Merged Marlin, Marlin non gen6 and Ultimaker changes
This commit is contained in:
parent
0b1423c303
commit
094afe7c10
22 changed files with 4803 additions and 2044 deletions
|
@ -1,38 +1,70 @@
|
|||
#ifndef CONFIGURATION_H
|
||||
#define CONFIGURATION_H
|
||||
|
||||
//#define DEBUG_STEPS
|
||||
|
||||
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
|
||||
|
||||
//// The following define selects which electronics board you have. Please choose the one that matches your setup
|
||||
// Gen6 = 5,
|
||||
#define MOTHERBOARD 5
|
||||
// MEGA/RAMPS up to 1.2 = 3,
|
||||
// RAMPS 1.3 = 33
|
||||
// Gen6 = 5,
|
||||
// Sanguinololu 1.2 and above = 62
|
||||
// Ultimaker = 7,
|
||||
#define MOTHERBOARD 7
|
||||
//#define MOTHERBOARD 5
|
||||
|
||||
//// Thermistor settings:
|
||||
// 1 is 100k thermistor
|
||||
// 2 is 200k thermistor
|
||||
// 3 is mendel-parts thermistor
|
||||
#define THERMISTORHEATER 3
|
||||
// Select one of these only to define how the nozzle temp is read.
|
||||
//#define HEATER_USES_THERMISTOR
|
||||
#define HEATER_USES_AD595
|
||||
|
||||
// Select one of these only to define how the bed temp is read.
|
||||
//#define BED_USES_THERMISTOR
|
||||
//#define BED_USES_AD595
|
||||
|
||||
#define HEATER_CHECK_INTERVAL 50
|
||||
#define BED_CHECK_INTERVAL 5000
|
||||
#define BNUMTEMPS NUMTEMPS
|
||||
#define bedtemptable temptable
|
||||
|
||||
//// Calibration variables
|
||||
// X, Y, Z, E steps per unit - Metric Mendel / Orca with V9 extruder:
|
||||
float axis_steps_per_unit[] = {40, 40, 3333.92, 67};
|
||||
// For E steps per unit = 67 for v9 with direct drive (needs finetuning) for other extruders this needs to be changed
|
||||
// Metric Prusa Mendel with Makergear geared stepper extruder:
|
||||
//float axis_steps_per_unit[] = {80,80,3200/1.25,1380};
|
||||
|
||||
//// Endstop Settings
|
||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
|
||||
const bool ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
|
||||
const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
||||
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
|
||||
|
||||
// This determines the communication speed of the printer
|
||||
#define BAUDRATE 250000
|
||||
//#define BAUDRATE 250000
|
||||
#define BAUDRATE 115200
|
||||
//#define BAUDRATE 230400
|
||||
|
||||
// Comment out (using // at the start of the line) to disable SD support:
|
||||
//#define SDSUPPORT
|
||||
|
||||
// #define ULTRA_LCD //any lcd
|
||||
#define LCD_WIDTH 16
|
||||
#define LCD_HEIGHT 2
|
||||
|
||||
#define ULTIPANEL
|
||||
#ifdef ULTIPANEL
|
||||
//#define NEWPANEL //enable this if you have a click-encoder panel
|
||||
#define SDSUPPORT
|
||||
#define ULTRA_LCD
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_HEIGHT 4
|
||||
#endif
|
||||
|
||||
|
||||
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
|
||||
|
||||
|
||||
|
||||
const int dropsegments=5; //everything with this number of steps will be ignored as move
|
||||
|
||||
//// ADVANCED SETTINGS - to tweak parameters
|
||||
|
||||
|
@ -47,14 +79,14 @@ const bool ENDSTOPS_INVERTING = false; // set to true to invert the logic of the
|
|||
// Disables axis when it's not being used.
|
||||
#define DISABLE_X false
|
||||
#define DISABLE_Y false
|
||||
#define DISABLE_Z true
|
||||
#define DISABLE_Z false
|
||||
#define DISABLE_E false
|
||||
|
||||
// Inverting axis direction
|
||||
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
|
||||
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
|
||||
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
|
||||
#define INVERT_E_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
|
||||
#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
|
||||
|
||||
//// ENDSTOP SETTINGS:
|
||||
// Sets direction of endstops when homing; 1=MAX, -1=MIN
|
||||
|
@ -63,51 +95,81 @@ const bool ENDSTOPS_INVERTING = false; // set to true to invert the logic of the
|
|||
#define Z_HOME_DIR -1
|
||||
|
||||
#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
|
||||
#define max_software_endstops true //If true, axis won't move to coordinates greater than the defined lengths below.
|
||||
#define X_MAX_LENGTH 200
|
||||
#define Y_MAX_LENGTH 200
|
||||
#define Z_MAX_LENGTH 100
|
||||
#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
|
||||
#define X_MAX_LENGTH 210
|
||||
#define Y_MAX_LENGTH 210
|
||||
#define Z_MAX_LENGTH 210
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
float max_feedrate[] = {60000, 60000, 100, 500000}; // set the max speeds
|
||||
float homing_feedrate[] = {2400, 2400, 80, 0}; // set the homing speeds
|
||||
bool axis_relative_modes[] = {false, false, false, false};
|
||||
//note: on bernhards ultimaker 200 200 12 are working well.
|
||||
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
|
||||
//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
|
||||
//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
|
||||
// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
|
||||
#define TRAVELING_AT_MAXSPEED
|
||||
#define AXIS_RELATIVE_MODES {false, false, false, false}
|
||||
|
||||
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
|
||||
|
||||
// default settings
|
||||
|
||||
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
|
||||
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
|
||||
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
|
||||
|
||||
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
|
||||
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
|
||||
|
||||
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
|
||||
#define DEFAULT_MINTRAVELFEEDRATE 10
|
||||
|
||||
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
|
||||
#define DEFAULT_MINSEGMENTTIME 20000
|
||||
#define DEFAULT_XYJERK 30.0*60
|
||||
#define DEFAULT_ZJERK 10.0*60
|
||||
|
||||
//// Acceleration settings
|
||||
// X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
|
||||
float acceleration = 2000; // Normal acceleration mm/s^2
|
||||
float retract_acceleration = 7000; // Normal acceleration mm/s^2
|
||||
float max_xy_jerk = 20.0*60;
|
||||
float max_z_jerk = 0.4*60;
|
||||
long max_acceleration_units_per_sq_second[] = {7000,7000,100,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
|
||||
|
||||
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
||||
//this enables the watchdog interrupt.
|
||||
#define USE_WATCHDOG
|
||||
//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
|
||||
#define RESET_MANUAL
|
||||
|
||||
#define WATCHDOG_TIMEOUT 4
|
||||
|
||||
|
||||
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
|
||||
//#define WATCHPERIOD 5000 //5 seconds
|
||||
|
||||
//// The minimal temperature defines the temperature below which the heater will not be enabled
|
||||
#define MINTEMP 5
|
||||
#define BED_MINTEMP 5
|
||||
|
||||
|
||||
// When temperature exceeds max temp, your heater will be switched off.
|
||||
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
|
||||
// You should use MINTEMP for thermistor short/failure protection.
|
||||
#define MAXTEMP 275
|
||||
|
||||
#define BED_MAXTEMP 150
|
||||
|
||||
/// PID settings:
|
||||
// Uncomment the following line to enable PID support.
|
||||
//#define PIDTEMP
|
||||
//#define SMOOTHING
|
||||
//#define SMOOTHFACTOR 5.0
|
||||
//float current_raw_average=0;
|
||||
|
||||
#define PIDTEMP
|
||||
#ifdef PIDTEMP
|
||||
//#define PID_DEBUG 1 // Sends debug data to the serial port.
|
||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
|
||||
#define PID_MAX 156 // limits current to nozzle
|
||||
#define PID_INTEGRAL_DRIVE_MAX 156.0
|
||||
#define PID_dT 0.16
|
||||
double Kp = 20.0;
|
||||
double Ki = 1.5*PID_dT;
|
||||
double Kd = 80/PID_dT;
|
||||
#define PID_MAX 255 // limits current to nozzle
|
||||
#define PID_INTEGRAL_DRIVE_MAX 255
|
||||
#define PID_dT 0.10 // 100ms sample time
|
||||
#define DEFAULT_Kp 20.0
|
||||
#define DEFAULT_Ki 1.5*PID_dT
|
||||
#define DEFAULT_Kd 80/PID_dT
|
||||
#define DEFAULT_Kc 0
|
||||
#endif // PIDTEMP
|
||||
|
||||
|
||||
|
@ -121,7 +183,7 @@ double Kd = 80/PID_dT;
|
|||
//#define ADVANCE
|
||||
|
||||
#ifdef ADVANCE
|
||||
#define EXTRUDER_ADVANCE_K 0.02
|
||||
#define EXTRUDER_ADVANCE_K .3
|
||||
|
||||
#define D_FILAMENT 1.7
|
||||
#define STEPS_MM_E 65
|
||||
|
@ -130,4 +192,15 @@ double Kd = 80/PID_dT;
|
|||
|
||||
#endif // ADVANCE
|
||||
|
||||
#if defined SDSUPPORT
|
||||
// The number of linear motions that can be in the plan at any give time.
|
||||
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
||||
#else
|
||||
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
|
||||
#endif
|
||||
|
||||
#ifdef SIMPLE_LCD
|
||||
#define BLOCK_BUFFER_SIZE 16 // A little less buffer for just a simple LCD
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
123
Marlin/EEPROM.h
Normal file
123
Marlin/EEPROM.h
Normal file
|
@ -0,0 +1,123 @@
|
|||
|
||||
#include "planner.h"
|
||||
#include "temperature.h"
|
||||
|
||||
//======================================================================================
|
||||
template <class T> int EEPROM_writeAnything(int &ee, const T& value)
|
||||
{
|
||||
const byte* p = (const byte*)(const void*)&value;
|
||||
int i;
|
||||
for (i = 0; i < sizeof(value); i++)
|
||||
EEPROM.write(ee++, *p++);
|
||||
return i;
|
||||
}
|
||||
//======================================================================================
|
||||
template <class T> int EEPROM_readAnything(int &ee, T& value)
|
||||
{
|
||||
byte* p = (byte*)(void*)&value;
|
||||
int i;
|
||||
for (i = 0; i < sizeof(value); i++)
|
||||
*p++ = EEPROM.read(ee++);
|
||||
return i;
|
||||
}
|
||||
//======================================================================================
|
||||
|
||||
#define EEPROM_OFFSET 100
|
||||
|
||||
#define EEPROM_VERSION "V04" // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
|
||||
// in the functions below, also increment the version number. This makes sure that
|
||||
// the default values are used whenever there is a change to the data, to prevent
|
||||
// wrong data being written to the variables.
|
||||
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
|
||||
void StoreSettings() {
|
||||
char ver[4]= "000";
|
||||
int i=EEPROM_OFFSET;
|
||||
EEPROM_writeAnything(i,ver); // invalidate data first
|
||||
EEPROM_writeAnything(i,axis_steps_per_unit);
|
||||
EEPROM_writeAnything(i,max_feedrate);
|
||||
EEPROM_writeAnything(i,max_acceleration_units_per_sq_second);
|
||||
EEPROM_writeAnything(i,acceleration);
|
||||
EEPROM_writeAnything(i,retract_acceleration);
|
||||
EEPROM_writeAnything(i,minimumfeedrate);
|
||||
EEPROM_writeAnything(i,mintravelfeedrate);
|
||||
EEPROM_writeAnything(i,minsegmenttime);
|
||||
EEPROM_writeAnything(i,max_xy_jerk);
|
||||
EEPROM_writeAnything(i,max_z_jerk);
|
||||
#ifdef PIDTEMP
|
||||
EEPROM_writeAnything(i,Kp);
|
||||
EEPROM_writeAnything(i,Ki);
|
||||
EEPROM_writeAnything(i,Kd);
|
||||
#else
|
||||
EEPROM_writeAnything(i,3000);
|
||||
EEPROM_writeAnything(i,0);
|
||||
EEPROM_writeAnything(i,0);
|
||||
#endif
|
||||
char ver2[4]=EEPROM_VERSION;
|
||||
i=EEPROM_OFFSET;
|
||||
EEPROM_writeAnything(i,ver2); // validate data
|
||||
ECHOLN("Settings Stored");
|
||||
|
||||
}
|
||||
|
||||
void RetrieveSettings(bool def=false){ // if def=true, the default values will be used
|
||||
int i=EEPROM_OFFSET;
|
||||
char stored_ver[4];
|
||||
char ver[4]=EEPROM_VERSION;
|
||||
EEPROM_readAnything(i,stored_ver); //read stored version
|
||||
// ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
|
||||
if ((!def)&&(strncmp(ver,stored_ver,3)==0)) { // version number match
|
||||
EEPROM_readAnything(i,axis_steps_per_unit);
|
||||
EEPROM_readAnything(i,max_feedrate);
|
||||
EEPROM_readAnything(i,max_acceleration_units_per_sq_second);
|
||||
EEPROM_readAnything(i,acceleration);
|
||||
EEPROM_readAnything(i,retract_acceleration);
|
||||
EEPROM_readAnything(i,minimumfeedrate);
|
||||
EEPROM_readAnything(i,mintravelfeedrate);
|
||||
EEPROM_readAnything(i,minsegmenttime);
|
||||
EEPROM_readAnything(i,max_xy_jerk);
|
||||
EEPROM_readAnything(i,max_z_jerk);
|
||||
#ifndef PIDTEMP
|
||||
float Kp,Ki,Kd;
|
||||
#endif
|
||||
EEPROM_readAnything(i,Kp);
|
||||
EEPROM_readAnything(i,Ki);
|
||||
EEPROM_readAnything(i,Kd);
|
||||
|
||||
ECHOLN("Stored settings retreived:");
|
||||
}
|
||||
else {
|
||||
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
|
||||
float tmp2[]=DEFAULT_MAX_FEEDRATE;
|
||||
long tmp3[]=DEFAULT_MAX_ACCELERATION;
|
||||
for (int i=0;i<4;i++) {
|
||||
axis_steps_per_unit[i]=tmp1[i];
|
||||
max_feedrate[i]=tmp2[i];
|
||||
max_acceleration_units_per_sq_second[i]=tmp3[i];
|
||||
}
|
||||
acceleration=DEFAULT_ACCELERATION;
|
||||
retract_acceleration=DEFAULT_RETRACT_ACCELERATION;
|
||||
minimumfeedrate=DEFAULT_MINIMUMFEEDRATE;
|
||||
minsegmenttime=DEFAULT_MINSEGMENTTIME;
|
||||
mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE;
|
||||
max_xy_jerk=DEFAULT_XYJERK;
|
||||
max_z_jerk=DEFAULT_ZJERK;
|
||||
ECHOLN("Using Default settings:");
|
||||
}
|
||||
ECHOLN("Steps per unit:");
|
||||
ECHOLN(" M92 X" <<_FLOAT(axis_steps_per_unit[0],3) << " Y" << _FLOAT(axis_steps_per_unit[1],3) << " Z" << _FLOAT(axis_steps_per_unit[2],3) << " E" << _FLOAT(axis_steps_per_unit[3],3));
|
||||
ECHOLN("Maximum feedrates (mm/s):");
|
||||
ECHOLN(" M203 X" <<_FLOAT(max_feedrate[0]/60,2)<<" Y" << _FLOAT(max_feedrate[1]/60,2) << " Z" << _FLOAT(max_feedrate[2]/60,2) << " E" << _FLOAT(max_feedrate[3]/60,2));
|
||||
ECHOLN("Maximum Acceleration (mm/s2):");
|
||||
ECHOLN(" M201 X" <<_FLOAT(max_acceleration_units_per_sq_second[0],0) << " Y" << _FLOAT(max_acceleration_units_per_sq_second[1],0) << " Z" << _FLOAT(max_acceleration_units_per_sq_second[2],0) << " E" << _FLOAT(max_acceleration_units_per_sq_second[3],0));
|
||||
ECHOLN("Acceleration: S=acceleration, T=retract acceleration");
|
||||
ECHOLN(" M204 S" <<_FLOAT(acceleration,2) << " T" << _FLOAT(retract_acceleration,2));
|
||||
ECHOLN("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum xY jerk (mm/s), Z=maximum Z jerk (mm/s)");
|
||||
ECHOLN(" M205 S" <<_FLOAT(minimumfeedrate/60,2) << " T" << _FLOAT(mintravelfeedrate/60,2) << " B" << _FLOAT(minsegmenttime,2) << " X" << _FLOAT(max_xy_jerk/60,2) << " Z" << _FLOAT(max_z_jerk/60,2));
|
||||
#ifdef PIDTEMP
|
||||
ECHOLN("PID settings:");
|
||||
ECHOLN(" M301 P" << _FLOAT(Kp,3) << " I" << _FLOAT(Ki,3) << " D" << _FLOAT(Kd,3));
