
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
|
|
|
2017-09-08 05:33:16 +02:00
|
|
|
#include "../gcode.h"
|
2017-09-16 03:57:52 +02:00
|
|
|
#include "../../module/motion.h"
|
|
|
|
#include "../../module/planner.h"
|
|
|
|
#include "../../module/temperature.h"
|
2017-09-08 05:33:16 +02:00
|
|
|
|
2017-12-22 04:43:39 +01:00
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#include "../../module/delta.h"
|
|
|
|
#elif ENABLED(SCARA)
|
|
|
|
#include "../../module/scara.h"
|
|
|
|
#endif
|
|
|
|
|
2018-04-05 22:47:56 +02:00
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING) && ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
#include "../../feature/bedlevel/abl/abl.h"
|
|
|
|
#endif
|
|
|
|
|
2017-09-06 13:28:31 +02:00
|
|
|
#if N_ARC_CORRECTION < 1
|
|
|
|
#undef N_ARC_CORRECTION
|
|
|
|
#define N_ARC_CORRECTION 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Plan an arc in 2 dimensions
|
|
|
|
*
|
|
|
|
* The arc is approximated by generating many small linear segments.
|
|
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
|
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
|
|
|
* larger segments will tend to be more efficient. Your slicer should have
|
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
|
|
*/
|
|
|
|
void plan_arc(
|
2017-12-09 09:10:54 +01:00
|
|
|
const float (&cart)[XYZE], // Destination position
|
|
|
|
const float (&offset)[2], // Center of rotation relative to current_position
|
|
|
|
const uint8_t clockwise // Clockwise?
|
2017-09-06 13:28:31 +02:00
|
|
|
) {
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
|
AxisEnum p_axis, q_axis, l_axis;
|
2017-09-16 06:08:48 +02:00
|
|
|
switch (gcode.workspace_plane) {
|
2017-11-07 05:57:05 +01:00
|
|
|
default:
|
2017-09-16 06:08:48 +02:00
|
|
|
case GcodeSuite::PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
|
|
|
|
case GcodeSuite::PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
|
|
|
|
case GcodeSuite::PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
|
2017-09-06 13:28:31 +02:00
|
|
|
}
|
|
|
|
#else
|
|
|
|
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Radius vector from center to current location
|
|
|
|
float r_P = -offset[0], r_Q = -offset[1];
|
|
|
|
|
|
|
|
const float radius = HYPOT(r_P, r_Q),
|
|
|
|
center_P = current_position[p_axis] - r_P,
|
|
|
|
center_Q = current_position[q_axis] - r_Q,
|
2017-12-09 09:10:54 +01:00
|
|
|
rt_X = cart[p_axis] - center_P,
|
|
|
|
rt_Y = cart[q_axis] - center_Q,
|
|
|
|
linear_travel = cart[l_axis] - current_position[l_axis],
|
|
|
|
extruder_travel = cart[E_AXIS] - current_position[E_AXIS];
|
2017-09-06 13:28:31 +02:00
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
|
|
|
|
if (angular_travel < 0) angular_travel += RADIANS(360);
|
|
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0 and the target is current position
|
2017-12-09 09:10:54 +01:00
|
|
|
if (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis])
|
2017-09-06 13:28:31 +02:00
|
|
|
angular_travel = RADIANS(360);
|
|
|
|
|
2018-01-24 02:04:05 +01:00
|
|
|
const float flat_mm = radius * angular_travel,
|
2018-05-13 08:10:34 +02:00
|
|
|
mm_of_travel = linear_travel ? HYPOT(flat_mm, linear_travel) : ABS(flat_mm);
|
2017-09-06 13:28:31 +02:00
|
|
|
if (mm_of_travel < 0.001) return;
|
|
|
|
|
|
|
|
uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
|
|
|
|
if (segments == 0) segments = 1;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
|
|
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
|
|
* r_T = [cos(phi) -sin(phi);
|
|
|
|
* sin(phi) cos(phi)] * r ;
|
|
|
|
*
|
|
|
|
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
|
|
* defined from the circle center to the initial position. Each line segment is formed by successive
|
|
|
|
* vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
|
|
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
|
|
* all double numbers are single precision on the Arduino. (True double precision will not have
|
|
|
|
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
|
|
* tool precision in some cases. Therefore, arc path correction is implemented.
|
|
|
|
*
|
|
|
|
* Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
|
|
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
|
|
|
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
|
|
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
|
|
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
|
|
* issue for CNC machines with the single precision Arduino calculations.
|
|
|
|
*
|
|
|
|
* This approximation also allows plan_arc to immediately insert a line segment into the planner
|
|
|
|
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
|
|
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
|
|
|
* This is important when there are successive arc motions.
