This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/src/lcd/dogm/ultralcd_st7920_u8glib_rrd_AVR.cpp

158 lines
5.1 KiB
C++
Raw Normal View History

/**
2016-03-24 19:01:20 +01:00
* Marlin 3D Printer Firmware
2020-02-03 15:00:57 +01:00
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
2016-03-24 19:01:20 +01:00
*
* Based on Sprinter and grbl.
2019-06-28 06:57:50 +02:00
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
2016-03-24 19:01:20 +01:00
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
// NOTE - the HAL version of the rrd device uses a generic ST7920 device. See the
// file u8g_dev_st7920_128x64_HAL.cpp for the HAL version.
#include "../../inc/MarlinConfigPre.h"
2019-12-22 23:11:17 +01:00
#if !defined(U8G_HAL_LINKS) && ANY(__AVR__, ARDUINO_ARCH_STM32, ARDUINO_ARCH_ESP32)
2019-09-02 12:45:02 +02:00
#include "../../inc/MarlinConfig.h"
2019-09-02 12:45:02 +02:00
#if ENABLED(U8GLIB_ST7920)
#include "ultralcd_st7920_u8glib_rrd_AVR.h"
3 ms speedup for ST7920 and delay for BOARD_3DRAG and saving ~1k memory by limiting the `#pragma GCC optimize (3)` optimisation to `ultralcd_st7920_u8glib_rrd.h`. These optimisation was and is not done for all the other displays, is the reason for the big additionally use of memory, because the complete 'ultralcd.cpp' and 'dogm_lcd_implementation.h' was optimised (sadly i did not observe a change in speed). Unrolling the loop in `ST7920_SWSPI_SND_8BIT()`, what i expected the optimiser to do, by hand, saved some speed by eliminating the loop variable (i) compares and increases. Every CPU cycle in this loop costs at least 0.5ms per display update because it's executed more than 1k times/s. The delays are now pre-filled with the calculated values for 4.5V driven ST7920. A way to simply add __your__ timing into the configuration was made. At 4.5V 1.) The CLK signal needs to be at least 200ns high and 200ns low. 2.) The DAT pin needs to be set at least 40ns before CLK goes high and must stay at this value until 40ns after CLK went high. A nop takes one processor cycle. For 16MHz one nop lasts 62.5ns. For 20MHz one not lasts 50ns. To fulfill condition 1.) we need 200/62.5 = 3.2 => 4 cycles (200/50 = 4 => 4). For the low phase, setting the pin takes much longer. For the high phase we (theoretically) have to throw in 2 nops, because changing the CLK takes only 2 cycles. Condition 2.) is always fulfilled because the processor needs two cycles (100 - 125ns) for switching the CLK pin. Needs tests and feedback. Especially i cant test 20MHz, 3DRAG and displays supplied wit less than 5V. Are the delays right? Please experiment with longer or shorter delays. And give feedback. Already tested are 5 displays with 4.9V - 5.1V at 16MHz where no delays are needed.
2016-06-04 14:54:20 +02:00
2016-06-26 03:32:13 +02:00
#ifndef ST7920_DELAY_1
#define ST7920_DELAY_1 CPU_ST7920_DELAY_1
#endif
#ifndef ST7920_DELAY_2
#define ST7920_DELAY_2 CPU_ST7920_DELAY_2
#endif
#ifndef ST7920_DELAY_3
#define ST7920_DELAY_3 CPU_ST7920_DELAY_3
#endif
// Optimize this code with -O3
#pragma GCC optimize (3)
#ifdef ARDUINO_ARCH_STM32F1
#define ST7920_DAT(V) !!((V) & 0x80)
#else
#define ST7920_DAT(V) ((V) & 0x80)
#endif
#define ST7920_SND_BIT do{ \
WRITE(ST7920_CLK_PIN, LOW); ST7920_DELAY_1; \