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
451
Marlin/Makefile
451
Marlin/Makefile
|
@ -1,247 +1,274 @@
|
|||
# Marlin Arduino Project Makefile
|
||||
#
|
||||
# Makefile Based on:
|
||||
# Arduino 0011 Makefile
|
||||
# Arduino adaptation by mellis, eighthave, oli.keller
|
||||
#
|
||||
# This has been tested with Arduino 0022.
|
||||
#
|
||||
# This makefile allows you to build sketches from the command line
|
||||
# without the Arduino environment (or Java).
|
||||
# Arduino 0022 Makefile
|
||||
# Uno with DOGS102 Shield
|
||||
#
|
||||
# Detailed instructions for using the makefile:
|
||||
# written by olikraus@gmail.com
|
||||
#
|
||||
# 1. Modify the line containg "INSTALL_DIR" to point to the directory that
|
||||
# contains the Arduino installation (for example, under Mac OS X, this
|
||||
# might be /Applications/arduino-0012).
|
||||
# Features:
|
||||
# - boards.txt is used to derive parameters
|
||||
# - All intermediate files are put into a separate directory (TMPDIRNAME)
|
||||
# - Simple use: Copy Makefile into the same directory of the .pde file
|
||||
#
|
||||
# 2. Modify the line containing "PORT" to refer to the filename
|
||||
# representing the USB or serial connection to your Arduino board
|
||||
# (e.g. PORT = /dev/tty.USB0). If the exact name of this file
|
||||
# changes, you can use * as a wildcard (e.g. PORT = /dev/tty.usb*).
|
||||
# Limitations:
|
||||
# - requires UNIX environment
|
||||
# - TMPDIRNAME must be subdirectory of the current directory.
|
||||
#
|
||||
# 3. Set the line containing "MCU" to match your board's processor.
|
||||
# Older one's are atmega8 based, newer ones like Arduino Mini, Bluetooth
|
||||
# or Diecimila have the atmega168. If you're using a LilyPad Arduino,
|
||||
# change F_CPU to 8000000.
|
||||
# Targets
|
||||
# all build everything
|
||||
# upload build and upload to arduino
|
||||
# clean remove all temporary files (includes final hex file)
|
||||
#
|
||||
# 4. Type "make" and press enter to compile/verify your program.
|
||||
# History
|
||||
# 001 28 Apr 2010 first release
|
||||
# 002 05 Oct 2010 added 'uno'
|
||||
#
|
||||
# 5. Type "make upload", reset your Arduino board, and press enter to
|
||||
# upload your program to the Arduino board.
|
||||
#
|
||||
# $Id$
|
||||
|
||||
TARGET = Marlin
|
||||
INSTALL_DIR = ../../Desktop/arduino-0018/
|
||||
UPLOAD_RATE = 38400
|
||||
AVRDUDE_PROGRAMMER = stk500v1
|
||||
PORT = /dev/ttyUSB0
|
||||
#MCU = atmega2560
|
||||
#For "old" Arduino Mega
|
||||
#MCU = atmega1280
|
||||
#For Sanguinololu
|
||||
MCU = atmega644p
|
||||
F_CPU = 16000000
|
||||
#=== user configuration ===
|
||||
# All ...PATH variables must have a '/' at the end
|
||||
|
||||
# Board (and prozessor) information: see $(ARDUINO_PATH)hardware/arduino/boards.txt
|
||||
# Some examples:
|
||||
# BOARD DESCRIPTION
|
||||
# uno Arduino Uno
|
||||
# atmega328 Arduino Duemilanove or Nano w/ ATmega328
|
||||
# diecimila Arduino Diecimila, Duemilanove, or Nano w/ ATmega168
|
||||
# mega Arduino Mega
|
||||
# mini Arduino Mini
|
||||
# lilypad328 LilyPad Arduino w/ ATmega328
|
||||
BOARD:=mega
|
||||
|
||||
# additional (comma separated) defines
|
||||
# -DDOGM128_HW board is connected to DOGM128 display
|
||||
# -DDOGM132_HW board is connected to DOGM132 display
|
||||
# -DDOGS102_HW board is connected to DOGS102 display
|
||||
# -DDOG_REVERSE 180 degree rotation
|
||||
# -DDOG_SPI_SW_ARDUINO force SW shiftOut
|
||||
DEFS=-DDOGS102_HW -DDOG_DOUBLE_MEMORY -DDOG_SPI_SW_ARDUINO
|
||||
|
||||
# The location where the avr tools (e.g. avr-gcc) are located. Requires a '/' at the end.
|
||||
# Can be empty if all tools are accessable through the search path
|
||||
AVR_TOOLS_PATH:=/usr/bin/
|
||||
|
||||
# Install path of the arduino software. Requires a '/' at the end.
|
||||
ARDUINO_PATH:=/home/bkubicek/software/arduino-0022/
|
||||
|
||||
# Install path for avrdude. Requires a '/' at the end. Can be empty if avrdude is in the search path.
|
||||
AVRDUDE_PATH:=
|
||||
|
||||
# The unix device where we can reach the arduino board
|
||||
# Uno: /dev/ttyACM0
|
||||
# Duemilanove: /dev/ttyUSB0
|
||||
AVRDUDE_PORT:=/dev/ttyACM0
|
||||
|
||||
# List of all libaries which should be included.
|
||||
#EXTRA_DIRS=$(ARDUINO_PATH)libraries/LiquidCrystal/
|
||||
#EXTRA_DIRS+=$(ARDUINO_PATH)libraries/Dogm/
|
||||
#EXTRA_DIRS+=/home/kraus/src/arduino/dogm128/hg/libraries/Dogm/
|
||||
|
||||
#=== fetch parameter from boards.txt processor parameter ===
|
||||
# the basic idea is to get most of the information from boards.txt
|
||||
|
||||
BOARDS_TXT:=$(ARDUINO_PATH)hardware/arduino/boards.txt
|
||||
|
||||
# get the MCU value from the $(BOARD).build.mcu variable. For the atmega328 board this is atmega328p
|
||||
MCU:=$(shell sed -n -e "s/$(BOARD).build.mcu=\(.*\)/\1/p" $(BOARDS_TXT))
|
||||
# get the F_CPU value from the $(BOARD).build.f_cpu variable. For the atmega328 board this is 16000000
|
||||
F_CPU:=$(shell sed -n -e "s/$(BOARD).build.f_cpu=\(.*\)/\1/p" $(BOARDS_TXT))
|
||||
|
||||
# avrdude
|
||||
# get the AVRDUDE_UPLOAD_RATE value from the $(BOARD).upload.speed variable. For the atmega328 board this is 57600
|
||||
AVRDUDE_UPLOAD_RATE:=$(shell sed -n -e "s/$(BOARD).upload.speed=\(.*\)/\1/p" $(BOARDS_TXT))
|
||||
# get the AVRDUDE_PROGRAMMER value from the $(BOARD).upload.protocol variable. For the atmega328 board this is stk500
|
||||
# AVRDUDE_PROGRAMMER:=$(shell sed -n -e "s/$(BOARD).upload.protocol=\(.*\)/\1/p" $(BOARDS_TXT))
|
||||
# use stk500v1, because stk500 will default to stk500v2
|
||||
AVRDUDE_PROGRAMMER:=stk500v1
|
||||
|
||||
#=== identify user files ===
|
||||
PDESRC:=$(shell ls *.pde)
|
||||
TARGETNAME=$(basename $(PDESRC))
|
||||
|
||||
CDIRS:=$(EXTRA_DIRS) $(addsuffix utility/,$(EXTRA_DIRS))
|
||||
CDIRS:=*.c utility/*.c $(addsuffix *.c,$(CDIRS)) $(ARDUINO_PATH)hardware/arduino/cores/arduino/*.c
|
||||
CSRC:=$(shell ls $(CDIRS) 2>/dev/null)
|
||||
|
||||
CCSRC:=$(shell ls *.cc 2>/dev/null)
|
||||
|
||||
CPPDIRS:=$(EXTRA_DIRS) $(addsuffix utility/,$(EXTRA_DIRS))
|
||||
CPPDIRS:=*.cpp utility/*.cpp $(addsuffix *.cpp,$(CPPDIRS)) $(ARDUINO_PATH)hardware/arduino/cores/arduino/*.cpp
|
||||
CPPSRC:=$(shell ls $(CPPDIRS) 2>/dev/null)
|
||||
|
||||
#=== build internal variables ===
|
||||
|
||||
# the name of the subdirectory where everything is stored
|
||||
TMPDIRNAME:=tmp
|
||||
TMPDIRPATH:=$(TMPDIRNAME)/
|
||||
|
||||
AVRTOOLSPATH:=$(AVR_TOOLS_PATH)
|
||||
|
||||
OBJCOPY:=$(AVRTOOLSPATH)avr-objcopy
|
||||
OBJDUMP:=$(AVRTOOLSPATH)avr-objdump
|
||||
SIZE:=$(AVRTOOLSPATH)avr-size
|
||||
|
||||
CPPSRC:=$(addprefix $(TMPDIRPATH),$(PDESRC:.pde=.cpp)) $(CPPSRC)
|
||||
|
||||
COBJ:=$(CSRC:.c=.o)
|
||||
CCOBJ:=$(CCSRC:.cc=.o)
|
||||
CPPOBJ:=$(CPPSRC:.cpp=.o)
|
||||
|
||||
OBJFILES:=$(COBJ) $(CCOBJ) $(CPPOBJ)
|
||||
DIRS:= $(dir $(OBJFILES))
|
||||
|
||||
DEPFILES:=$(OBJFILES:.o=.d)
|
||||
# assembler files from avr-gcc -S
|
||||
ASSFILES:=$(OBJFILES:.o=.s)
|
||||
# disassembled object files with avr-objdump -S
|
||||
DISFILES:=$(OBJFILES:.o=.dis)
|
||||
|
||||
|
||||
############################################################################
|
||||
# Below here nothing should be changed...
|
||||
LIBNAME:=$(TMPDIRPATH)$(TARGETNAME).a
|
||||
ELFNAME:=$(TMPDIRPATH)$(TARGETNAME).elf
|
||||
HEXNAME:=$(TMPDIRPATH)$(TARGETNAME).hex
|
||||
|
||||
ARDUINO = $(INSTALL_DIR)/hardware/Sanguino/cores/arduino
|
||||
AVR_TOOLS_PATH = $(INSTALL_DIR)/hardware/tools/avr/bin
|
||||
SRC = $(ARDUINO)/pins_arduino.c wiring.c wiring_serial.c \
|
||||
$(ARDUINO)/wiring_analog.c $(ARDUINO)/wiring_digital.c \
|
||||
$(ARDUINO)/wiring_pulse.c \
|
||||
$(ARDUINO)/wiring_shift.c $(ARDUINO)/WInterrupts.c
|
||||
CXXSRC = $(ARDUINO)/HardwareSerial.cpp $(ARDUINO)/WMath.cpp \
|
||||
$(ARDUINO)/Print.cpp ./SdFile.cpp ./SdVolume.cpp ./Sd2Card.cpp
|
||||
FORMAT = ihex
|
||||
AVRDUDE_FLAGS = -V -F
|
||||
AVRDUDE_FLAGS += -C $(ARDUINO_PATH)/hardware/tools/avrdude.conf
|
||||
AVRDUDE_FLAGS += -p $(MCU)
|
||||
AVRDUDE_FLAGS += -P $(AVRDUDE_PORT)
|
||||
AVRDUDE_FLAGS += -c $(AVRDUDE_PROGRAMMER)
|
||||
AVRDUDE_FLAGS += -b $(AVRDUDE_UPLOAD_RATE)
|
||||
AVRDUDE_FLAGS += -U flash:w:$(HEXNAME)
|
||||
|
||||
AVRDUDE = avrdude
|
||||
|
||||
#=== predefined variable override ===
|
||||
# use "make -p -f/dev/null" to see the default rules and definitions
|
||||
|
||||
# Build C and C++ flags. Include path information must be placed here
|
||||
COMMON_FLAGS = -DF_CPU=$(F_CPU) -mmcu=$(MCU) $(DEFS)
|
||||
# COMMON_FLAGS += -gdwarf-2
|
||||
COMMON_FLAGS += -Os
|
||||
COMMON_FLAGS += -Wall -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
|
||||
COMMON_FLAGS += -I.
|
||||
COMMON_FLAGS += -I$(ARDUINO_PATH)hardware/arduino/cores/arduino
|
||||
COMMON_FLAGS += $(addprefix -I,$(EXTRA_DIRS))
|
||||
COMMON_FLAGS += -ffunction-sections -fdata-sections -Wl,--gc-sections
|
||||
COMMON_FLAGS += -Wl,--relax
|
||||
COMMON_FLAGS += -mcall-prologues
|
||||
|
||||
CFLAGS = $(COMMON_FLAGS) -std=gnu99 -Wstrict-prototypes
|
||||
CXXFLAGS = $(COMMON_FLAGS)
|
||||
|
||||
# Replace standard build tools by avr tools
|
||||
CC = $(AVRTOOLSPATH)avr-gcc
|
||||
CXX = $(AVRTOOLSPATH)avr-g++
|
||||
AR = @$(AVRTOOLSPATH)avr-ar
|
||||
|
||||
|
||||
# Name of this Makefile (used for "make depend").
|
||||
MAKEFILE = Makefile
|
||||
# "rm" must be able to delete a directory tree
|
||||
RM = rm -rf
|
||||
|
||||
# Debugging format.
|
||||
# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
|
||||
# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
|
||||
DEBUG = stabs
|
||||
#=== rules ===
|
||||
|
||||
OPT = s
|
||||
# add rules for the C/C++ files where the .o file is placed in the TMPDIRPATH
|
||||
# reuse existing variables as far as possible
|
||||
|
||||
# Place -D or -U options here
|
||||
CDEFS = -DF_CPU=$(F_CPU)
|
||||
CXXDEFS = -DF_CPU=$(F_CPU)
|
||||
$(TMPDIRPATH)%.o: %.c
|
||||
@echo compile $<
|
||||
@$(COMPILE.c) $(OUTPUT_OPTION) $<
|
||||
|
||||
# Place -I options here
|
||||
CINCS = -I$(ARDUINO)
|
||||
CXXINCS = -I$(ARDUINO)
|
||||
$(TMPDIRPATH)%.o: %.cc
|
||||
@echo compile $<
|
||||
@$(COMPILE.cc) $(OUTPUT_OPTION) $<
|
||||
|
||||
# Compiler flag to set the C Standard level.
|
||||
# c89 - "ANSI" C
|
||||
# gnu89 - c89 plus GCC extensions
|
||||
# c99 - ISO C99 standard (not yet fully implemented)
|
||||
# gnu99 - c99 plus GCC extensions
|
||||
#CSTANDARD = -std=gnu99
|
||||
CDEBUG = -g$(DEBUG)
|
||||
CWARN = -Wall -Wunused-variable
|
||||
CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -w -ffunction-sections -fdata-sections -DARDUINO=22
|
||||
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
|
||||
$(TMPDIRPATH)%.o: %.cpp
|
||||
@echo compile $<
|
||||
@$(COMPILE.cpp) $(OUTPUT_OPTION) $<
|
||||
|
||||
CFLAGS = $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CEXTRA) $(CTUNING)
|
||||
CXXFLAGS = $(CDEFS) $(CINCS) -O$(OPT) -Wall $(CEXTRA) $(CTUNING)
|
||||
#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
|
||||
LDFLAGS = -lm
|
||||
$(TMPDIRPATH)%.s: %.c
|
||||
@$(COMPILE.c) $(OUTPUT_OPTION) -S $<
|
||||
|
||||
$(TMPDIRPATH)%.s: %.cc
|
||||
@$(COMPILE.cc) $(OUTPUT_OPTION) -S $<
|
||||
|
||||
# Programming support using avrdude. Settings and variables.
|
||||
AVRDUDE_PORT = $(PORT)
|
||||
AVRDUDE_WRITE_FLASH = -U flash:w:applet/$(TARGET).hex:i
|
||||
AVRDUDE_FLAGS = -D -C $(INSTALL_DIR)/hardware/tools/avrdude.conf \
|
||||
-p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) \
|
||||
-b $(UPLOAD_RATE)
|
||||
$(TMPDIRPATH)%.s: %.cpp
|
||||
@$(COMPILE.cpp) $(OUTPUT_OPTION) -S $<
|
||||
|
||||
# Program settings
|
||||
CC = $(AVR_TOOLS_PATH)/avr-gcc
|
||||
CXX = $(AVR_TOOLS_PATH)/avr-g++
|
||||
OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy
|
||||
OBJDUMP = $(AVR_TOOLS_PATH)/avr-objdump
|
||||
AR = $(AVR_TOOLS_PATH)/avr-ar
|
||||
SIZE = $(AVR_TOOLS_PATH)/avr-size
|
||||
NM = $(AVR_TOOLS_PATH)/avr-nm
|
||||
AVRDUDE = $(INSTALL_DIR)/hardware/tools/avrdude
|
||||
REMOVE = rm -f
|
||||
MV = mv -f
|
||||
$(TMPDIRPATH)%.dis: $(TMPDIRPATH)%.o
|
||||
@$(OBJDUMP) -S $< > $@
|
||||
|
||||
# Define all object files.
|
||||
OBJ = $(SRC:.c=.o) $(CXXSRC:.cpp=.o) $(ASRC:.S=.o)
|
||||
|
||||
# Define all listing files.
|
||||
LST = $(ASRC:.S=.lst) $(CXXSRC:.cpp=.lst) $(SRC:.c=.lst)
|
||||
|
||||
# Combine all necessary flags and optional flags.
|
||||
# Add target processor to flags.
|
||||
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
|
||||
ALL_CXXFLAGS = -mmcu=$(MCU) -I. $(CXXFLAGS)
|
||||
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
|
||||
|
||||
|
||||
# Default target.
|
||||
all: applet_files_ez build sizeafter
|
||||
|
||||
build: elf hex
|
||||
|
||||
applet_files_ez: $(TARGET).pde
|
||||
# Here is the "preprocessing".
|
||||
# It creates a .cpp file based with the same name as the .pde file.
|
||||
# On top of the new .cpp file comes the WProgram.h header.
|
||||
# At the end there is a generic main() function attached.
|
||||
# Then the .cpp file will be compiled. Errors during compile will
|
||||
# refer to this new, automatically generated, file.
|
||||
# Not the original .pde file you actually edit...
|
||||
test -d applet || mkdir applet
|
||||
echo '#include "WProgram.h"' > applet/$(TARGET).cpp
|
||||
cat $(TARGET).pde >> applet/$(TARGET).cpp
|
||||
cat $(ARDUINO)/main.cpp >> applet/$(TARGET).cpp
|
||||
|
||||
elf: applet/$(TARGET).elf
|
||||
hex: applet/$(TARGET).hex
|
||||
eep: applet/$(TARGET).eep
|
||||
lss: applet/$(TARGET).lss
|
||||
sym: applet/$(TARGET).sym
|
||||
|
||||
# Program the device.
|
||||
upload: applet/$(TARGET).hex
|
||||
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH)
|
||||
|
||||
|
||||
# Display size of file.
|
||||
HEXSIZE = $(SIZE) --target=$(FORMAT) applet/$(TARGET).hex
|
||||
ELFSIZE = $(SIZE) applet/$(TARGET).elf
|
||||
sizebefore:
|
||||
@if [ -f applet/$(TARGET).elf ]; then echo; echo $(MSG_SIZE_BEFORE); $(HEXSIZE); echo; fi
|
||||
|
||||
sizeafter:
|
||||
@if [ -f applet/$(TARGET).elf ]; then echo; echo $(MSG_SIZE_AFTER); $(HEXSIZE); echo; fi
|
||||
|
||||
|
||||
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
|
||||
COFFCONVERT=$(OBJCOPY) --debugging \
|
||||
--change-section-address .data-0x800000 \
|
||||
--change-section-address .bss-0x800000 \
|
||||
--change-section-address .noinit-0x800000 \
|
||||
--change-section-address .eeprom-0x810000
|
||||
|
||||
|
||||
coff: applet/$(TARGET).elf
|
||||
$(COFFCONVERT) -O coff-avr applet/$(TARGET).elf $(TARGET).cof
|
||||
|
||||
|
||||
extcoff: $(TARGET).elf
|
||||
$(COFFCONVERT) -O coff-ext-avr applet/$(TARGET).elf $(TARGET).cof
|
||||
|
||||
|
||||
.SUFFIXES: .elf .hex .eep .lss .sym
|
||||
.SUFFIXES: .elf .hex .pde
|
||||
|
||||
.elf.hex:
|
||||
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
|
||||
|
||||
.elf.eep:
|
||||
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
|
||||
--change-section-lma .eeprom=0 -O $(FORMAT) $< $@
|
||||
|
||||
# Create extended listing file from ELF output file.
|
||||
.elf.lss:
|
||||
$(OBJDUMP) -h -S $< > $@
|
||||
|
||||
# Create a symbol table from ELF output file.
|
||||
.elf.sym:
|
||||
$(NM) -n $< > $@
|
||||
|
||||
# Link: create ELF output file from library.
|
||||
applet/$(TARGET).elf: $(TARGET).pde applet/core.a
|
||||
$(CC) $(ALL_CFLAGS) -Wl,--gc-sections -o $@ applet/$(TARGET).cpp -L. applet/core.a $(LDFLAGS)
|
||||
|
||||
applet/core.a: $(OBJ)
|
||||
@for i in $(OBJ); do echo $(AR) rcs applet/core.a $$i; $(AR) rcs applet/core.a $$i; done
|
||||
@$(OBJCOPY) -O ihex -R .eeprom $< $@
|
||||
|
||||
$(TMPDIRPATH)%.cpp: %.pde
|
||||
@cat $(ARDUINO_PATH)hardware/arduino/cores/arduino/main.cpp > $@
|
||||
@cat $< >> $@
|
||||
@echo >> $@
|
||||
@echo 'extern "C" void __cxa_pure_virtual() { while (1); }' >> $@
|
||||
|
||||
|
||||
.PHONY: all
|
||||
all: tmpdir $(HEXNAME) assemblersource showsize
|
||||
ls -al $(HEXNAME) $(ELFNAME)