|
|
|
|
*/
|
|
|
|
// Vector rotation matrix values
|
2017-12-22 04:43:39 +01:00
|
|
|
float raw[XYZE];
|
2017-09-06 13:28:31 +02:00
|
|
|
const float theta_per_segment = angular_travel / segments,
|
|
|
|
linear_per_segment = linear_travel / segments,
|
|
|
|
extruder_per_segment = extruder_travel / segments,
|
|
|
|
sin_T = theta_per_segment,
|
|
|
|
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
|
|
|
|
|
|
|
|
// Initialize the linear axis
|
2017-12-22 04:43:39 +01:00
|
|
|
raw[l_axis] = current_position[l_axis];
|
2017-09-06 13:28:31 +02:00
|
|
|
|
|
|
|
// Initialize the extruder axis
|
2017-12-22 04:43:39 +01:00
|
|
|
raw[E_AXIS] = current_position[E_AXIS];
|
2017-09-06 13:28:31 +02:00
|
|
|
|
|
|
|
const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
|
|
|
|
|
millis_t next_idle_ms = millis() + 200UL;
|
|
|
|
|
2018-04-05 22:47:56 +02:00
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
|
|
// SCARA needs to scale the feed rate from mm/s to degrees/s
|
|
|
|
const float inv_segment_length = 1.0 / (MM_PER_ARC_SEGMENT),
|
|
|
|
inverse_secs = inv_segment_length * fr_mm_s;
|
|
|
|
float oldA = planner.position_float[A_AXIS],
|
|
|
|
oldB = planner.position_float[B_AXIS];
|
|
|
|
#endif
|
|
|
|
|
2017-09-06 13:28:31 +02:00
|
|
|
#if N_ARC_CORRECTION > 1
|
|
|
|
int8_t arc_recalc_count = N_ARC_CORRECTION;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
|
|
|
|
|
thermalManager.manage_heater();
|
|
|
|
if (ELAPSED(millis(), next_idle_ms)) {
|
|
|
|
next_idle_ms = millis() + 200UL;
|
|
|
|
idle();
|
|
|
|
}
|
|
|
|
|
|
|
|
#if N_ARC_CORRECTION > 1
|
|
|
|
if (--arc_recalc_count) {
|
|
|
|
// Apply vector rotation matrix to previous r_P / 1
|
|
|
|
const float r_new_Y = r_P * sin_T + r_Q * cos_T;
|
|
|
|
r_P = r_P * cos_T - r_Q * sin_T;
|
|
|
|
r_Q = r_new_Y;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
#if N_ARC_CORRECTION > 1
|
|
|
|
arc_recalc_count = N_ARC_CORRECTION;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
// To reduce stuttering, the sin and cos could be computed at different times.
|
|
|
|
// For now, compute both at the same time.
|
|
|
|
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
|
|
|
|
r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
|
|
|
|
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
|
|
|
|
}
|
|
|
|
|
2017-12-22 04:43:39 +01:00
|
|
|
// Update raw location
|
|
|
|
raw[p_axis] = center_P + r_P;
|
|
|
|
raw[q_axis] = center_Q + r_Q;
|
|
|
|
raw[l_axis] += linear_per_segment;
|
|
|
|
raw[E_AXIS] += extruder_per_segment;
|
|
|
|
|
|
|
|
clamp_to_software_endstops(raw);
|
|
|
|
|
2018-04-05 22:47:56 +02:00
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
|
|
// For SCARA scale the feed rate from mm/s to degrees/s
|
|
|
|
// i.e., Complete the angular vector in the given time.