WRITE(ST7920_DAT_PIN, ST7920_DAT(val)); ST7920_DELAY_2; \
WRITE(ST7920_CLK_PIN, HIGH); ST7920_DELAY_3; \
val <<= 1; }while(0)
2018-02-14 04:59:18 +01:00
// Optimize this code with -O3
#pragma GCC optimize (3)
void ST7920_SWSPI_SND_8BIT(uint8_t val) {
2018-02-14 04:59:18 +01:00
ST7920_SND_BIT; // 1
ST7920_SND_BIT; // 2
ST7920_SND_BIT; // 3
ST7920_SND_BIT; // 4
ST7920_SND_BIT; // 5
ST7920_SND_BIT; // 6
ST7920_SND_BIT; // 7
ST7920_SND_BIT; // 8
}
uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
uint8_t i, y;
switch (msg) {
case U8G_DEV_MSG_INIT: {
OUT_WRITE(ST7920_CS_PIN, LOW);
OUT_WRITE(ST7920_DAT_PIN, LOW);
2018-02-14 04:59:18 +01:00
OUT_WRITE(ST7920_CLK_PIN, HIGH);
ST7920_CS();
2019-02-20 11:01:07 +01:00
u8g_Delay(120); // Initial delay for boot up
ST7920_SET_CMD();
2019-02-20 11:01:07 +01:00
ST7920_WRITE_BYTE(0x20); // Non-extended mode
ST7920_WRITE_BYTE(0x08); // Display off, cursor+blink off
ST7920_WRITE_BYTE(0x01); // Clear DDRAM ram
u8g_Delay(15); // Delay for DDRAM clear
ST7920_WRITE_BYTE(0x24); // Extended mode
ST7920_WRITE_BYTE(0x26); // Extended mode + GDRAM active
for (y = 0; y < (LCD_PIXEL_HEIGHT) / 2; y++) { // Clear GDRAM
ST7920_WRITE_BYTE(0x80 | y); // Set y
ST7920_WRITE_BYTE(0x80); // Set x = 0
ST7920_SET_DAT();
2019-02-20 11:01:07 +01:00
for (i = 0; i < 2 * (LCD_PIXEL_WIDTH) / 8; i++) // 2x width clears both segments
2018-02-14 04:59:18 +01:00
ST7920_WRITE_BYTE(0);
ST7920_SET_CMD();
}
2019-02-20 11:01:07 +01:00
ST7920_WRITE_BYTE(0x0C); // Display on, cursor+blink off
ST7920_NCS();
}
break;
case U8G_DEV_MSG_STOP: break;
case U8G_DEV_MSG_PAGE_NEXT: {
uint8_t* ptr;
u8g_pb_t* pb = (u8g_pb_t*)(dev->dev_mem);
y = pb->p.page_y0;
ptr = (uint8_t*)pb->buf;
ST7920_CS();
for (i = 0; i < PAGE_HEIGHT; i ++) {
ST7920_SET_CMD();
if (y < 32) {
2019-02-20 11:01:07 +01:00
ST7920_WRITE_BYTE(0x80 | y); // y
ST7920_WRITE_BYTE(0x80); // x = 0
}
else {
2019-02-20 11:01:07 +01:00
ST7920_WRITE_BYTE(0x80 | (y - 32)); // y
ST7920_WRITE_BYTE(0x80 | 8); // x = 64
}
ST7920_SET_DAT();
2019-02-20 11:01:07 +01:00
ST7920_WRITE_BYTES(ptr, (LCD_PIXEL_WIDTH) / 8); // ptr incremented inside of macro!
y++;
}
ST7920_NCS();
}
break;
}
2016-11-25 04:49:55 +01:00
#if PAGE_HEIGHT == 8
return u8g_dev_pb8h1_base_fn(u8g, dev, msg, arg);
#elif PAGE_HEIGHT == 16
return u8g_dev_pb16h1_base_fn(u8g, dev, msg, arg);
#else
return u8g_dev_pb32h1_base_fn(u8g, dev, msg, arg);
#endif
}
2016-03-15 09:10:57 +01:00
uint8_t u8g_dev_st7920_128x64_rrd_buf[(LCD_PIXEL_WIDTH) * (PAGE_HEIGHT) / 8] U8G_NOCOMMON;
2019-09-02 12:45:02 +02:00
u8g_pb_t u8g_dev_st7920_128x64_rrd_pb = { { PAGE_HEIGHT, LCD_PIXEL_HEIGHT, 0, 0, 0 }, LCD_PIXEL_WIDTH, u8g_dev_st7920_128x64_rrd_buf };
u8g_dev_t u8g_dev_st7920_128x64_rrd_sw_spi = { u8g_dev_rrd_st7920_128x64_fn, &u8g_dev_st7920_128x64_rrd_pb, &u8g_com_null_fn };
#pragma GCC reset_options
#if ENABLED(LIGHTWEIGHT_UI)
#include "../../HAL/shared/HAL_ST7920.h"
void ST7920_cs() { ST7920_CS(); }
void ST7920_ncs() { ST7920_NCS(); }
void ST7920_set_cmd() { ST7920_SET_CMD(); }
void ST7920_set_dat() { ST7920_SET_DAT(); }
void ST7920_write_byte(const uint8_t val) { ST7920_WRITE_BYTE(val); }
#endif
2019-09-02 12:45:02 +02:00
#endif // U8GLIB_ST7920
2020-02-23 04:36:12 +01:00
#endif // !U8G_HAL_LINKS && (__AVR__ || ARDUINO_ARCH_STM32 || ARDUINO_ARCH_ESP32)