|
||||
|
||||
# Compile: create object files from C++ source files.
|
||||
.cpp.o:
|
||||
$(CXX) -c $(ALL_CXXFLAGS) $< -o $@
|
||||
$(ELFNAME): $(LIBNAME)($(addprefix $(TMPDIRPATH),$(OBJFILES)))
|
||||
$(LINK.o) $(COMMON_FLAGS) $(LIBNAME) $(LOADLIBES) $(LDLIBS) -o $@
|
||||
|
||||
# Compile: create object files from C source files.
|
||||
.c.o:
|
||||
$(CC) -c $(ALL_CFLAGS) $< -o $@
|
||||
$(LIBNAME)(): $(addprefix $(TMPDIRPATH),$(OBJFILES))
|
||||
|
||||
#=== create temp directory ===
|
||||
# not really required, because it will be also created during the dependency handling
|
||||
.PHONY: tmpdir
|
||||
tmpdir:
|
||||
@test -d $(TMPDIRPATH) || mkdir $(TMPDIRPATH)
|
||||
|
||||
#=== create assembler files for each C/C++ file ===
|
||||
.PHONY: assemblersource
|
||||
assemblersource: $(addprefix $(TMPDIRPATH),$(ASSFILES)) $(addprefix $(TMPDIRPATH),$(DISFILES))
|
||||
|
||||
|
||||
# Compile: create assembler files from C source files.
|
||||
.c.s:
|
||||
$(CC) -S $(ALL_CFLAGS) $< -o $@
|
||||
#=== show the section sizes of the ELF file ===
|
||||
.PHONY: showsize
|
||||
showsize: $(ELFNAME)
|
||||
$(SIZE) $<
|
||||
|
||||
|
||||
# Assemble: create object files from assembler source files.
|
||||
.S.o:
|
||||
$(CC) -c $(ALL_ASFLAGS) $< -o $@
|
||||
|
||||
|
||||
|
||||
# Target: clean project.
|
||||
#=== clean up target ===
|
||||
# this is simple: the TMPDIRPATH is removed
|
||||
.PHONY: clean
|
||||
clean:
|
||||
$(REMOVE) applet/$(TARGET).hex applet/$(TARGET).eep applet/$(TARGET).cof applet/$(TARGET).elf \
|
||||
applet/$(TARGET).map applet/$(TARGET).sym applet/$(TARGET).lss applet/core.a \
|
||||
$(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d) $(CXXSRC:.cpp=.s) $(CXXSRC:.cpp=.d)
|
||||
$(RM) $(TMPDIRPATH)
|
||||
|
||||
# Program the device.
|
||||
# step 1: reset the arduino board with the stty command
|
||||
# step 2: user avrdude to upload the software
|
||||
.PHONY: upload
|
||||
upload: $(HEXNAME)
|
||||
stty -F $(AVRDUDE_PORT) hupcl
|
||||
$(AVRDUDE) $(AVRDUDE_FLAGS)
|
||||
|
||||
|
||||
# === dependency handling ===
|
||||
# From the gnu make manual (section 4.14, Generating Prerequisites Automatically)
|
||||
# Additionally (because this will be the first executed rule) TMPDIRPATH is created here.
|
||||
# Instead of "sed" the "echo" command is used
|
||||
# cd $(TMPDIRPATH); mkdir -p $(DIRS) 2> /dev/null; cd ..
|
||||
DEPACTION=test -d $(TMPDIRPATH) || mkdir $(TMPDIRPATH);\
|
||||
mkdir -p $(addprefix $(TMPDIRPATH),$(DIRS));\
|
||||
set -e; echo -n $@ $(dir $@) > $@; $(CC) -MM $(COMMON_FLAGS) $< >> $@
|
||||
|
||||
|
||||
$(TMPDIRPATH)%.d: %.c
|
||||
@$(DEPACTION)
|
||||
|
||||
$(TMPDIRPATH)%.d: %.cc
|
||||
@$(DEPACTION)
|
||||
|
||||
|
||||
$(TMPDIRPATH)%.d: %.cpp
|
||||
@$(DEPACTION)
|
||||
|
||||
# Include dependency files. If a .d file is missing, a warning is created and the .d file is created
|
||||
# This warning is not a problem (gnu make manual, section 3.3 Including Other Makefiles)
|
||||
-include $(addprefix $(TMPDIRPATH),$(DEPFILES))
|
||||
|
||||
depend:
|
||||
if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \
|
||||
then \
|
||||
sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \
|
||||
$(MAKEFILE).$$$$ && \
|
||||
$(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \
|
||||
fi
|
||||
echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \
|
||||
>> $(MAKEFILE); \
|
||||
$(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)
|
||||
|
||||
.PHONY: all build elf hex eep lss sym program coff extcoff clean depend applet_files sizebefore sizeafter
|
||||
|
|
|
@ -1,27 +1,20 @@
|
|||
#ifndef __MARLINH
|
||||
#define __MARLINH
|
||||
|
||||
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
|
||||
// Licence: GPL
|
||||
#include <WProgram.h>
|
||||
#include "fastio.h"
|
||||
extern "C" void __cxa_pure_virtual();
|
||||
void __cxa_pure_virtual(){};
|
||||
|
||||
|
||||
#define ECHO(x) Serial << "echo: " << x;
|
||||
#define ECHOLN(x) Serial << "echo: "<<x<<endl;
|
||||
|
||||
void get_command();
|
||||
void process_commands();
|
||||
|
||||
void manage_inactivity(byte debug);
|
||||
|
||||
void manage_heater();
|
||||
int temp2analogu(int celsius, const short table[][2], int numtemps);
|
||||
float analog2tempu(int raw, const short table[][2], int numtemps);
|
||||
#ifdef HEATER_USES_THERMISTOR
|
||||
#define HEATERSOURCE 1
|
||||
#endif
|
||||
#ifdef BED_USES_THERMISTOR
|
||||
#define BEDSOURCE 1
|
||||
#endif
|
||||
|
||||
#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)
|
||||
#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS)
|
||||
|
||||
#if X_ENABLE_PIN > -1
|
||||
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
|
||||
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
|
||||
|
@ -43,9 +36,12 @@ float analog2tempu(int raw, const short table[][2], int numtemps);
|
|||
#define enable_z() ;
|
||||
#define disable_z() ;
|
||||
#endif
|
||||
|
||||
#if E_ENABLE_PIN > -1
|
||||
#define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON)
|
||||
#define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON)
|
||||
|
||||
#define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON)
|
||||
#define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON)
|
||||
|
||||
#else
|
||||
#define enable_e() ;
|
||||
#define disable_e() ;
|
||||
|
@ -61,47 +57,27 @@ void ClearToSend();
|
|||
|
||||
void get_coordinates();
|
||||
void prepare_move();
|
||||
void linear_move(unsigned long steps_remaining[]);
|
||||
void do_step(int axis);
|
||||
void kill(byte debug);
|
||||
|
||||
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
||||
// the source g-code and may never actually be reached if acceleration management is active.
|
||||
typedef struct {
|
||||
// Fields used by the bresenham algorithm for tracing the line
|
||||
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
||||
long step_event_count; // The number of step events required to complete this block
|
||||
volatile long accelerate_until; // The index of the step event on which to stop acceleration
|
||||
volatile long decelerate_after; // The index of the step event on which to start decelerating
|
||||
volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
||||
//void check_axes_activity();
|
||||
//void plan_init();
|
||||
//void st_init();
|
||||
//void tp_init();
|
||||
//void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
|
||||
//void plan_set_position(float x, float y, float z, float e);
|
||||
//void st_wake_up();
|
||||
//void st_synchronize();
|
||||
void enquecommand(const char *cmd);
|
||||
void wd_reset();
|
||||
|
||||
long advance_rate;
|
||||
volatile long initial_advance;
|
||||
volatile long final_advance;
|
||||
float advance;
|
||||
#ifndef CRITICAL_SECTION_START
|
||||
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
|
||||
#define CRITICAL_SECTION_END SREG = _sreg;
|
||||
#endif //CRITICAL_SECTION_START
|
||||
|
||||
// Fields used by the motion planner to manage acceleration
|
||||
float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
|
||||
float nominal_speed; // The nominal speed for this block in mm/min
|
||||
float millimeters; // The total travel of this block in mm
|
||||
float entry_speed;
|
||||
float acceleration; // acceleration mm/sec^2
|
||||
extern float homing_feedrate[];
|
||||
extern bool axis_relative_modes[];
|
||||
|
||||
// Settings for the trapezoid generator
|
||||
long nominal_rate; // The nominal step rate for this block in step_events/sec
|
||||
volatile long initial_rate; // The jerk-adjusted step rate at start of block
|
||||
volatile long final_rate; // The minimal rate at exit
|
||||
long acceleration_st; // acceleration steps/sec^2
|
||||
volatile char busy;
|
||||
} block_t;
|
||||
|
||||
void check_axes_activity();
|
||||
void plan_init();
|
||||
void st_init();
|
||||
void tp_init();
|
||||
void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
|
||||
void plan_set_position(float x, float y, float z, float e);
|
||||
void st_wake_up();
|
||||
void st_synchronize();
|
||||
void manage_inactivity(byte debug);
|
||||
|
||||
#endif
|
||||
|
|
1718
Marlin/Marlin.pde
1718
Marlin/Marlin.pde
|
@ -23,26 +23,29 @@
|
|||
|
||||
It has preliminary support for Matthew Roberts advance algorithm
|
||||
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
||||
|
||||
This firmware is optimized for gen6 electronics.
|
||||
*/
|
||||
|
||||
#include <EEPROM.h>
|
||||
#include "fastio.h"
|
||||
#include "Configuration.h"
|
||||
#include "pins.h"
|
||||
#include "Marlin.h"
|
||||
#include "speed_lookuptable.h"
|
||||
#include "ultralcd.h"
|
||||
#include "streaming.h"
|
||||
#include "planner.h"
|
||||
#include "stepper.h"
|
||||
#include "temperature.h"
|
||||
|
||||
char version_string[] = "0.9.10";
|
||||
#ifdef SIMPLE_LCD
|
||||
#include "Simplelcd.h"
|
||||
#endif
|
||||
|
||||
char version_string[] = "1.0.0 Alpha 1";
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
#include "SdFat.h"
|
||||
#endif //SDSUPPORT
|
||||
|
||||
#ifndef CRITICAL_SECTION_START
|
||||
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
|
||||
#define CRITICAL_SECTION_END SREG = _sreg
|
||||
#endif //CRITICAL_SECTION_START
|
||||
|
||||
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
|
||||
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
||||
|
@ -87,9 +90,17 @@ char version_string[] = "0.9.10";
|
|||
// M115 - Capabilities string
|
||||
// M140 - Set bed target temp
|
||||
// M190 - Wait for bed current temp to reach target temp.
|
||||
// M200 - Set filament diameter
|
||||
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
||||
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
|
||||
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
||||
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
||||
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
|
||||
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
||||
// M220 - set speed factor override percentage S:factor in percent
|
||||
// M301 - Set PID parameters P I and D
|
||||
// M500 - stores paramters in EEPROM
|
||||
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
|
||||
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
||||
|
||||
//Stepper Movement Variables
|
||||
|
||||
|
@ -100,15 +111,23 @@ float destination[NUM_AXIS] = {
|
|||
float current_position[NUM_AXIS] = {
|
||||
0.0, 0.0, 0.0, 0.0};
|
||||
bool home_all_axis = true;
|
||||
long feedrate = 1500, next_feedrate, saved_feedrate;
|
||||
float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
||||
long gcode_N, gcode_LastN;
|
||||
|
||||
float homing_feedrate[] = HOMING_FEEDRATE;
|
||||
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
||||
|
||||
bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
||||
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
|
||||
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||
|
||||
uint8_t fanpwm=0;
|
||||
|
||||
volatile int feedmultiply=100; //100->1 200->2
|
||||
int saved_feedmultiply;
|
||||
volatile bool feedmultiplychanged=false;
|
||||
// comm variables
|
||||
#define MAX_CMD_SIZE 96
|
||||
#define BUFSIZE 8
|
||||
#define BUFSIZE 4
|
||||
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
|
||||
bool fromsd[BUFSIZE];
|
||||
int bufindr = 0;
|
||||
|
@ -119,45 +138,23 @@ char serial_char;
|
|||
int serial_count = 0;
|
||||
boolean comment_mode = false;
|
||||
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
|
||||
extern float HeaterPower;
|
||||
|
||||
// Manage heater variables.
|
||||
|
||||
int target_raw = 0;
|
||||
int current_raw = 0;
|
||||
unsigned char temp_meas_ready = false;
|
||||
|
||||
#ifdef PIDTEMP
|
||||
double temp_iState = 0;
|
||||
double temp_dState = 0;
|
||||
double pTerm;
|
||||
double iTerm;
|
||||
double dTerm;
|
||||
//int output;
|
||||
double pid_error;
|
||||
double temp_iState_min;
|
||||
double temp_iState_max;
|
||||
double pid_setpoint = 0.0;
|
||||
double pid_input;
|
||||
double pid_output;
|
||||
bool pid_reset;
|
||||
#endif //PIDTEMP
|
||||
#include "EEPROM.h"
|
||||
|
||||
float tt = 0, bt = 0;
|
||||
#ifdef WATCHPERIOD
|
||||
int watch_raw = -1000;
|
||||
unsigned long watchmillis = 0;
|
||||
#endif //WATCHPERIOD
|
||||
#ifdef MINTEMP
|
||||
int minttemp = temp2analogh(MINTEMP);
|
||||
#endif //MINTEMP
|
||||
#ifdef MAXTEMP
|
||||
int maxttemp = temp2analogh(MAXTEMP);
|
||||
#endif //MAXTEMP
|
||||
|
||||
//Inactivity shutdown variables
|
||||
unsigned long previous_millis_cmd = 0;
|
||||
unsigned long max_inactive_time = 0;
|
||||
unsigned long stepper_inactive_time = 0;
|
||||
|
||||
unsigned long starttime=0;
|
||||
unsigned long stoptime=0;
|
||||
#ifdef SDSUPPORT
|
||||
Sd2Card card;
|
||||
SdVolume volume;
|
||||
|
@ -169,6 +166,7 @@ bool sdmode = false;
|
|||
bool sdactive = false;
|
||||
bool savetosd = false;
|
||||
int16_t n;
|
||||
long autostart_atmillis=0;
|
||||
|
||||
void initsd(){
|
||||
sdactive = false;
|
||||
|
@ -184,10 +182,18 @@ void initsd(){
|
|||
else if (!root.openRoot(&volume))
|
||||
Serial.println("openRoot failed");
|
||||
else
|
||||
{
|
||||
sdactive = true;
|
||||
Serial.println("SD card ok");
|
||||
}
|
||||
#endif //SDSS
|
||||
}
|
||||
|
||||
void quickinitsd(){
|
||||
sdactive=false;
|
||||
autostart_atmillis=millis()+5000;
|
||||
}
|
||||
|
||||
inline void write_command(char *buf){
|
||||
char* begin = buf;
|
||||
char* npos = 0;
|
||||
|
@ -210,147 +216,131 @@ inline void write_command(char *buf){
|
|||
#endif //SDSUPPORT
|
||||
|
||||
|
||||
///adds an command to the main command buffer
|
||||
void enquecommand(const char *cmd)
|
||||
{
|
||||
if(buflen < BUFSIZE)
|
||||
{
|
||||
//this is dangerous if a mixing of serial and this happsens
|
||||
strcpy(&(cmdbuffer[bufindw][0]),cmd);
|
||||
Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
|
||||
bufindw= (bufindw + 1)%BUFSIZE;
|
||||
buflen += 1;
|
||||
}
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
|
||||
Serial.begin(BAUDRATE);
|
||||
Serial.print("Marlin ");
|
||||
Serial.println(version_string);
|
||||
ECHOLN("Marlin "<<version_string);
|
||||
Serial.println("start");
|
||||
|
||||
#if defined FANCY_LCD || defined SIMPLE_LCD
|
||||
lcd_init();
|
||||
#endif
|
||||
for(int i = 0; i < BUFSIZE; i++){
|
||||
fromsd[i] = false;
|
||||
}
|
||||
|
||||
RetrieveSettings(); // loads data from EEPROM if available
|
||||
|
||||
//Initialize Dir Pins
|
||||
#if X_DIR_PIN > -1
|
||||
SET_OUTPUT(X_DIR_PIN);
|
||||
#endif
|
||||
#if Y_DIR_PIN > -1
|
||||
SET_OUTPUT(Y_DIR_PIN);
|
||||
#endif
|
||||
#if Z_DIR_PIN > -1
|
||||
SET_OUTPUT(Z_DIR_PIN);
|
||||
#endif
|
||||
#if E_DIR_PIN > -1
|
||||
SET_OUTPUT(E_DIR_PIN);
|
||||
#endif
|
||||
|
||||
//Initialize Enable Pins - steppers default to disabled.