|
|
|
|
inverse_kinematics(raw);
|
|
|
|
ADJUST_DELTA(raw);
|
2018-05-09 07:17:53 +02:00
|
|
|
if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder))
|
|
|
|
break;
|
2018-04-05 22:47:56 +02:00
|
|
|
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
|
2018-05-08 18:10:45 +02:00
|
|
|
#elif HAS_UBL_AND_CURVES
|
|
|
|
float pos[XYZ] = { raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS] };
|
|
|
|
planner.apply_leveling(pos);
|
2018-05-09 07:17:53 +02:00
|
|
|
if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_AXIS], fr_mm_s, active_extruder))
|
|
|
|
break;
|
2018-04-05 22:47:56 +02:00
|
|
|
#else
|
2018-05-09 07:17:53 +02:00
|
|
|
if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder))
|
|
|
|
break;
|
2018-04-05 22:47:56 +02:00
|
|
|
#endif
|
2017-09-06 13:28:31 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
2018-04-05 22:47:56 +02:00
|
|
|
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
|
|
|
inverse_kinematics(cart);
|
|
|
|
ADJUST_DELTA(cart);
|
|
|
|
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
|
|
|
|
if (diff2)
|
|
|
|
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder);
|
2018-05-08 18:10:45 +02:00
|
|
|
#elif HAS_UBL_AND_CURVES
|
|
|
|
float pos[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
|
|
|
|
planner.apply_leveling(pos);
|
|
|
|
planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], cart[E_AXIS], fr_mm_s, active_extruder);
|
2018-04-05 22:47:56 +02:00
|
|
|
#else
|
|
|
|
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
|
|
|
|
#endif
|
2017-09-06 13:28:31 +02:00
|
|
|
|
2018-05-11 07:30:51 +02:00
|
|
|
COPY(current_position, cart);
|
2017-09-06 13:28:31 +02:00
|
|
|
} // plan_arc
|
|
|
|
|
|
|
|
/**
|
|
|
|
* G2: Clockwise Arc
|
|
|
|
* G3: Counterclockwise Arc
|
|
|
|
*
|
|
|
|
* This command has two forms: IJ-form and R-form.
|
|
|
|
*
|
|
|
|
* - I specifies an X offset. J specifies a Y offset.
|
|
|
|
* At least one of the IJ parameters is required.
|
|
|
|
* X and Y can be omitted to do a complete circle.
|
|
|
|
* The given XY is not error-checked. The arc ends
|
|
|
|
* based on the angle of the destination.
|
|
|
|
* Mixing I or J with R will throw an error.
|
|
|
|
*
|
|
|
|
* - R specifies the radius. X or Y is required.
|
|
|
|
* Omitting both X and Y will throw an error.
|
|
|
|
* X or Y must differ from the current XY.
|
|
|
|
* Mixing R with I or J will throw an error.
|
|
|
|
*
|
|
|
|
* - P specifies the number of full circles to do
|
|
|
|
* before the specified arc move.
|
|
|
|
*
|
|
|
|
* Examples:
|
|
|
|
*
|
|
|
|
* G2 I10 ; CW circle centered at X+10
|
|
|
|
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
|
|
|
|
*/
|
2017-09-16 03:57:52 +02:00
|
|
|
void GcodeSuite::G2_G3(const bool clockwise) {
|
2017-10-02 04:34:58 +02:00
|
|
|
if (MOTION_CONDITIONS) {
|
2017-09-06 13:28:31 +02:00
|
|
|
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
|
|
const bool relative_mode_backup = relative_mode;
|
|
|
|
relative_mode = true;
|
|
|
|
#endif
|
|
|
|
|
2017-09-16 03:57:52 +02:00
|
|
|
get_destination_from_command();
|
2017-09-06 13:28:31 +02:00
|
|
|
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
|
|
relative_mode = relative_mode_backup;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
float arc_offset[2] = { 0.0, 0.0 };
|
|
|
|
if (parser.seenval('R')) {
|
|
|
|
const float r = parser.value_linear_units(),
|
|
|
|
p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
|
|
|
|
p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
|
|
|
|
if (r && (p2 != p1 || q2 != q1)) {
|
|
|
|
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
|
|
|
|
dx = p2 - p1, dy = q2 - q1, // X and Y differences
|
|
|
|
d = HYPOT(dx, dy), // Linear distance between the points
|
|
|
|
h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
|
|
|
|
mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
|
|
|
|
sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
|
|
|
|
cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
|
|
|
|
arc_offset[0] = cx - p1;
|
|
|
|
arc_offset[1] = cy - q1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
|
|
|
|
if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (arc_offset[0] || arc_offset[1]) {
|
|
|
|
|
|
|
|
#if ENABLED(ARC_P_CIRCLES)
|
|
|
|
// P indicates number of circles to do
|
|
|
|
int8_t circles_to_do = parser.byteval('P');
|
|
|
|
if (!WITHIN(circles_to_do, 0, 100)) {
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
|
|
|
|
}
|
|
|
|
while (circles_to_do--)
|
|
|
|
plan_arc(current_position, arc_offset, clockwise);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Send the arc to the planner
|
|
|
|
plan_arc(destination, arc_offset, clockwise);
|
2018-03-22 01:30:06 +01:00
|
|
|
reset_stepper_timeout();
|
2017-09-06 13:28:31 +02:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
// Bad arguments
|
|
|
|
SERIAL_ERROR_START();
|
|
|
|
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2017-09-16 03:57:52 +02:00
|
|
|
|
|
|
|
#endif // ARC_SUPPORT
|