|
||||
|
||||
#if (X_ENABLE_PIN > -1)
|
||||
SET_OUTPUT(X_ENABLE_PIN);
|
||||
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
|
||||
#endif
|
||||
#if (Y_ENABLE_PIN > -1)
|
||||
SET_OUTPUT(Y_ENABLE_PIN);
|
||||
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
|
||||
#endif
|
||||
#if (Z_ENABLE_PIN > -1)
|
||||
SET_OUTPUT(Z_ENABLE_PIN);
|
||||
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
|
||||
#endif
|
||||
#if (E_ENABLE_PIN > -1)
|
||||
SET_OUTPUT(E_ENABLE_PIN);
|
||||
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
|
||||
#endif
|
||||
|
||||
//endstops and pullups
|
||||
#ifdef ENDSTOPPULLUPS
|
||||
#if X_MIN_PIN > -1
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
WRITE(X_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#if X_MAX_PIN > -1
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
WRITE(X_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#if Y_MIN_PIN > -1
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
WRITE(Y_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#if Y_MAX_PIN > -1
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
WRITE(Y_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#if Z_MIN_PIN > -1
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
WRITE(Z_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#if Z_MAX_PIN > -1
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
WRITE(Z_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#else //ENDSTOPPULLUPS
|
||||
#if X_MIN_PIN > -1
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
#endif
|
||||
#if X_MAX_PIN > -1
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
#endif
|
||||
#if Y_MIN_PIN > -1
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
#endif
|
||||
#if Y_MAX_PIN > -1
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
#endif
|
||||
#if Z_MIN_PIN > -1
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
#endif
|
||||
#if Z_MAX_PIN > -1
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
#endif
|
||||
#endif //ENDSTOPPULLUPS
|
||||
|
||||
#if (HEATER_0_PIN > -1)
|
||||
SET_OUTPUT(HEATER_0_PIN);
|
||||
#endif
|
||||
#if (HEATER_1_PIN > -1)
|
||||
SET_OUTPUT(HEATER_1_PIN);
|
||||
#endif
|
||||
|
||||
//Initialize Step Pins
|
||||
#if (X_STEP_PIN > -1)
|
||||
SET_OUTPUT(X_STEP_PIN);
|
||||
#endif
|
||||
#if (Y_STEP_PIN > -1)
|
||||
SET_OUTPUT(Y_STEP_PIN);
|
||||
#endif
|
||||
#if (Z_STEP_PIN > -1)
|
||||
SET_OUTPUT(Z_STEP_PIN);
|
||||
#endif
|
||||
#if (E_STEP_PIN > -1)
|
||||
SET_OUTPUT(E_STEP_PIN);
|
||||
#endif
|
||||
for(int i=0; i < NUM_AXIS; i++){
|
||||
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
||||
}
|
||||
|
||||
#ifdef PIDTEMP
|
||||
temp_iState_min = 0.0;
|
||||
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
||||
#endif //PIDTEMP
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
//power to SD reader
|
||||
#if SDPOWER > -1
|
||||
SET_OUTPUT(SDPOWER);
|
||||
WRITE(SDPOWER,HIGH);
|
||||
#endif //SDPOWER
|
||||
initsd();
|
||||
quickinitsd();
|
||||
|
||||
#endif //SDSUPPORT
|
||||
plan_init(); // Initialize planner;
|
||||
st_init(); // Initialize stepper;
|
||||
tp_init(); // Initialize temperature loop
|
||||
//checkautostart();
|
||||
}
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
bool autostart_stilltocheck=true;
|
||||
|
||||
|
||||
void checkautostart(bool force)
|
||||
{
|
||||
//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
|
||||
if(!force)
|
||||
{
|
||||
if(!autostart_stilltocheck)
|
||||
return;
|
||||
if(autostart_atmillis<millis())
|
||||
return;
|
||||
}
|
||||
autostart_stilltocheck=false;
|
||||
if(!sdactive)
|
||||
{
|
||||
initsd();
|
||||
if(!sdactive) //fail
|
||||
return;
|
||||
}
|
||||
static int lastnr=0;
|
||||
char autoname[30];
|
||||
sprintf(autoname,"auto%i.g",lastnr);
|
||||
for(int i=0;i<strlen(autoname);i++)
|
||||
autoname[i]=tolower(autoname[i]);
|
||||
dir_t p;
|
||||
|
||||
root.rewind();
|
||||
char filename[11];
|
||||
int cnt=0;
|
||||
|
||||
bool found=false;
|
||||
while (root.readDir(p) > 0)
|
||||
{
|
||||
for(int i=0;i<strlen((char*)p.name);i++)
|
||||
p.name[i]=tolower(p.name[i]);
|
||||
//Serial.print((char*)p.name);
|
||||
//Serial.print(" ");
|
||||
//Serial.println(autoname);
|
||||
if(p.name[9]!='~') //skip safety copies
|
||||
if(strncmp((char*)p.name,autoname,5)==0)
|
||||
{
|
||||
char cmd[30];
|
||||
|
||||
sprintf(cmd,"M23 %s",autoname);
|
||||
//sprintf(cmd,"M115");
|
||||
//enquecommand("G92 Z0");
|
||||
//enquecommand("G1 Z10 F2000");
|
||||
//enquecommand("G28 X-105 Y-105");
|
||||
enquecommand(cmd);
|
||||
enquecommand("M24");
|
||||
found=true;
|
||||
|
||||
}
|
||||
}
|
||||
if(!found)
|
||||
lastnr=-1;
|
||||
else
|
||||
lastnr++;
|
||||
|
||||
}
|
||||
#else
|
||||
|
||||
inline void checkautostart(bool x)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
void loop()
|
||||
{
|
||||
if(buflen<3)
|
||||
get_command();
|
||||
|
||||
if(buflen){
|
||||
checkautostart(false);
|
||||
if(buflen)
|
||||
{
|
||||
#ifdef SDSUPPORT
|
||||
if(savetosd){
|
||||
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
|
||||
|
@ -376,6 +366,7 @@ void loop()
|
|||
//check heater every n milliseconds
|
||||
manage_heater();
|
||||
manage_inactivity(1);
|
||||
LCD_STATUS;
|
||||
}
|
||||
|
||||
|
||||
|
@ -482,6 +473,16 @@ inline void get_command()
|
|||
if(sdpos >= filesize){
|
||||
sdmode = false;
|
||||
Serial.println("Done printing file");
|
||||
stoptime=millis();
|
||||
char time[30];
|
||||
unsigned long t=(stoptime-starttime)/1000;
|
||||
int sec,min;
|
||||
min=t/60;
|
||||
sec=t%60;
|
||||
sprintf(time,"%i min, %i sec",min,sec);
|
||||
Serial.println(time);
|
||||
LCD_MESSAGE(time);
|
||||
checkautostart(true);
|
||||
}
|
||||
if(!serial_count) return; //if empty line
|
||||
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
||||
|
@ -548,38 +549,41 @@ inline void process_commands()
|
|||
break;
|
||||
case 28: //G28 Home all Axis one at a time
|
||||
saved_feedrate = feedrate;
|
||||
saved_feedmultiply = feedmultiply;
|
||||
feedmultiply = 100;
|
||||
|
||||
for(int i=0; i < NUM_AXIS; i++) {
|
||||
destination[i] = current_position[i];
|
||||
}
|
||||
feedrate = 0;
|
||||
feedrate = 0.0;
|
||||
|
||||
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
||||
|
||||
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
|
||||
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
|
||||
st_synchronize();
|
||||
// st_synchronize();
|
||||
current_position[X_AXIS] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
|
||||
feedrate = homing_feedrate[X_AXIS];
|
||||
prepare_move();
|
||||
|
||||
st_synchronize();
|
||||
|
||||
// st_synchronize();
|
||||
current_position[X_AXIS] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[X_AXIS] = -5 * X_HOME_DIR;
|
||||
prepare_move();
|
||||
|
||||
st_synchronize();
|
||||
|
||||
// st_synchronize();
|
||||
destination[X_AXIS] = 10 * X_HOME_DIR;
|
||||
feedrate = homing_feedrate[X_AXIS]/2 ;
|
||||
prepare_move();
|
||||
st_synchronize();
|
||||
|
||||
|
||||
// st_synchronize();
|
||||
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[X_AXIS] = current_position[X_AXIS];
|
||||
feedrate = 0;
|
||||
feedrate = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -590,23 +594,23 @@ inline void process_commands()
|
|||
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
|
||||
feedrate = homing_feedrate[Y_AXIS];
|
||||
prepare_move();
|
||||
st_synchronize();
|
||||
// st_synchronize();
|
||||
|
||||
current_position[Y_AXIS] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[Y_AXIS] = -5 * Y_HOME_DIR;
|
||||
prepare_move();
|
||||
st_synchronize();
|
||||
// st_synchronize();
|
||||
|
||||
destination[Y_AXIS] = 10 * Y_HOME_DIR;
|
||||
feedrate = homing_feedrate[Y_AXIS]/2;
|
||||
prepare_move();
|
||||
st_synchronize();
|
||||
// st_synchronize();
|
||||
|
||||
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[Y_AXIS] = current_position[Y_AXIS];
|
||||
feedrate = 0;
|
||||
feedrate = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -617,26 +621,27 @@ inline void process_commands()
|
|||
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
prepare_move();
|
||||
st_synchronize();
|
||||
// st_synchronize();
|
||||
|
||||
current_position[Z_AXIS] = 0;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[Z_AXIS] = -2 * Z_HOME_DIR;
|
||||
prepare_move();
|
||||
st_synchronize();
|
||||
// st_synchronize();
|
||||
|
||||
destination[Z_AXIS] = 3 * Z_HOME_DIR;
|
||||
feedrate = homing_feedrate[Z_AXIS]/2;
|
||||
prepare_move();
|
||||
st_synchronize();
|
||||
// st_synchronize();
|
||||
|
||||
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
destination[Z_AXIS] = current_position[Z_AXIS];
|
||||
feedrate = 0;
|
||||
feedrate = 0.0;
|
||||
}
|
||||
}
|
||||
feedrate = saved_feedrate;
|
||||
feedmultiply = saved_feedmultiply;
|
||||
previous_millis_cmd = millis();
|
||||
break;
|
||||
case 90: // G90
|
||||
|
@ -653,7 +658,6 @@ inline void process_commands()
|
|||
}
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
break;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -701,6 +705,7 @@ inline void process_commands()
|
|||
case 24: //M24 - Start SD print
|
||||
if(sdactive){
|
||||
sdmode = true;
|
||||
starttime=millis();
|
||||
}
|
||||
break;
|
||||
case 25: //M25 - Pause SD print
|
||||
|
@ -753,70 +758,141 @@ inline void process_commands()
|
|||
//processed in write to file routine above
|
||||
//savetosd = false;
|
||||
break;
|
||||
case 30:
|
||||
{
|
||||
stoptime=millis();
|
||||
char time[30];
|
||||
unsigned long t=(stoptime-starttime)/1000;
|
||||
int sec,min;
|
||||
min=t/60;
|
||||
sec=t%60;
|
||||
sprintf(time,"%i min, %i sec",min,sec);
|
||||
Serial.println(time);
|
||||
LCD_MESSAGE(time);
|
||||
}
|
||||
break;
|
||||
#endif //SDSUPPORT
|
||||
case 104: // M104
|
||||
#ifdef PID_OPENLOOP
|
||||
if (code_seen('S')) PidTemp_Output = code_value() * (PID_MAX/100.0);
|
||||
if(pid_output > PID_MAX) pid_output = PID_MAX;
|
||||
if(pid_output < 0) pid_output = 0;
|
||||
#else //PID_OPENLOOP
|
||||
if (code_seen('S')) {
|
||||
target_raw = temp2analogh(code_value());
|
||||
case 104: // M104
|
||||
if (code_seen('S')) target_raw[0] = temp2analog(code_value());
|
||||
#ifdef PIDTEMP
|
||||
pid_setpoint = code_value();
|
||||
#endif //PIDTEMP
|
||||
}
|
||||
#ifdef WATCHPERIOD
|
||||
if(target_raw > current_raw){
|
||||
watchmillis = max(1,millis());
|
||||
watch_raw = current_raw;
|
||||
}
|
||||
else{
|
||||
watchmillis = 0;
|
||||
}
|
||||
#endif //WATCHPERIOD
|
||||
#endif //PID_OPENLOOP
|
||||
break;
|
||||
case 105: // M105
|
||||
Serial.print("ok T:");
|
||||
Serial.println(analog2temp(current_raw));
|
||||
return;
|
||||
//break;
|
||||
case 109: // M109 - Wait for extruder heater to reach target.
|
||||
if (code_seen('S')) {
|
||||
target_raw = temp2analogh(code_value());
|
||||
pid_setpoint = code_value();
|
||||
#endif //PIDTEM
|
||||
#ifdef WATCHPERIOD
|
||||
if(target_raw[0] > current_raw[0]){
|
||||
watchmillis = max(1,millis());
|
||||
watch_raw[0] = current_raw[0];
|
||||
}else{
|
||||
watchmillis = 0;
|
||||
}
|
||||
#endif
|
||||
break;
|
||||
case 140: // M140 set bed temp
|
||||
if (code_seen('S')) target_raw[1] = temp2analogBed(code_value());
|
||||
break;
|
||||
case 105: // M105
|
||||
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
|
||||
tt = analog2temp(current_raw[0]);
|
||||
#endif
|
||||
#if TEMP_1_PIN > -1
|
||||
bt = analog2tempBed(current_raw[1]);
|
||||
#endif
|
||||
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
|
||||
Serial.print("ok T:");
|
||||
Serial.print(tt);
|
||||
// Serial.print(", raw:");
|
||||
// Serial.print(current_raw);
|
||||
#if TEMP_1_PIN > -1
|
||||
#ifdef PIDTEMP
|
||||
pid_setpoint = code_value();
|
||||
#endif //PIDTEMP
|
||||
}
|
||||
#ifdef WATCHPERIOD
|
||||
if(target_raw>current_raw){
|
||||
watchmillis = max(1,millis());
|
||||
watch_raw = current_raw;
|
||||
}
|
||||
else{
|
||||
watchmillis = 0;
|
||||
}
|
||||
#endif //WATCHERPERIOD
|
||||
codenum = millis();
|
||||
while(current_raw < target_raw) {
|
||||
if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
||||
{
|
||||
Serial.print("T:");
|
||||
Serial.println( analog2temp(current_raw));
|
||||
Serial.print(" B:");
|
||||
#if TEMP_1_PIN > -1
|
||||
Serial.println(bt);
|
||||
#else
|
||||
Serial.println(HeaterPower);
|
||||
#endif
|
||||
#else
|
||||
Serial.println();
|
||||
#endif
|
||||
#else
|
||||
Serial.println();
|
||||
#endif
|
||||
#else
|
||||
Serial.println("No thermistors - no temp");
|
||||
#endif
|
||||
return;
|
||||
//break;
|
||||
case 109: // M109 - Wait for extruder heater to reach target.
|
||||
LCD_MESSAGE("Heating...");
|
||||
if (code_seen('S')) target_raw[0] = temp2analog(code_value());
|
||||
#ifdef PIDTEMP
|
||||
pid_setpoint = code_value();
|
||||
#endif //PIDTEM
|
||||
#ifdef WATCHPERIOD
|
||||
if(target_raw[0]>current_raw[0]){
|
||||
watchmillis = max(1,millis());
|
||||
watch_raw[0] = current_raw[0];
|
||||
}else{
|
||||
watchmillis = 0;
|
||||
}
|
||||
#endif
|
||||
codenum = millis();
|
||||
starttime=millis();
|
||||
while(current_raw[0] < target_raw[0]) {
|
||||
if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up.
|
||||
Serial.print("T:");
|
||||
Serial.println( analog2temp(current_raw[0]) );
|
||||
codenum = millis();
|
||||
}
|
||||
LCD_STATUS;
|
||||
manage_heater();
|
||||
}
|
||||
LCD_MESSAGE("UltiMarlin ready.");
|
||||
break;
|
||||
case 190: // M190 - Wait bed for heater to reach target.
|
||||
#if TEMP_1_PIN > -1
|
||||
if (code_seen('S')) target_raw[1] = temp2analog(code_value());
|
||||
codenum = millis();
|
||||
while(current_raw[1] < target_raw[1])
|
||||
{
|
||||
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
||||
{
|
||||
float tt=analog2temp(current_raw[0]);
|
||||
Serial.print("T:");
|
||||
Serial.println( tt );
|
||||
Serial.print("ok T:");
|
||||
Serial.print( tt );
|
||||
Serial.print(" B:");
|
||||
Serial.println( analog2temp(current_raw[1]) );
|
||||
codenum = millis();
|
||||
}
|
||||
manage_heater();
|
||||
}
|
||||
manage_heater();
|
||||
}
|
||||
break;
|
||||
case 190:
|
||||
#endif
|
||||
break;
|
||||
#if FAN_PIN > -1
|
||||
case 106: //M106 Fan On
|
||||
if (code_seen('S')){
|
||||
WRITE(FAN_PIN,HIGH);
|
||||
fanpwm=constrain(code_value(),0,255);
|
||||
analogWrite(FAN_PIN, fanpwm);
|
||||
}
|
||||
else {
|
||||
WRITE(FAN_PIN,HIGH);
|
||||
fanpwm=255;
|
||||
analogWrite(FAN_PIN, fanpwm);
|
||||
}
|
||||
break;
|
||||
case 107: //M107 Fan Off
|
||||
WRITE(FAN_PIN,LOW);
|
||||
analogWrite(FAN_PIN, 0);
|
||||
break;
|
||||
#endif
|
||||
case 82:
|
||||
axis_relative_modes[3] = false;
|
||||
break;
|
||||
case 83:
|
||||
axis_relative_modes[3] = true;
|
||||
break;
|
||||
case 18:
|
||||
case 84:
|
||||
if(code_seen('S')){
|
||||
stepper_inactive_time = code_value() * 1000;
|
||||
|
@ -849,8 +925,17 @@ inline void process_commands()
|
|||
Serial.print(current_position[Y_AXIS]);
|
||||
Serial.print("Z:");
|
||||
Serial.print(current_position[Z_AXIS]);
|
||||
Serial.print("E:");
|
||||
Serial.println(current_position[E_AXIS]);
|
||||
Serial.print("E:");
|
||||
Serial.print(current_position[E_AXIS]);
|
||||
#ifdef DEBUG_STEPS
|
||||
Serial.print(" Count X:");
|
||||
Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
|
||||
Serial.print("Y:");
|
||||
Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
|
||||
Serial.print("Z:");
|
||||
Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
|
||||
#endif
|
||||
Serial.println("");
|
||||
break;
|
||||
case 119: // M119
|
||||
#if (X_MIN_PIN > -1)
|
||||
|
@ -892,18 +977,67 @@ inline void process_commands()
|
|||
}
|
||||
break;
|
||||
#endif
|
||||
case 203: // M203 max feedrate mm/sec
|
||||
for(int i=0; i < NUM_AXIS; i++) {
|
||||
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
|
||||
}
|
||||
break;
|
||||
case 204: // M204 acclereration S normal moves T filmanent only moves
|
||||
{
|
||||
if(code_seen('S')) acceleration = code_value() ;
|
||||
if(code_seen('T')) retract_acceleration = code_value() ;
|
||||
}
|
||||
break;
|
||||
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
||||
{
|
||||
if(code_seen('S')) minimumfeedrate = code_value()*60 ;
|
||||
if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
|
||||
if(code_seen('B')) minsegmenttime = code_value() ;
|
||||
if(code_seen('X')) max_xy_jerk = code_value()*60 ;
|
||||
if(code_seen('Z')) max_z_jerk = code_value()*60 ;
|
||||
}
|
||||
break;
|
||||
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
||||
{
|
||||
if(code_seen('S'))
|
||||
{
|
||||
feedmultiply = code_value() ;
|
||||
feedmultiplychanged=true;
|
||||
}
|
||||
}
|
||||
break;
|
||||
#ifdef PIDTEMP
|
||||
case 301: // M301
|
||||
if(code_seen('P')) Kp = code_value();
|
||||
if(code_seen('I')) Ki = code_value()*PID_dT;
|
||||
if(code_seen('D')) Kd = code_value()/PID_dT;
|
||||
Serial.print("Kp ");Serial.println(Kp);
|
||||
Serial.print("Ki ");Serial.println(Ki/PID_dT);
|
||||
Serial.print("Kd ");Serial.println(Kd*PID_dT);
|
||||
temp_iState_min = 0.0;
|
||||
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
||||
// ECHOLN("Kp "<<_FLOAT(Kp,2));
|
||||
// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
|
||||
// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
|
||||
|
||||
// temp_iState_min = 0.0;
|
||||
// if (Ki!=0) {
|
||||
// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
|
||||
// }
|
||||
// else temp_iState_max = 1.0e10;
|
||||
break;
|
||||
#endif //PIDTEMP
|
||||
case 500: // Store settings in EEPROM
|
||||
{
|
||||
StoreSettings();
|
||||
}
|
||||
break;
|
||||
case 501: // Read settings from EEPROM
|
||||
{
|
||||
RetrieveSettings();
|
||||
}
|
||||
break;
|
||||
case 502: // Revert to default settings
|
||||
{
|
||||
RetrieveSettings(true);
|
||||
}
|
||||
break;
|
||||
|
||||
}
|
||||
}
|
||||
else{
|
||||
|
@ -947,141 +1081,89 @@ inline void get_coordinates()
|
|||
|
||||
void prepare_move()
|
||||
{
|
||||
if (min_software_endstops) {
|
||||
if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
|
||||
if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
|
||||
if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
|
||||
}
|
||||
|
||||
if (max_software_endstops) {
|
||||
if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
|
||||
if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
|
||||
if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
|
||||
}
|
||||
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60.0);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
|
||||
for(int i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
}
|
||||
|
||||
void manage_heater()
|
||||
{
|
||||
float pid_input;
|
||||
float pid_output;
|
||||
if(temp_meas_ready != true)
|
||||
return;
|
||||
|
||||
CRITICAL_SECTION_START;
|
||||
temp_meas_ready = false;
|
||||
CRITICAL_SECTION_END;
|
||||
|
||||
#ifdef PIDTEMP
|
||||
pid_input = analog2temp(current_raw);
|
||||
#ifdef USE_WATCHDOG
|
||||
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error = pid_setpoint - pid_input;
|
||||
if(pid_error > 10){
|
||||
pid_output = PID_MAX;
|
||||
pid_reset = true;
|
||||
#include <avr/wdt.h>
|
||||
#include <avr/interrupt.h>
|
||||
|
||||
volatile uint8_t timeout_seconds=0;
|
||||
|
||||
void(* ctrlaltdelete) (void) = 0;
|
||||
|
||||
ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
|
||||
if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
|
||||
{
|
||||
kill();
|
||||
#ifdef RESET_MANUAL
|
||||
LCD_MESSAGE("Please Reset!");
|
||||
ECHOLN("echo_: Something is wrong, please turn off the printer.");
|
||||
#else
|
||||
LCD_MESSAGE("Timeout, resetting!");
|
||||
#endif
|
||||
//disable watchdog, it will survife reboot.
|
||||
WDTCSR |= (1<<WDCE) | (1<<WDE);
|
||||
WDTCSR = 0;
|
||||
#ifdef RESET_MANUAL
|
||||
while(1); //wait for user or serial reset
|
||||
#else
|
||||
ctrlaltdelete();
|
||||
#endif
|
||||
}
|
||||
else if(pid_error < -10) {
|
||||
pid_output = 0;
|
||||
pid_reset = true;
|
||||
}
|
||||
else {
|
||||
if(pid_reset == true) {
|
||||
temp_iState = 0.0;
|
||||
pid_reset = false;
|
||||
}
|
||||
pTerm = Kp * pid_error;
|
||||
temp_iState += pid_error;
|
||||
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
|
||||
iTerm = Ki * temp_iState;
|
||||
#define K1 0.8
|
||||
#define K2 (1.0-K1)
|
||||
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
|
||||
temp_dState = pid_input;
|
||||
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
|
||||
}
|
||||
#endif //PID_OPENLOOP
|
||||
#ifdef PID_DEBUG
|
||||
Serial.print(" Input ");
|
||||
Serial.print(pid_input);
|
||||
Serial.print(" Output ");
|
||||
Serial.print(pid_output);
|
||||
Serial.print(" pTerm ");
|
||||
Serial.print(pTerm);
|
||||
Serial.print(" iTerm ");
|
||||
Serial.print(iTerm);
|
||||
Serial.print(" dTerm ");
|
||||
Serial.print(dTerm);
|
||||
Serial.println();
|
||||
#endif //PID_DEBUG
|
||||
OCR2B = pid_output;
|
||||
#endif //PIDTEMP
|
||||
}
|
||||
|
||||
|
||||
int temp2analogu(int celsius, const short table[][2], int numtemps) {
|
||||
int raw = 0;
|
||||
byte i;
|
||||
|
||||
for (i=1; i<numtemps; i++) {
|
||||
if (table[i][1] < celsius) {
|
||||
raw = table[i-1][0] +
|
||||
(celsius - table[i-1][1]) *
|
||||
(table[i][0] - table[i-1][0]) /
|
||||
(table[i][1] - table[i-1][1]);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == numtemps) raw = table[i-1][0];
|
||||
|
||||
return 16383 - raw;
|
||||
/// intialise watch dog with a 1 sec interrupt time
|
||||
void wd_init() {
|
||||
WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
|
||||
WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
|
||||
}
|
||||
|
||||
float analog2tempu(int raw,const short table[][2], int numtemps) {
|
||||
float celsius = 0.0;
|
||||
byte i;
|
||||
|
||||
raw = 16383 - raw;
|
||||
for (i=1; i<numtemps; i++) {
|
||||
if (table[i][0] > raw) {
|
||||
celsius = (float)table[i-1][1] +
|
||||
(float)(raw - table[i-1][0]) *
|
||||
(float)(table[i][1] - table[i-1][1]) /
|
||||
(float)(table[i][0] - table[i-1][0]);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == numtemps) celsius = table[i-1][1];
|
||||
|
||||
return celsius;
|
||||
/// reset watchdog. MUST be called every 1s after init or avr will reset.
|
||||
void wd_reset() {
|
||||
wdt_reset();
|
||||
timeout_seconds=0; //reset counter for resets
|
||||
}
|
||||
#endif /* USE_WATCHDOG */
|
||||
|
||||
|
||||
inline void kill()
|
||||
{
|
||||
target_raw=0;
|
||||
#ifdef PIDTEMP
|
||||
pid_setpoint = 0.0;
|
||||
#endif //PIDTEMP
|
||||
OCR2B = 0;
|
||||
WRITE(HEATER_0_PIN,LOW);
|
||||
|
||||
#if TEMP_0_PIN > -1
|
||||
target_raw[0]=0;
|
||||
#if HEATER_0_PIN > -1
|
||||
WRITE(HEATER_0_PIN,LOW);
|
||||
#endif
|
||||
#endif
|
||||
#if TEMP_1_PIN > -1
|
||||
target_raw[1]=0;
|
||||
#if HEATER_1_PIN > -1
|
||||
WRITE(HEATER_1_PIN,LOW);
|
||||
#endif
|
||||
#endif
|
||||
#if TEMP_2_PIN > -1
|
||||
target_raw[2]=0;
|
||||
#if HEATER_2_PIN > -1
|
||||
WRITE(HEATER_2_PIN,LOW);
|
||||
#endif
|
||||
#endif
|
||||
disable_x();
|
||||
disable_y();
|
||||
disable_z();
|
||||
disable_e();
|
||||
|
||||
|
||||
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
|
||||
Serial.println("!! Printer halted. kill() called!!");
|
||||
while(1); // Wait for reset
|
||||
}
|
||||
|
||||
inline void manage_inactivity(byte debug) {
|
||||
void manage_inactivity(byte debug) {
|
||||
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
|
||||
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
|
||||
disable_x();
|
||||
|
@ -1091,965 +1173,3 @@ inline void manage_inactivity(byte debug) {
|
|||
}
|
||||
check_axes_activity();
|
||||
}
|
||||
|
||||
// Planner
|
||||
|
||||
/*
|
||||
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
||||
|
||||
s == speed, a == acceleration, t == time, d == distance
|
||||
|
||||
Basic definitions:
|
||||
|
||||
Speed[s_, a_, t_] := s + (a*t)
|
||||
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
||||
|
||||
Distance to reach a specific speed with a constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
||||
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
||||
|
||||
Speed after a given distance of travel with constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
||||
m -> Sqrt[2 a d + s^2]
|
||||
|
||||
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
||||
|
||||
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
||||
from initial speed s1 without ever stopping at a plateau:
|
||||
|
||||
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
||||
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
||||
|
||||
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
||||
*/
|
||||
|
||||
|
||||
// The number of linear motions that can be in the plan at any give time
|
||||
#define BLOCK_BUFFER_SIZE 16
|
||||
#define BLOCK_BUFFER_MASK 0x0f
|
||||
|
||||
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
||||
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
||||
static volatile unsigned char block_buffer_tail; // Index of the block to process now
|
||||
|
||||
// The current position of the tool in absolute steps
|
||||
static long position[4];
|
||||
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||||
|
||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||||
// given acceleration:
|
||||
inline long estimate_acceleration_distance(long initial_rate, long target_rate, long acceleration) {
|
||||
return(
|
||||
(target_rate*target_rate-initial_rate*initial_rate)/
|
||||
(2L*acceleration)
|
||||
);
|
||||
}
|
||||
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
|
||||
inline long intersection_distance(long initial_rate, long final_rate, long acceleration, long distance) {
|
||||
return(
|
||||
(2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
||||
(4*acceleration)
|
||||
);
|
||||
}
|
||||
|
||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||
|
||||
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
|
||||
if(block->busy == true) return; // If block is busy then bail out.
|
||||
float entry_factor = entry_speed / block->nominal_speed;
|
||||
float exit_factor = exit_speed / block->nominal_speed;
|
||||
long initial_rate = ceil(block->nominal_rate*entry_factor);
|
||||
long final_rate = ceil(block->nominal_rate*exit_factor);
|
||||
|
||||
#ifdef ADVANCE
|
||||
long initial_advance = block->advance*entry_factor*entry_factor;
|
||||
long final_advance = block->advance*exit_factor*exit_factor;
|
||||
#endif // ADVANCE
|
||||
|
||||
// Limit minimal step rate (Otherwise the timer will overflow.)
|
||||
if(initial_rate <120) initial_rate=120;
|
||||
if(final_rate < 120) final_rate=120;
|
||||
|
||||
// Calculate the acceleration steps
|
||||
long acceleration = block->acceleration_st;
|
||||
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
|
||||
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
|
||||
// Calculate the size of Plateau of Nominal Rate.
|
||||
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
||||
|
||||
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
||||
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
||||
// in order to reach the final_rate exactly at the end of this block.
|
||||
if (plateau_steps < 0) {
|
||||
accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
|
||||
plateau_steps = 0;
|
||||
}
|
||||
|
||||
long decelerate_after = accelerate_steps+plateau_steps;
|
||||
long acceleration_rate = (long)((float)acceleration * 8.388608);
|
||||
|
||||
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
||||
if(block->busy == false) { // Don't update variables if block is busy.
|
||||
block->accelerate_until = accelerate_steps;
|
||||
block->decelerate_after = decelerate_after;
|
||||
block->acceleration_rate = acceleration_rate;
|
||||
block->initial_rate = initial_rate;
|
||||
block->final_rate = final_rate;
|
||||
#ifdef ADVANCE
|
||||
block->initial_advance = initial_advance;
|
||||
block->final_advance = final_advance;
|
||||
#endif ADVANCE
|
||||
}
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||
// acceleration within the allotted distance.
|
||||
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
||||
return(
|
||||
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
|
||||
);
|
||||
}
|
||||
|
||||
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
||||
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
||||
// velocities of the respective blocks.
|
||||
inline float junction_jerk(block_t *before, block_t *after) {
|
||||
return(sqrt(
|
||||
pow((before->speed_x-after->speed_x), 2)+
|
||||
pow((before->speed_y-after->speed_y), 2)));
|
||||
}
|
||||
|
||||
// Return the safe speed which is max_jerk/2, e.g. the
|
||||
// speed under which you cannot exceed max_jerk no matter what you do.
|
||||
float safe_speed(block_t *block) {
|
||||
float safe_speed;
|
||||
safe_speed = max_xy_jerk/2;
|
||||
if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
|
||||
if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
|
||||
return safe_speed;
|
||||
}
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||||
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||
if(!current) {
|
||||
return;
|
||||
}
|
||||
|
||||
float entry_speed = current->nominal_speed;
|
||||
float exit_factor;
|
||||
float exit_speed;
|
||||
if (next) {
|
||||
exit_speed = next->entry_speed;
|
||||
}
|
||||
else {
|
||||
exit_speed = safe_speed(current);
|
||||
}
|
||||
|
||||
// Calculate the entry_factor for the current block.
|
||||
if (previous) {
|
||||
// Reduce speed so that junction_jerk is within the maximum allowed
|
||||
float jerk = junction_jerk(previous, current);
|
||||
if((previous->steps_x == 0) && (previous->steps_y == 0)) {
|
||||
entry_speed = safe_speed(current);
|
||||
}
|
||||
else if (jerk > max_xy_jerk) {
|
||||
entry_speed = (max_xy_jerk/jerk) * entry_speed;
|
||||
}
|
||||
if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
|
||||
entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
|
||||
}
|
||||
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
|
||||
if (entry_speed > exit_speed) {
|
||||
float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
|
||||
if (max_entry_speed < entry_speed) {
|
||||
entry_speed = max_entry_speed;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
entry_speed = safe_speed(current);
|
||||
}
|
||||
// Store result
|
||||
current->entry_speed = entry_speed;
|
||||
}
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the reverse pass.
|
||||
void planner_reverse_pass() {
|
||||
char block_index = block_buffer_head;
|
||||
block_index--;
|
||||
block_t *block[3] = { NULL, NULL, NULL };
|
||||
while(block_index != block_buffer_tail) {
|
||||
block_index--;
|
||||
if(block_index < 0) block_index = BLOCK_BUFFER_SIZE-1;
|
||||
block[2]= block[1];
|
||||
block[1]= block[0];
|
||||
block[0] = &block_buffer[block_index];
|
||||
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
||||
}
|
||||
planner_reverse_pass_kernel(NULL, block[0], block[1]);
|
||||
}
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
||||
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||
if(!current) {
|
||||
return;
|
||||
}
|
||||
if(previous) {
|
||||
// If the previous block is an acceleration block, but it is not long enough to
|
||||
// complete the full speed change within the block, we need to adjust out entry
|
||||
// speed accordingly. Remember current->entry_factor equals the exit factor of
|
||||
// the previous block.
|
||||
if(previous->entry_speed < current->entry_speed) {
|
||||
float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
|
||||
if (max_entry_speed < current->entry_speed) {
|
||||
current->entry_speed = max_entry_speed;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the forward pass.
|
||||
void planner_forward_pass() {
|
||||
char block_index = block_buffer_tail;
|
||||
block_t *block[3] = {
|
||||
NULL, NULL, NULL };
|
||||
|
||||
while(block_index != block_buffer_head) {
|
||||
block[0] = block[1];
|
||||
block[1] = block[2];
|
||||
block[2] = &block_buffer[block_index];
|
||||
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
||||
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
|
||||
}
|
||||
planner_forward_pass_kernel(block[1], block[2], NULL);
|
||||
}
|
||||
|
||||
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
|
||||
// entry_factor for each junction. Must be called by planner_recalculate() after
|
||||
// updating the blocks.
|
||||
void planner_recalculate_trapezoids() {
|
||||
char block_index = block_buffer_tail;
|
||||
block_t *current;
|
||||
block_t *next = NULL;
|
||||
while(block_index != block_buffer_head) {
|
||||
current = next;
|
||||
next = &block_buffer[block_index];
|
||||
if (current) {
|
||||
calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
|
||||
}
|
||||
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
|
||||
}
|
||||
calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
|
||||
}
|
||||
|
||||
// Recalculates the motion plan according to the following algorithm:
|
||||
//
|
||||
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
|
||||
// so that:
|
||||
// a. The junction jerk is within the set limit
|
||||
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
||||
// acceleration.
|
||||
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
||||
// a. The speed increase within one block would require faster accelleration than the one, true
|
||||
// constant acceleration.
|
||||
//
|
||||
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
||||
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
||||
// the set limit. Finally it will:
|
||||
//
|
||||
// 3. Recalculate trapezoids for all blocks.
|
||||
|
||||
void planner_recalculate() {
|
||||
planner_reverse_pass();
|
||||
planner_forward_pass();
|
||||
planner_recalculate_trapezoids();
|
||||
}
|
||||
|
||||
void plan_init() {
|
||||
block_buffer_head = 0;
|
||||
block_buffer_tail = 0;
|
||||
memset(position, 0, sizeof(position)); // clear position
|
||||
}
|
||||
|
||||
|
||||
inline void plan_discard_current_block() {
|
||||
if (block_buffer_head != block_buffer_tail) {
|
||||
block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
|
||||
}
|
||||
}
|
||||
|
||||
inline block_t *plan_get_current_block() {
|
||||
if (block_buffer_head == block_buffer_tail) {
|
||||
return(NULL);
|
||||
}
|
||||
block_t *block = &block_buffer[block_buffer_tail];
|
||||
block->busy = true;
|
||||
return(block);
|
||||
}
|
||||
|
||||
void check_axes_activity() {
|
||||
unsigned char x_active = 0;
|
||||
unsigned char y_active = 0;
|
||||
unsigned char z_active = 0;
|
||||
unsigned char e_active = 0;
|
||||
block_t *block;
|
||||
|
||||
if(block_buffer_tail != block_buffer_head) {
|
||||
char block_index = block_buffer_tail;
|
||||
while(block_index != block_buffer_head) {
|
||||
block = &block_buffer[block_index];
|
||||
if(block->steps_x != 0) x_active++;
|
||||
if(block->steps_y != 0) y_active++;
|
||||
if(block->steps_z != 0) z_active++;
|
||||
if(block->steps_e != 0) e_active++;
|
||||
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
|
||||
}
|
||||
}
|
||||
if((DISABLE_X) && (x_active == 0)) disable_x();
|
||||
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
||||
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
||||
if((DISABLE_E) && (e_active == 0)) disable_e();
|
||||
}
|
||||
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
||||
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
|
||||
// The target position of the tool in absolute steps
|
||||
// Calculate target position in absolute steps
|
||||
long target[4];
|
||||
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
||||
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
||||
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
||||
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||||
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = (block_buffer_head + 1) & BLOCK_BUFFER_MASK;
|
||||
|
||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||
// Rest here until there is room in the buffer.
|
||||
while(block_buffer_tail == next_buffer_head) {
|
||||
manage_heater();
|
||||
manage_inactivity(1);
|
||||
}
|
||||
|
||||
// Prepare to set up new block
|
||||
block_t *block = &block_buffer[block_buffer_head];
|
||||
|
||||
// Mark block as not busy (Not executed by the stepper interrupt)
|
||||
block->busy = false;
|
||||
|
||||
// Number of steps for each axis
|
||||
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
||||
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
||||
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
||||
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
|
||||
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
||||
|
||||
// Bail if this is a zero-length block
|
||||
if (block->step_event_count == 0) {
|
||||
return;
|
||||
};
|
||||
|
||||
//enable active axes
|
||||
if(block->steps_x != 0) enable_x();
|
||||
if(block->steps_y != 0) enable_y();
|
||||
if(block->steps_z != 0) enable_z();
|
||||
if(block->steps_e != 0) enable_e();
|
||||
|
||||
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
||||
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
||||
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||||
float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
|
||||
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
|
||||
|
||||
unsigned long microseconds;
|
||||
microseconds = lround((block->millimeters/feed_rate)*1000000);
|
||||
|
||||
// Calculate speed in mm/minute for each axis
|
||||
float multiplier = 60.0*1000000.0/microseconds;
|
||||
block->speed_z = delta_z_mm * multiplier;
|
||||
block->speed_x = delta_x_mm * multiplier;
|
||||
block->speed_y = delta_y_mm * multiplier;
|
||||
block->speed_e = delta_e_mm * multiplier;
|
||||
|
||||
// Limit speed per axis
|
||||
float speed_factor = 1;
|
||||
float tmp_speed_factor;
|
||||
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
|
||||
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
|
||||
}
|
||||
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
|
||||
tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
|
||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
|
||||
tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
|
||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
if(abs(block->speed_e) > max_feedrate[E_AXIS]){
|
||||
tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
|
||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
multiplier = multiplier * speed_factor;
|
||||
block->speed_z = delta_z_mm * multiplier;
|
||||
block->speed_x = delta_x_mm * multiplier;
|
||||
block->speed_y = delta_y_mm * multiplier;
|
||||
block->speed_e = delta_e_mm * multiplier;
|
||||
block->nominal_speed = block->millimeters * multiplier;
|
||||
block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
|
||||
|
||||
if(block->nominal_rate < 120) block->nominal_rate = 120;
|
||||
block->entry_speed = safe_speed(block);
|
||||
|
||||
// Compute the acceleration rate for the trapezoid generator.
|
||||
float travel_per_step = block->millimeters/block->step_event_count;
|
||||
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
|
||||
block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
||||
}
|
||||
else {
|
||||
block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
||||
// Limit acceleration per axis
|
||||
if((block->acceleration_st * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
||||
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
||||
if((block->acceleration_st * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
||||
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
||||
if((block->acceleration_st * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
||||
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
||||
if(((block->acceleration_st / block->step_event_count) * block->steps_z ) > axis_steps_per_sqr_second[Z_AXIS])
|
||||
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
||||
}
|
||||
block->acceleration = block->acceleration_st * travel_per_step;
|
||||
|
||||
#ifdef ADVANCE
|
||||
// Calculate advance rate
|
||||
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
||||
block->advance_rate = 0;
|
||||
block->advance = 0;
|
||||
}
|
||||
else {
|
||||
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
||||
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
||||
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
|
||||
block->advance = advance;
|
||||
if(acc_dist == 0) {
|
||||
block->advance_rate = 0;
|
||||
}
|
||||
else {
|
||||
block->advance_rate = advance / (float)acc_dist;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // ADVANCE
|
||||
|
||||
// compute a preliminary conservative acceleration trapezoid
|
||||
float safespeed = safe_speed(block);
|
||||
calculate_trapezoid_for_block(block, safespeed, safespeed);
|
||||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (target[X_AXIS] < position[X_AXIS]) {
|
||||
block->direction_bits |= (1<<X_AXIS);
|
||||
}
|
||||
if (target[Y_AXIS] < position[Y_AXIS]) {
|
||||
block->direction_bits |= (1<<Y_AXIS);
|
||||
}
|
||||
if (target[Z_AXIS] < position[Z_AXIS]) {
|
||||
block->direction_bits |= (1<<Z_AXIS);
|
||||
}
|
||||
if (target[E_AXIS] < position[E_AXIS]) {
|
||||
block->direction_bits |= (1<<E_AXIS);
|
||||
}
|
||||
|
||||
// Move buffer head
|
||||
block_buffer_head = next_buffer_head;
|
||||
|
||||
// Update position
|
||||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||||
|
||||
planner_recalculate();
|
||||
st_wake_up();
|
||||
}
|
||||
|
||||
void plan_set_position(float x, float y, float z, float e)
|
||||
{
|
||||
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
||||
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
||||
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
||||
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||||
}
|
||||
|
||||
// Stepper
|
||||
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 24 bit result
|
||||
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %A1, %A2 \n\t" \
|
||||
"add %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r0 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (charIn1), \
|
||||
"d" (intIn2) \
|
||||
: \
|
||||
"r26" \
|
||||
)
|
||||
|
||||
// intRes = longIn1 * longIn2 >> 24
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 48bit result
|
||||
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"mov r27, r1 \n\t" \
|
||||
"mul %B1, %C2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %C1, %C2 \n\t" \
|
||||
"add %B0, r0 \n\t" \
|
||||
"mul %C1, %B2 \n\t" \
|
||||
"add %A0, r0 \n\t" \
|
||||
"adc %B0, r1 \n\t" \
|
||||
"mul %A1, %C2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %B2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %C1, %A2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %A2 \n\t" \
|
||||
"add r27, r1 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r27 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (longIn1), \
|
||||
"d" (longIn2) \
|
||||
: \
|
||||
"r26" , "r27" \
|
||||
)
|
||||
|
||||
// Some useful constants
|
||||
|
||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
|
||||
|
||||
static block_t *current_block; // A pointer to the block currently being traced
|
||||
|
||||
// Variables used by The Stepper Driver Interrupt
|
||||
static unsigned char out_bits; // The next stepping-bits to be output
|
||||
static long counter_x, // Counter variables for the bresenham line tracer
|
||||
counter_y,
|
||||
counter_z,
|
||||
counter_e;
|
||||
static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||
static long advance_rate, advance, final_advance = 0;
|
||||
static short old_advance = 0;
|
||||
static short e_steps;
|
||||
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
||||
static long acceleration_time, deceleration_time;
|
||||
static long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||
static unsigned short acc_step_rate; // needed for deccelaration start point
|
||||
|
||||
|
||||
|
||||
// __________________________
|
||||
// /| |\ _________________ ^
|
||||
// / | | \ /| |\ |
|
||||
// / | | \ / | | \ s
|
||||
// / | | | | | \ p
|
||||
// / | | | | | \ e
|
||||
// +-----+------------------------+---+--+---------------+----+ e
|
||||
// | BLOCK 1 | BLOCK 2 | d
|
||||
//
|
||||
// time ----->
|
||||
//
|
||||
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
||||
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
||||
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
||||
// The slope of acceleration is calculated with the leib ramp alghorithm.
|
||||
|
||||
void st_wake_up() {
|
||||
// TCNT1 = 0;
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
inline unsigned short calc_timer(unsigned short step_rate) {
|
||||
unsigned short timer;
|
||||
if(step_rate < 32) step_rate = 32;
|
||||
step_rate -= 32; // Correct for minimal speed
|
||||
if(step_rate >= (8*256)){ // higher step rate
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
|
||||
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||||
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
|
||||
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
||||
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
||||
}
|
||||
else { // lower step rates
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
||||
table_address += ((step_rate)>>1) & 0xfffc;
|
||||
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
|
||||
}
|
||||
if(timer < 100) timer = 100;
|
||||
return timer;
|
||||
}
|
||||
|
||||
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||||
// block begins.
|
||||
inline void trapezoid_generator_reset() {
|
||||
accelerate_until = current_block->accelerate_until;
|
||||
decelerate_after = current_block->decelerate_after;
|
||||
acceleration_rate = current_block->acceleration_rate;
|
||||
initial_rate = current_block->initial_rate;
|
||||
final_rate = current_block->final_rate;
|
||||
nominal_rate = current_block->nominal_rate;
|
||||
advance = current_block->initial_advance;
|
||||
final_advance = current_block->final_advance;
|
||||
deceleration_time = 0;
|
||||
advance_rate = current_block->advance_rate;
|
||||
|
||||
// step_rate to timer interval
|
||||
acc_step_rate = initial_rate;
|
||||
acceleration_time = calc_timer(acc_step_rate);
|
||||
OCR1A = acceleration_time;
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||
ISR(TIMER1_COMPA_vect)
|
||||
{
|
||||
if(busy){ /*Serial.println("BUSY")*/;
|
||||
return;
|
||||
} // The busy-flag is used to avoid reentering this interrupt
|
||||
|
||||
busy = true;
|
||||
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
|
||||
|
||||
// If there is no current block, attempt to pop one from the buffer
|
||||
if (current_block == NULL) {
|
||||
// Anything in the buffer?
|
||||
current_block = plan_get_current_block();
|
||||
if (current_block != NULL) {
|
||||
trapezoid_generator_reset();
|
||||
counter_x = -(current_block->step_event_count >> 1);
|
||||
counter_y = counter_x;
|
||||
counter_z = counter_x;
|
||||
counter_e = counter_x;
|
||||
step_events_completed = 0;
|
||||
e_steps = 0;
|
||||
}
|
||||
else {
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
}
|
||||
|
||||
if (current_block != NULL) {
|
||||
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
||||
out_bits = current_block->direction_bits;
|
||||
|
||||
#ifdef ADVANCE
|
||||
// Calculate E early.
|
||||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) {
|
||||
counter_e -= current_block->step_event_count;
|
||||
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
||||
CRITICAL_SECTION_START;
|
||||
e_steps--;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
else {
|
||||
CRITICAL_SECTION_START;
|
||||
e_steps++;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
}
|
||||
// Do E steps + advance steps
|
||||
CRITICAL_SECTION_START;
|
||||
e_steps += ((advance >> 16) - old_advance);
|
||||
CRITICAL_SECTION_END;
|
||||
old_advance = advance >> 16;
|
||||
#endif //ADVANCE
|
||||
|
||||
// Set direction en check limit switches
|
||||
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
}
|
||||
else // +direction
|
||||
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
||||
|
||||
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
||||
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
||||
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
}
|
||||
else // +direction
|
||||
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
||||
|
||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
||||
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
}
|
||||
else // +direction
|
||||
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
||||
|
||||
#ifndef ADVANCE
|
||||
if ((out_bits & (1<<E_AXIS)) != 0) // -direction
|
||||
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
||||
else // +direction
|
||||
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||||
#endif //!ADVANCE
|
||||
|
||||
counter_x += current_block->steps_x;
|
||||
if (counter_x > 0) {
|
||||
WRITE(X_STEP_PIN, HIGH);
|
||||
counter_x -= current_block->step_event_count;
|
||||
WRITE(X_STEP_PIN, LOW);
|
||||
}
|
||||
|
||||
counter_y += current_block->steps_y;
|
||||
if (counter_y > 0) {
|
||||
WRITE(Y_STEP_PIN, HIGH);
|
||||
counter_y -= current_block->step_event_count;
|
||||
WRITE(Y_STEP_PIN, LOW);
|
||||
}
|
||||
|
||||
counter_z += current_block->steps_z;
|
||||
if (counter_z > 0) {
|
||||
WRITE(Z_STEP_PIN, HIGH);
|
||||
counter_z -= current_block->step_event_count;
|
||||
WRITE(Z_STEP_PIN, LOW);
|
||||
}
|
||||
|
||||
#ifndef ADVANCE
|
||||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) {
|
||||
WRITE(E_STEP_PIN, HIGH);
|
||||
counter_e -= current_block->step_event_count;
|
||||
WRITE(E_STEP_PIN, LOW);
|
||||
}
|
||||
#endif //!ADVANCE
|
||||
|
||||
// Calculare new timer value
|
||||
unsigned short timer;
|
||||
unsigned short step_rate;
|
||||
if (step_events_completed < accelerate_until) {
|
||||
MultiU24X24toH16(acc_step_rate, acceleration_time, acceleration_rate);
|
||||
acc_step_rate += initial_rate;
|
||||
|
||||
// upper limit
|
||||
if(acc_step_rate > nominal_rate)
|
||||
acc_step_rate = nominal_rate;
|
||||
|
||||
// step_rate to timer interval
|
||||
timer = calc_timer(acc_step_rate);
|
||||
advance += advance_rate;
|
||||
acceleration_time += timer;
|
||||
OCR1A = timer;
|
||||
}
|
||||
else if (step_events_completed >= decelerate_after) {
|
||||
MultiU24X24toH16(step_rate, deceleration_time, acceleration_rate);
|
||||
|
||||
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
||||
step_rate = final_rate;
|
||||
}
|
||||
else {
|
||||
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
|
||||
}
|
||||
|
||||
// lower limit
|
||||
if(step_rate < final_rate)
|
||||
step_rate = final_rate;
|
||||
|
||||
// step_rate to timer interval
|
||||
timer = calc_timer(step_rate);
|
||||
#ifdef ADVANCE
|
||||
advance -= advance_rate;
|
||||
if(advance < final_advance)
|
||||
advance = final_advance;
|
||||
#endif //ADVANCE
|
||||
deceleration_time += timer;
|
||||
OCR1A = timer;
|
||||
}
|
||||
// If current block is finished, reset pointer
|
||||
step_events_completed += 1;
|
||||
if (step_events_completed >= current_block->step_event_count) {
|
||||
current_block = NULL;
|
||||
plan_discard_current_block();
|
||||
}
|
||||
}
|
||||
busy=false;
|
||||
}
|
||||
|
||||
#ifdef ADVANCE
|
||||
|
||||
unsigned char old_OCR0A;
|
||||
// Timer interrupt for E. e_steps is set in the main routine;
|
||||
// Timer 0 is shared with millies
|
||||
ISR(TIMER0_COMPA_vect)
|
||||
{
|
||||
// Critical section needed because Timer 1 interrupt has higher priority.
|
||||
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
|
||||
WRITE(E_STEP_PIN, LOW);
|
||||
// Set E direction (Depends on E direction + advance)
|
||||
if (e_steps < 0) {
|
||||
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
||||
e_steps++;
|
||||
WRITE(E_STEP_PIN, HIGH);
|
||||
}
|
||||
if (e_steps > 0) {
|
||||
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||||
e_steps--;
|
||||
WRITE(E_STEP_PIN, HIGH);
|
||||
}
|
||||
old_OCR0A += 25; // 10kHz interrupt
|
||||
OCR0A = old_OCR0A;
|
||||
}
|
||||
#endif // ADVANCE
|
||||
|
||||
void st_init()
|
||||
{
|
||||
// waveform generation = 0100 = CTC
|
||||
TCCR1B &= ~(1<<WGM13);
|
||||
TCCR1B |= (1<<WGM12);
|
||||
TCCR1A &= ~(1<<WGM11);
|
||||
TCCR1A &= ~(1<<WGM10);
|
||||
|
||||
// output mode = 00 (disconnected)
|
||||
TCCR1A &= ~(3<<COM1A0);
|
||||
TCCR1A &= ~(3<<COM1B0);
|
||||
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
|
||||
|
||||
OCR1A = 0x4000;
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
#ifdef ADVANCE
|
||||
e_steps = 0;
|
||||
TIMSK0 |= (1<<OCIE0A);
|
||||
#endif //ADVANCE
|
||||
sei();
|
||||
}
|
||||
|
||||
// Block until all buffered steps are executed
|
||||
void st_synchronize()
|
||||
{
|
||||
while(plan_get_current_block()) {
|
||||
manage_heater();
|
||||
manage_inactivity(1);
|
||||
}
|
||||
}
|
||||
|
||||
// Temperature loop
|
||||
|
||||
void tp_init()
|
||||
{
|
||||
DIDR0 = 1<<5; // TEMP_0_PIN for GEN6
|
||||
ADMUX = ((1 << REFS0) | (5 & 0x07));
|
||||
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, 1/128 prescaler.
|
||||
TCCR2B = 0; //Stop timer in case of running
|
||||
|
||||
#ifdef PIDTEMP
|
||||
TCCR2A = 0x23; //OC2A disable; FastPWM noninverting; FastPWM mode 7
|
||||
#else
|
||||
TCCR2A = 0x03; //OC2A disable; FastPWM noninverting; FastPWM mode 7
|
||||
#endif //PIDTEMP
|
||||
OCR2A = 156; //Period is ~10ms
|
||||
OCR2B = 0; //Duty Cycle for heater pin is 0 (startup)
|
||||
TIMSK2 = 0x01; //Enable overflow interrupt
|
||||
TCCR2B = 0x0F; //1/1024 prescaler, start
|
||||
}
|
||||
|
||||
static unsigned char temp_count = 0;
|
||||
static unsigned long raw_temp_value = 0;
|
||||
|
||||
ISR(TIMER2_OVF_vect)
|
||||
{
|
||||
// uint8_t low, high;
|
||||
|
||||
// low = ADCL;
|
||||
// high = ADCH;
|
||||
raw_temp_value += ADC;
|
||||
// raw_temp_value = (ADCH <<8) | ADCL;
|
||||
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, Enable Interrupt, 1/128 prescaler.
|
||||
// raw_temp_value += (high <<8) | low;
|
||||
temp_count++;
|
||||
|
||||
if(temp_count >= 16)
|
||||
{
|
||||
current_raw = 16383 - raw_temp_value;
|
||||
temp_meas_ready = true;
|
||||
temp_count = 0;
|
||||
raw_temp_value = 0;
|
||||
#ifdef MAXTEMP
|
||||
if(current_raw >= maxttemp) {
|
||||
target_raw = 0;
|
||||
#ifdef PIDTEMP
|
||||
OCR2B = 0;
|
||||
#else
|
||||
WRITE(HEATER_0_PIN,LOW);
|
||||
#endif //PIDTEMP
|
||||
}
|
||||
#endif //MAXTEMP
|
||||
#ifdef MINTEMP
|
||||
if(current_raw <= minttemp) {
|
||||
target_raw = 0;
|
||||
#ifdef PIDTEMP
|
||||
OCR2B = 0;
|
||||
#else
|
||||
WRITE(HEATER_0_PIN,LOW);
|
||||
#endif //PIDTEMP
|
||||
}
|
||||
#endif //MAXTEMP
|
||||
#ifndef PIDTEMP
|
||||
if(current_raw >= target_raw)
|
||||
{
|
||||
WRITE(HEATER_0_PIN,LOW);
|
||||
}
|
||||
else
|
||||
{
|
||||
WRITE(HEATER_0_PIN,HIGH);
|
||||
}
|
||||
#endif //PIDTEMP
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#define _READ(IO) ((bool)(DIO ## IO ## _RPORT & MASK(DIO ## IO ## _PIN)))
|
||||
/// write to a pin
|
||||
#define _WRITE(IO, v) do { if (v) {DIO ## IO ## _WPORT |= MASK(DIO ## IO ## _PIN); } else {DIO ## IO ## _WPORT &= ~MASK(DIO ## IO ## _PIN); }; } while (0)
|
||||
//#define _WRITE(IO, v) do { #if (DIO ## IO ## _WPORT >= 0x100) CRITICAL_SECTION_START; if (v) {DIO ## IO ## _WPORT |= MASK(DIO ## IO ## _PIN); } else {DIO ## IO ## _WPORT &= ~MASK(DIO ## IO ## _PIN); };#if (DIO ## IO ## _WPORT >= 0x100) CRITICAL_SECTION_END; } while (0)
|
||||
/// toggle a pin
|
||||
#define _TOGGLE(IO) do {DIO ## IO ## _RPORT = MASK(DIO ## IO ## _PIN); } while (0)
|
||||
|
||||
|
|
10
Marlin/lcd.h
Normal file
10
Marlin/lcd.h
Normal file
|
@ -0,0 +1,10 @@
|
|||
#ifndef __LCDH
|
||||
#define __LCDH
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif
|
1
Marlin/lcd.pde
Normal file
1
Marlin/lcd.pde
Normal file
|
@ -0,0 +1 @@
|
|||
|
|
@ -60,8 +60,8 @@
|
|||
|
||||
#define HEATER_0_PIN 6
|
||||
#define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
|
||||
|
||||
|
||||
#define HEATER_1_PIN -1
|
||||
#define HEATER_2_PIN -1
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -133,7 +133,8 @@
|
|||
|
||||
#define HEATER_0_PIN 14
|
||||
#define TEMP_0_PIN 4 //D27 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
|
||||
|
||||
#define HEATER_1_PIN -1
|
||||
#define HEATER_2_PIN -1
|
||||
/* Unused (1) (2) (3) 4 5 6 7 8 9 10 11 12 13 (14) (15) (16) 17 (18) (19) (20) (21) (22) (23) 24 (25) (26) (27) 28 (29) (30) (31) */
|
||||
|
||||
|
||||
|
@ -194,7 +195,8 @@
|
|||
|
||||
#define HEATER_0_PIN -1
|
||||
#define TEMP_0_PIN -1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
|
||||
|
||||
#define HEATER_1_PIN -1
|
||||
#define HEATER_2_PIN -1
|
||||
|
||||
|
||||
|
||||
|
@ -255,8 +257,10 @@
|
|||
|
||||
#define HEATER_0_PIN 10
|
||||
#define HEATER_1_PIN 8
|
||||
#define HEATER_2_PIN -1
|
||||
#define TEMP_0_PIN 13 // ANALOG NUMBERING
|
||||
#define TEMP_1_PIN 14 // ANALOG NUMBERING
|
||||
#define TEMP_2_PIN -1 // ANALOG NUMBERING
|
||||
|
||||
|
||||
#else // RAMPS_V_1_1 or RAMPS_V_1_2 as default
|
||||
|
@ -301,9 +305,10 @@
|
|||
#define HEATER_1_PIN 8 // RAMPS 1.1
|
||||
#define FAN_PIN 9 // RAMPS 1.1
|
||||
#endif
|
||||
|
||||
#define HEATER_2_PIN -1
|
||||
#define TEMP_0_PIN 2 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
|
||||
#define TEMP_1_PIN 1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
|
||||
#define TEMP_2_PIN -1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
|
||||
#endif
|
||||
|
||||
// SPI for Max6675 Thermocouple
|
||||
|
@ -361,7 +366,8 @@
|
|||
|
||||
#define HEATER_0_PIN 6
|
||||
#define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
|
||||
|
||||
#define HEATER_1_PIN -1
|
||||
#define HEATER_2_PIN -1
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -404,12 +410,13 @@
|
|||
#define TEMP_0_PIN 5 //changed @ rkoeppl 20110410
|
||||
#define HEATER_0_PIN 14 //changed @ rkoeppl 20110410
|
||||
#define HEATER_1_PIN -1 //changed @ rkoeppl 20110410
|
||||
|
||||
#define HEATER_2_PIN -1
|
||||
|
||||
#define SDPOWER -1
|
||||
#define SDSS 17
|
||||
#define LED_PIN -1 //changed @ rkoeppl 20110410
|
||||
#define TEMP_1_PIN -1 //changed @ rkoeppl 20110410
|
||||
#define TEMP_2_PIN -1
|
||||
#define FAN_PIN -1 //changed @ rkoeppl 20110410
|
||||
#define PS_ON_PIN -1 //changed @ rkoeppl 20110410
|
||||
//our pin for debugging.
|
||||
|
@ -421,6 +428,7 @@
|
|||
#define RX_ENABLE_PIN 13
|
||||
|
||||
#endif
|
||||
|
||||
/****************************************************************************************
|
||||
* Sanguinololu pin assignment
|
||||
*
|
||||
|
@ -482,13 +490,77 @@
|
|||
|
||||
#define TEMP_0_PIN 7 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder)
|
||||
#define TEMP_1_PIN 6 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed)
|
||||
#define SDPOWER -1
|
||||
#define SDSS 31
|
||||
#define TEMP_2_PIN -1
|
||||
#define SDPOWER -1
|
||||
#define SDSS 31
|
||||
#define HEATER_2_PIN -1
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
#if MOTHERBOARD == 7
|
||||
#define KNOWN_BOARD
|
||||
/*****************************************************************
|
||||
* Ultimaker pin assignment
|
||||
******************************************************************/
|
||||
|
||||
#ifndef __AVR_ATmega1280__
|
||||
#ifndef __AVR_ATmega2560__
|
||||
#error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define X_STEP_PIN 25
|
||||
#define X_DIR_PIN 23
|
||||
#define X_MIN_PIN 22
|
||||
#define X_MAX_PIN 24
|
||||
#define X_ENABLE_PIN 27
|
||||
|
||||
#define Y_STEP_PIN 31
|
||||
#define Y_DIR_PIN 33
|
||||
#define Y_MIN_PIN 26
|
||||
#define Y_MAX_PIN 28
|
||||
#define Y_ENABLE_PIN 29
|
||||
|
||||
#define Z_STEP_PIN 37
|
||||
#define Z_DIR_PIN 39
|
||||
#define Z_MIN_PIN 30
|
||||
#define Z_MAX_PIN 32
|
||||
#define Z_ENABLE_PIN 35
|
||||
|
||||
#define HEATER_1_PIN 4
|
||||
#define TEMP_1_PIN 11
|
||||
|
||||
#define EXTRUDER_0_STEP_PIN 43
|
||||
#define EXTRUDER_0_DIR_PIN 45
|
||||
#define EXTRUDER_0_ENABLE_PIN 41
|
||||
#define HEATER_0_PIN 2
|
||||
#define TEMP_0_PIN 8
|
||||
|
||||
#define EXTRUDER_1_STEP_PIN 49
|
||||
#define EXTRUDER_1_DIR_PIN 47
|
||||
#define EXTRUDER_1_ENABLE_PIN 51
|
||||
#define EXTRUDER_1_HEATER_PIN 3
|
||||
#define EXTRUDER_1_TEMPERATURE_PIN 10
|
||||
#define HEATER_2_PIN 51
|
||||
#define TEMP_2_PIN 3
|
||||
|
||||
|
||||
|
||||
#define E_STEP_PIN EXTRUDER_0_STEP_PIN
|
||||
#define E_DIR_PIN EXTRUDER_0_DIR_PIN
|
||||
#define E_ENABLE_PIN EXTRUDER_0_ENABLE_PIN
|
||||
|
||||
#define SDPOWER -1
|
||||
#define SDSS 53
|
||||
#define LED_PIN 13
|
||||
#define FAN_PIN 7
|
||||
#define PS_ON_PIN 12
|
||||
#define KILL_PIN -1
|
||||
#endif
|
||||
|
||||
|
||||
#ifndef KNOWN_BOARD
|
||||
#error Unknown MOTHERBOARD value in configuration.h
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
584
Marlin/planner.cpp
Normal file
584
Marlin/planner.cpp
Normal file
|
@ -0,0 +1,584 @@
|
|||
/*
|
||||
planner.c - buffers movement commands and manages the acceleration profile plan
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
|
||||
|
||||
/*
|
||||
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
||||
|
||||
s == speed, a == acceleration, t == time, d == distance
|
||||
|
||||
Basic definitions:
|
||||
|
||||
Speed[s_, a_, t_] := s + (a*t)
|
||||
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
||||
|
||||
Distance to reach a specific speed with a constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
||||
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
||||
|
||||
Speed after a given distance of travel with constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
||||
m -> Sqrt[2 a d + s^2]
|
||||
|
||||
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
||||
|
||||
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
||||
from initial speed s1 without ever stopping at a plateau:
|
||||
|
||||
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
||||
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
||||
|
||||
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
||||
*/
|
||||
|
||||
|
||||
//#include <inttypes.h>
|
||||
//#include <math.h>
|
||||
//#include <stdlib.h>
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "Configuration.h"
|
||||
#include "pins.h"
|
||||
#include "fastio.h"
|
||||
#include "planner.h"
|
||||
#include "stepper.h"
|
||||
#include "temperature.h"
|
||||
#include "ultralcd.h"
|
||||
|
||||
unsigned long minsegmenttime;
|
||||
float max_feedrate[4]; // set the max speeds
|
||||
float axis_steps_per_unit[4];
|
||||
long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
|
||||
float minimumfeedrate;
|
||||
float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
|
||||
float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
|
||||
float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
|
||||
float max_z_jerk;
|
||||
float mintravelfeedrate;
|
||||
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||
// Manage heater variables.
|
||||
|
||||
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
|
||||
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
||||
static volatile unsigned char block_buffer_tail; // Index of the block to process now
|
||||
|
||||
// The current position of the tool in absolute steps
|
||||
long position[4];
|
||||
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||||
|
||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||||
// given acceleration:
|
||||
inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
|
||||
if (acceleration!=0) {
|
||||
return((target_rate*target_rate-initial_rate*initial_rate)/
|
||||
(2.0*acceleration));
|
||||
}
|
||||
else {
|
||||
return 0.0; // acceleration was 0, set acceleration distance to 0
|
||||
}
|
||||
}
|
||||
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
|
||||
inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
|
||||
if (acceleration!=0) {
|
||||
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
||||
(4.0*acceleration) );
|
||||
}
|
||||
else {
|
||||
return 0.0; // acceleration was 0, set intersection distance to 0
|
||||
}
|
||||
}
|
||||
|
||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||
|
||||
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
|
||||
if(block->busy == true) return; // If block is busy then bail out.
|
||||
float entry_factor = entry_speed / block->nominal_speed;
|
||||
float exit_factor = exit_speed / block->nominal_speed;
|
||||
long initial_rate = ceil(block->nominal_rate*entry_factor);
|
||||
long final_rate = ceil(block->nominal_rate*exit_factor);
|
||||
|
||||
#ifdef ADVANCE
|
||||
long initial_advance = block->advance*entry_factor*entry_factor;
|
||||
long final_advance = block->advance*exit_factor*exit_factor;
|
||||
#endif // ADVANCE
|
||||
|
||||
// Limit minimal step rate (Otherwise the timer will overflow.)
|
||||
if(initial_rate <120) initial_rate=120;
|
||||
if(final_rate < 120) final_rate=120;
|
||||
|
||||
// Calculate the acceleration steps
|
||||
long acceleration = block->acceleration_st;
|
||||
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
|
||||
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
|
||||
// Calculate the size of Plateau of Nominal Rate.
|
||||
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
||||
|
||||
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
||||
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
||||
// in order to reach the final_rate exactly at the end of this block.
|
||||
if (plateau_steps < 0) {
|
||||
accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
|
||||
plateau_steps = 0;
|
||||
}
|
||||
|
||||
long decelerate_after = accelerate_steps+plateau_steps;
|
||||
|
||||
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
||||
if(block->busy == false) { // Don't update variables if block is busy.
|
||||
block->accelerate_until = accelerate_steps;
|
||||
block->decelerate_after = decelerate_after;
|
||||
block->initial_rate = initial_rate;
|
||||
block->final_rate = final_rate;
|
||||
#ifdef ADVANCE
|
||||
block->initial_advance = initial_advance;
|
||||
block->final_advance = final_advance;
|
||||
#endif //ADVANCE
|
||||
}
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||
// acceleration within the allotted distance.
|
||||
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
||||
return(
|
||||
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
|
||||
);
|
||||
}
|
||||
|
||||
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
||||
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
||||
// velocities of the respective blocks.
|
||||
inline float junction_jerk(block_t *before, block_t *after) {
|
||||
return(sqrt(
|
||||
pow((before->speed_x-after->speed_x), 2)+
|
||||
pow((before->speed_y-after->speed_y), 2)));
|
||||
}
|
||||
|
||||
// Return the safe speed which is max_jerk/2, e.g. the
|
||||
// speed under which you cannot exceed max_jerk no matter what you do.
|
||||
float safe_speed(block_t *block) {
|
||||
float safe_speed;
|
||||
safe_speed = max_xy_jerk/2;
|
||||
if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
|
||||
if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
|
||||
return safe_speed;
|
||||
}
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||||
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||
if(!current) {
|
||||
return;
|
||||
}
|
||||
|
||||
float entry_speed = current->nominal_speed;
|
||||
float exit_factor;
|
||||
float exit_speed;
|
||||
if (next) {
|
||||
exit_speed = next->entry_speed;
|
||||
}
|
||||
else {
|
||||
exit_speed = safe_speed(current);
|
||||
}
|
||||
|
||||
// Calculate the entry_factor for the current block.
|
||||
if (previous) {
|
||||
// Reduce speed so that junction_jerk is within the maximum allowed
|
||||
float jerk = junction_jerk(previous, current);
|
||||
if((previous->steps_x == 0) && (previous->steps_y == 0)) {
|
||||
entry_speed = safe_speed(current);
|
||||
}
|
||||
else if (jerk > max_xy_jerk) {
|
||||
entry_speed = (max_xy_jerk/jerk) * entry_speed;
|
||||
}
|
||||
if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
|
||||
entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
|
||||
}
|
||||
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
|
||||
if (entry_speed > exit_speed) {
|
||||
float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
|
||||
if (max_entry_speed < entry_speed) {
|
||||
entry_speed = max_entry_speed;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
entry_speed = safe_speed(current);
|
||||
}
|
||||
// Store result
|
||||
current->entry_speed = entry_speed;
|
||||
}
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the reverse pass.
|
||||
void planner_reverse_pass() {
|
||||
char block_index = block_buffer_head;
|
||||
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
||||
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
|
||||
block_t *block[5] = {
|
||||
NULL, NULL, NULL, NULL, NULL };
|
||||
while(block_index != block_buffer_tail) {
|
||||
block_index = (block_index-1) & (BLOCK_BUFFER_SIZE -1);
|
||||
block[2]= block[1];
|
||||
block[1]= block[0];
|
||||
block[0] = &block_buffer[block_index];
|
||||
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
||||
}
|
||||
planner_reverse_pass_kernel(NULL, block[0], block[1]);
|
||||
}
|
||||
}
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
||||
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||
if(!current) {
|
||||
return;
|
||||
}
|
||||
if(previous) {
|
||||
// If the previous block is an acceleration block, but it is not long enough to
|
||||
// complete the full speed change within the block, we need to adjust out entry
|
||||
// speed accordingly. Remember current->entry_factor equals the exit factor of
|
||||
// the previous block.
|
||||
if(previous->entry_speed < current->entry_speed) {
|
||||
float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
|
||||
if (max_entry_speed < current->entry_speed) {
|
||||
current->entry_speed = max_entry_speed;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the forward pass.
|
||||
void planner_forward_pass() {
|
||||
char block_index = block_buffer_tail;
|
||||
block_t *block[3] = {
|
||||
NULL, NULL, NULL };
|
||||
|
||||
while(block_index != block_buffer_head) {
|
||||
block[0] = block[1];
|
||||
block[1] = block[2];
|
||||
block[2] = &block_buffer[block_index];
|
||||
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
}
|
||||
planner_forward_pass_kernel(block[1], block[2], NULL);
|
||||
}
|
||||
|
||||
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
|
||||
// entry_factor for each junction. Must be called by planner_recalculate() after
|
||||
// updating the blocks.
|
||||
void planner_recalculate_trapezoids() {
|
||||
char block_index = block_buffer_tail;
|
||||
block_t *current;
|
||||
block_t *next = NULL;
|
||||
while(block_index != block_buffer_head) {
|
||||
current = next;
|
||||
next = &block_buffer[block_index];
|
||||
if (current) {
|
||||
calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
|
||||
}
|
||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
}
|
||||
calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
|
||||
}
|
||||
|
||||
// Recalculates the motion plan according to the following algorithm:
|
||||
//
|
||||
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
|
||||
// so that:
|
||||
// a. The junction jerk is within the set limit
|
||||
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
||||
// acceleration.
|
||||
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
||||
// a. The speed increase within one block would require faster accelleration than the one, true
|
||||
// constant acceleration.
|
||||
//
|
||||
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
||||
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
||||
// the set limit. Finally it will:
|
||||
//
|
||||
// 3. Recalculate trapezoids for all blocks.
|
||||
|
||||
void planner_recalculate() {
|
||||
planner_reverse_pass();
|
||||
planner_forward_pass();
|
||||
planner_recalculate_trapezoids();
|
||||
}
|
||||
|
||||
void plan_init() {
|
||||
block_buffer_head = 0;
|
||||
block_buffer_tail = 0;
|
||||
memset(position, 0, sizeof(position)); // clear position
|
||||
}
|
||||
|
||||
|
||||
void plan_discard_current_block() {
|
||||
if (block_buffer_head != block_buffer_tail) {
|
||||
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
}
|
||||
}
|
||||
|
||||
block_t *plan_get_current_block() {
|
||||
if (block_buffer_head == block_buffer_tail) {
|
||||
return(NULL);
|
||||
}
|
||||
block_t *block = &block_buffer[block_buffer_tail];
|
||||
block->busy = true;
|
||||
return(block);
|
||||
}
|
||||
|
||||
void check_axes_activity() {
|
||||
unsigned char x_active = 0;
|
||||
unsigned char y_active = 0;
|
||||
unsigned char z_active = 0;
|
||||
unsigned char e_active = 0;
|
||||
block_t *block;
|
||||
|
||||
if(block_buffer_tail != block_buffer_head) {
|
||||
char block_index = block_buffer_tail;
|
||||
while(block_index != block_buffer_head) {
|
||||
block = &block_buffer[block_index];
|
||||
if(block->steps_x != 0) x_active++;
|
||||
if(block->steps_y != 0) y_active++;
|
||||
if(block->steps_z != 0) z_active++;
|
||||
if(block->steps_e != 0) e_active++;
|
||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
}
|
||||
}
|
||||
if((DISABLE_X) && (x_active == 0)) disable_x();
|
||||
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
||||
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
||||
if((DISABLE_E) && (e_active == 0)) disable_e();
|
||||
}
|
||||
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
||||
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
|
||||
|
||||
// The target position of the tool in absolute steps
|
||||
// Calculate target position in absolute steps
|
||||
long target[4];
|
||||
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
||||
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
||||
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
||||
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||||
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
|
||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||
// Rest here until there is room in the buffer.
|
||||
while(block_buffer_tail == next_buffer_head) {
|
||||
manage_heater();
|
||||
manage_inactivity(1);
|
||||
LCD_STATUS;
|
||||
}
|
||||
|
||||
// Prepare to set up new block
|
||||
block_t *block = &block_buffer[block_buffer_head];
|
||||
|
||||
// Mark block as not busy (Not executed by the stepper interrupt)
|
||||
block->busy = false;
|
||||
|
||||
// Number of steps for each axis
|
||||
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
||||
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
||||
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
||||
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
|
||||
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
||||
|
||||
// Bail if this is a zero-length block
|
||||
if (block->step_event_count <=dropsegments) {
|
||||
return;
|
||||
};
|
||||
|
||||
//enable active axes
|
||||
if(block->steps_x != 0) enable_x();
|
||||
if(block->steps_y != 0) enable_y();
|
||||
if(block->steps_z != 0) enable_z();
|
||||
if(block->steps_e != 0) enable_e();
|
||||
|
||||
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
||||
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
||||
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||||
float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
|
||||
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
|
||||
|
||||
unsigned long microseconds;
|
||||
|
||||
if (block->steps_e == 0) {
|
||||
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
||||
}
|
||||
else {
|
||||
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
||||
}
|
||||
|
||||
microseconds = lround((block->millimeters/feed_rate)*1000000);
|
||||
|
||||
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
||||
// reduces/removes corner blobs as the machine won't come to a full stop.
|
||||
int blockcount=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
||||
|
||||
if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
|
||||
if (microseconds<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
||||
microseconds=microseconds+lround(2*(minsegmenttime-microseconds)/blockcount);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (microseconds<minsegmenttime) microseconds=minsegmenttime;
|
||||
}
|
||||
// END OF SLOW DOWN SECTION
|
||||
|
||||
|
||||
// Calculate speed in mm/minute for each axis
|
||||
float multiplier = 60.0*1000000.0/microseconds;
|
||||
block->speed_z = delta_z_mm * multiplier;
|
||||
block->speed_x = delta_x_mm * multiplier;
|
||||
block->speed_y = delta_y_mm * multiplier;
|
||||
block->speed_e = delta_e_mm * multiplier;
|
||||
|
||||
|
||||
// Limit speed per axis
|
||||
float speed_factor = 1; //factor <=1 do decrease speed
|
||||
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
|
||||
//// [ErikDeBruijn] IS THIS THE BUG WE'RE LOOING FOR????
|
||||
//// [bernhard] No its not, according to Zalm.
|
||||
//// the if would always be true, since tmp_speedfactor <=0 due the inial if, so its safe to set. the next lines actually compare.
|
||||
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
|
||||
//if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
|
||||
float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
|
||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
|
||||
float tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
|
||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
if(abs(block->speed_e) > max_feedrate[E_AXIS]){
|
||||
float tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
|
||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
multiplier = multiplier * speed_factor;
|
||||
block->speed_z = delta_z_mm * multiplier;
|
||||
block->speed_x = delta_x_mm * multiplier;
|
||||
block->speed_y = delta_y_mm * multiplier;
|
||||
block->speed_e = delta_e_mm * multiplier;
|
||||
block->nominal_speed = block->millimeters * multiplier;
|
||||
block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
|
||||
|
||||
if(block->nominal_rate < 120) block->nominal_rate = 120;
|
||||
block->entry_speed = safe_speed(block);
|
||||
|
||||
// Compute the acceleration rate for the trapezoid generator.
|
||||
float travel_per_step = block->millimeters/block->step_event_count;
|
||||
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
|
||||
block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
||||
}
|
||||
else {
|
||||
block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
||||
float tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
// Limit acceleration per axis
|
||||
if((tmp_acceleration * block->steps_x) > axis_steps_per_sqr_second[X_AXIS]) {
|
||||
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
}
|
||||
if((tmp_acceleration * block->steps_y) > axis_steps_per_sqr_second[Y_AXIS]) {
|
||||
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
}
|
||||
if((tmp_acceleration * block->steps_e) > axis_steps_per_sqr_second[E_AXIS]) {
|
||||
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
}
|
||||
if((tmp_acceleration * block->steps_z) > axis_steps_per_sqr_second[Z_AXIS]) {
|
||||
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
}
|
||||
}
|
||||
block->acceleration = block->acceleration_st * travel_per_step;
|
||||
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
|
||||
|
||||
#ifdef ADVANCE
|
||||
// Calculate advance rate
|
||||
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
||||
block->advance_rate = 0;
|
||||
block->advance = 0;
|
||||
}
|
||||
else {
|
||||
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
||||
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
||||
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
|
||||
block->advance = advance;
|
||||
if(acc_dist == 0) {
|
||||
block->advance_rate = 0;
|
||||
}
|
||||
else {
|
||||
block->advance_rate = advance / (float)acc_dist;
|
||||
}
|
||||
}
|
||||
#endif // ADVANCE
|
||||
|
||||
// compute a preliminary conservative acceleration trapezoid
|
||||
float safespeed = safe_speed(block);
|
||||
calculate_trapezoid_for_block(block, safespeed, safespeed);
|
||||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (target[X_AXIS] < position[X_AXIS]) {
|
||||
block->direction_bits |= (1<<X_AXIS);
|
||||
}
|
||||
if (target[Y_AXIS] < position[Y_AXIS]) {
|
||||
block->direction_bits |= (1<<Y_AXIS);
|
||||
}
|
||||
if (target[Z_AXIS] < position[Z_AXIS]) {
|
||||
block->direction_bits |= (1<<Z_AXIS);
|
||||
}
|
||||
if (target[E_AXIS] < position[E_AXIS]) {
|
||||
block->direction_bits |= (1<<E_AXIS);
|
||||
}
|
||||
|
||||
// Move buffer head
|
||||
block_buffer_head = next_buffer_head;
|
||||
|
||||
// Update position
|
||||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||||
|
||||
planner_recalculate();
|
||||
st_wake_up();
|
||||
}
|
||||
|
||||
void plan_set_position(float x, float y, float z, float e)
|
||||
{
|
||||
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
||||
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
||||
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
||||
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||||
}
|
||||
|
90
Marlin/planner.h
Normal file
90
Marlin/planner.h
Normal file
|
@ -0,0 +1,90 @@
|
|||
/*
|
||||
planner.h - buffers movement commands and manages the acceleration profile plan
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
// This module is to be considered a sub-module of stepper.c. Please don't include
|
||||
// this file from any other module.
|
||||
|
||||
#ifndef planner_h
|
||||
#define planner_h
|
||||
|
||||
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
||||
// the source g-code and may never actually be reached if acceleration management is active.
|
||||
typedef struct {
|
||||
// Fields used by the bresenham algorithm for tracing the line
|
||||
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
||||
long step_event_count; // The number of step events required to complete this block
|
||||
volatile long accelerate_until; // The index of the step event on which to stop acceleration
|
||||
volatile long decelerate_after; // The index of the step event on which to start decelerating
|
||||
volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
||||
#ifdef ADVANCE
|
||||
long advance_rate;
|
||||
volatile long initial_advance;
|
||||
volatile long final_advance;
|
||||
float advance;
|
||||
#endif
|
||||
|
||||
// Fields used by the motion planner to manage acceleration
|
||||
float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
|
||||
float nominal_speed; // The nominal speed for this block in mm/min
|
||||
float millimeters; // The total travel of this block in mm
|
||||
float entry_speed;
|
||||
float acceleration; // acceleration mm/sec^2
|
||||
|
||||
// Settings for the trapezoid generator
|
||||
long nominal_rate; // The nominal step rate for this block in step_events/sec
|
||||
volatile long initial_rate; // The jerk-adjusted step rate at start of block
|
||||
volatile long final_rate; // The minimal rate at exit
|
||||
long acceleration_st; // acceleration steps/sec^2
|
||||
volatile char busy;
|
||||
} block_t;
|
||||
|
||||
// Initialize the motion plan subsystem
|
||||
void plan_init();
|
||||
|
||||
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
||||
// millimaters. Feed rate specifies the speed of the motion.
|
||||
void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
|
||||
|
||||
// Set position. Used for G92 instructions.
|
||||
void plan_set_position(float x, float y, float z, float e);
|
||||
|
||||
// Called when the current block is no longer needed. Discards the block and makes the memory
|
||||
// availible for new blocks.
|
||||
void plan_discard_current_block();
|
||||
|
||||
// Gets the current block. Returns NULL if buffer empty
|
||||
block_t *plan_get_current_block();
|
||||
|
||||
void check_axes_activity();
|
||||
|
||||
extern unsigned long minsegmenttime;
|
||||
extern float max_feedrate[4]; // set the max speeds
|
||||
extern float axis_steps_per_unit[4];
|
||||
extern long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
|
||||
extern float minimumfeedrate;
|
||||
extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
|
||||
extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
|
||||
extern float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
|
||||
extern float max_z_jerk;
|
||||
extern float mintravelfeedrate;
|
||||
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||
|
||||
#endif
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
#include <avr/pgmspace.h>
|
||||
|
||||
uint16_t speed_lookuptable_fast[256][2] PROGMEM = {
|
||||
uint16_t speed_lookuptable_fast[256][2] PROGMEM = {\
|
||||
{ 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135},
|
||||
{ 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32},
|
||||
{ 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14},
|
||||
|
@ -35,9 +35,9 @@ uint16_t speed_lookuptable_fast[256][2] PROGMEM = {
|
|||
{ 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0},
|
||||
{ 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0},
|
||||
{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0},
|
||||
{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0},
|
||||
{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}
|
||||
};
|
||||
uint16_t speed_lookuptable_slow[256][2] PROGMEM = {
|
||||
uint16_t speed_lookuptable_slow[256][2] PROGMEM = {\
|
||||
{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894},
|
||||
{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657},
|
||||
{ 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331},
|
||||
|
@ -69,7 +69,7 @@ uint16_t speed_lookuptable_slow[256][2] PROGMEM = {
|
|||
{ 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4},
|
||||
{ 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4},
|
||||
{ 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4},
|
||||
{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3},
|
||||
{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
592
Marlin/stepper.cpp
Normal file
592
Marlin/stepper.cpp
Normal file
|
@ -0,0 +1,592 @@
|
|||
/*
|
||||
stepper.c - stepper motor driver: executes motion plans using stepper motors
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
|
||||
and Philipp Tiefenbacher. */
|
||||
|
||||
#include "stepper.h"
|
||||
#include "Configuration.h"
|
||||
#include "Marlin.h"
|
||||
#include "planner.h"
|
||||
#include "pins.h"
|
||||
#include "fastio.h"
|
||||
#include "temperature.h"
|
||||
#include "ultralcd.h"
|
||||
|
||||
#include "speed_lookuptable.h"
|
||||
|
||||
// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
|
||||
// for debugging purposes only, should be disabled by default
|
||||
#ifdef DEBUG_STEPS
|
||||
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
||||
volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
||||
#endif
|
||||
|
||||
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 24 bit result
|
||||
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %A1, %A2 \n\t" \
|
||||
"add %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r0 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (charIn1), \
|
||||
"d" (intIn2) \
|
||||
: \
|
||||
"r26" \
|
||||
)
|
||||
|
||||
// intRes = longIn1 * longIn2 >> 24
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 48bit result
|
||||
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"mov r27, r1 \n\t" \
|
||||
"mul %B1, %C2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %C1, %C2 \n\t" \
|
||||
"add %B0, r0 \n\t" \
|
||||
"mul %C1, %B2 \n\t" \
|
||||
"add %A0, r0 \n\t" \
|
||||
"adc %B0, r1 \n\t" \
|
||||
"mul %A1, %C2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %B2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %C1, %A2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %A2 \n\t" \
|
||||
"add r27, r1 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r27 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (longIn1), \
|
||||
"d" (longIn2) \
|
||||
: \
|
||||
"r26" , "r27" \
|
||||
)
|
||||
|
||||
// Some useful constants
|
||||
|
||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
|
||||
|
||||
static block_t *current_block; // A pointer to the block currently being traced
|
||||
|
||||
// Variables used by The Stepper Driver Interrupt
|
||||
static unsigned char out_bits; // The next stepping-bits to be output
|
||||
static long counter_x, // Counter variables for the bresenham line tracer
|
||||
counter_y,
|
||||
counter_z,
|
||||
counter_e;
|
||||
static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||
#ifdef ADVANCE
|
||||
static long advance_rate, advance, final_advance = 0;
|
||||
static short old_advance = 0;
|
||||
static short e_steps;
|
||||
#endif
|
||||
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
||||
static long acceleration_time, deceleration_time;
|
||||
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||
static unsigned short acc_step_rate; // needed for deccelaration start point
|
||||
static char step_loops;
|
||||
|
||||
|
||||
// __________________________
|
||||
// /| |\ _________________ ^
|
||||
// / | | \ /| |\ |
|
||||
// / | | \ / | | \ s
|
||||
// / | | | | | \ p
|
||||
// / | | | | | \ e
|
||||
// +-----+------------------------+---+--+---------------+----+ e
|
||||
// | BLOCK 1 | BLOCK 2 | d
|
||||
//
|
||||
// time ----->
|
||||
//
|
||||
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
||||
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
||||
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
||||
// The slope of acceleration is calculated with the leib ramp alghorithm.
|
||||
|
||||
void st_wake_up() {
|
||||
// TCNT1 = 0;
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
inline unsigned short calc_timer(unsigned short step_rate) {
|
||||
unsigned short timer;
|
||||
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
|
||||
|
||||
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
||||
step_rate = step_rate >> 2;
|
||||
step_loops = 4;
|
||||
}
|
||||
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
||||
step_rate = step_rate >> 1;
|
||||
step_loops = 2;
|
||||
}
|
||||
else {
|
||||
step_loops = 1;
|
||||
}
|
||||
|
||||
if(step_rate < 32) step_rate = 32;
|
||||
step_rate -= 32; // Correct for minimal speed
|
||||
if(step_rate >= (8*256)){ // higher step rate
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
|
||||
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||||
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
|
||||
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
||||
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
||||
}
|
||||
else { // lower step rates
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
||||
table_address += ((step_rate)>>1) & 0xfffc;
|
||||
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
|
||||
}
|
||||
if(timer < 100) timer = 100;
|
||||
return timer;
|
||||
}
|
||||
|
||||
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||||
// block begins.
|
||||
inline void trapezoid_generator_reset() {
|
||||
#ifdef ADVANCE
|
||||
advance = current_block->initial_advance;
|
||||
final_advance = current_block->final_advance;
|
||||
#endif
|
||||
deceleration_time = 0;
|
||||
// advance_rate = current_block->advance_rate;
|
||||
// step_rate to timer interval
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
acceleration_time = calc_timer(acc_step_rate);
|
||||
OCR1A = acceleration_time;
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||
ISR(TIMER1_COMPA_vect)
|
||||
{
|
||||
if(busy){ Serial.print(*(unsigned short *)OCR1A); Serial.println(" BUSY");
|
||||
return;
|
||||
} // The busy-flag is used to avoid reentering this interrupt
|
||||
|
||||
busy = true;
|
||||
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
|
||||
|
||||
// If there is no current block, attempt to pop one from the buffer
|
||||
if (current_block == NULL) {
|
||||
// Anything in the buffer?
|
||||
current_block = plan_get_current_block();
|
||||
if (current_block != NULL) {
|
||||
trapezoid_generator_reset();
|
||||
counter_x = -(current_block->step_event_count >> 1);
|
||||
counter_y = counter_x;
|
||||
counter_z = counter_x;
|
||||
counter_e = counter_x;
|
||||
step_events_completed = 0;
|
||||
#ifdef ADVANCE
|
||||
e_steps = 0;
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
// DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
}
|
||||
|
||||
if (current_block != NULL) {
|
||||
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
||||
out_bits = current_block->direction_bits;
|
||||
|
||||
#ifdef ADVANCE
|
||||
// Calculate E early.
|
||||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) {
|
||||
counter_e -= current_block->step_event_count;
|
||||
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
||||
CRITICAL_SECTION_START;
|
||||
e_steps--;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
else {
|
||||
CRITICAL_SECTION_START;
|
||||
e_steps++;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
}
|
||||
// Do E steps + advance steps
|
||||
CRITICAL_SECTION_START;
|
||||
e_steps += ((advance >> 16) - old_advance);
|
||||
CRITICAL_SECTION_END;
|
||||
old_advance = advance >> 16;
|
||||
#endif //ADVANCE
|
||||
|
||||
// Set direction en check limit switches
|
||||
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||
#ifdef DEBUG_STEPS
|
||||
count_direction[X_AXIS]=-1;
|
||||
#endif
|
||||
#if X_MIN_PIN > -1
|
||||
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
||||
#ifdef DEBUG_STEPS
|
||||
count_direction[X_AXIS]=1;
|
||||
#endif
|
||||
#if X_MAX_PIN > -1
|
||||
if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
||||
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
||||
#ifdef DEBUG_STEPS
|
||||
count_direction[Y_AXIS]=-1;
|
||||
#endif
|
||||
#if Y_MIN_PIN > -1
|
||||
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
||||
#ifdef DEBUG_STEPS
|
||||
count_direction[Y_AXIS]=1;
|
||||
#endif
|
||||
#if Y_MAX_PIN > -1
|
||||
if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
||||
#ifdef DEBUG_STEPS
|
||||
count_direction[Z_AXIS]=-1;
|
||||
#endif
|
||||
#if Z_MIN_PIN > -1
|
||||
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else { // +direction
|
||||
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
||||
#ifdef DEBUG_STEPS
|
||||
count_direction[Z_AXIS]=1;
|
||||
#endif
|
||||
#if Z_MAX_PIN > -1
|
||||
if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef ADVANCE
|
||||
if ((out_bits & (1<<E_AXIS)) != 0) // -direction
|
||||
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
||||
else // +direction
|
||||
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||||
#endif //!ADVANCE
|
||||
|
||||
for(char i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
||||
counter_x += current_block->steps_x;
|
||||
if (counter_x > 0) {
|
||||
WRITE(X_STEP_PIN, HIGH);
|
||||
counter_x -= current_block->step_event_count;
|
||||
WRITE(X_STEP_PIN, LOW);
|
||||
#ifdef DEBUG_STEPS
|
||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||
#endif
|
||||
}
|
||||
|
||||
counter_y += current_block->steps_y;
|
||||
if (counter_y > 0) {
|
||||
WRITE(Y_STEP_PIN, HIGH);
|
||||
counter_y -= current_block->step_event_count;
|
||||
WRITE(Y_STEP_PIN, LOW);
|
||||
#ifdef DEBUG_STEPS
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
#endif
|
||||
}
|
||||
|
||||
counter_z += current_block->steps_z;
|
||||
if (counter_z > 0) {
|
||||
WRITE(Z_STEP_PIN, HIGH);
|
||||
counter_z -= current_block->step_event_count;
|
||||
WRITE(Z_STEP_PIN, LOW);
|
||||
#ifdef DEBUG_STEPS
|
||||
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef ADVANCE
|
||||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) {
|
||||
WRITE(E_STEP_PIN, HIGH);
|
||||
counter_e -= current_block->step_event_count;
|
||||
WRITE(E_STEP_PIN, LOW);
|
||||
}
|
||||
#endif //!ADVANCE
|
||||
step_events_completed += 1;
|
||||
if(step_events_completed >= current_block->step_event_count) break;
|
||||
}
|
||||
// Calculare new timer value
|
||||
unsigned short timer;
|
||||
unsigned short step_rate;
|
||||
if (step_events_completed <= current_block->accelerate_until) {
|
||||
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||
acc_step_rate += current_block->initial_rate;
|
||||
|
||||
// upper limit
|
||||
if(acc_step_rate > current_block->nominal_rate)
|
||||
acc_step_rate = current_block->nominal_rate;
|
||||
|
||||
// step_rate to timer interval
|
||||
timer = calc_timer(acc_step_rate);
|
||||
#ifdef ADVANCE
|
||||
advance += advance_rate;
|
||||
#endif
|
||||
acceleration_time += timer;
|
||||
OCR1A = timer;
|
||||
}
|
||||
else if (step_events_completed > current_block->decelerate_after) {
|
||||
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
||||
|
||||
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
||||
step_rate = current_block->final_rate;
|
||||
}
|
||||
else {
|
||||
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
|
||||
}
|
||||
|
||||
// lower limit
|
||||
if(step_rate < current_block->final_rate)
|
||||
step_rate = current_block->final_rate;
|
||||
|
||||
// step_rate to timer interval
|
||||
timer = calc_timer(step_rate);
|
||||
#ifdef ADVANCE
|
||||
advance -= advance_rate;
|
||||
if(advance < final_advance)
|
||||
advance = final_advance;
|
||||
#endif //ADVANCE
|
||||
deceleration_time += timer;
|
||||
OCR1A = timer;
|
||||
}
|
||||
// If current block is finished, reset pointer
|
||||
if (step_events_completed >= current_block->step_event_count) {
|
||||
current_block = NULL;
|
||||
plan_discard_current_block();
|
||||
}
|
||||
}
|
||||
cli(); // disable interrupts
|
||||
busy=false;
|
||||
}
|
||||
|
||||
#ifdef ADVANCE
|
||||
|
||||
unsigned char old_OCR0A;
|
||||
// Timer interrupt for E. e_steps is set in the main routine;
|
||||
// Timer 0 is shared with millies
|
||||
ISR(TIMER0_COMPA_vect)
|
||||
{
|
||||
// Critical section needed because Timer 1 interrupt has higher priority.
|
||||
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
|
||||
WRITE(E_STEP_PIN, LOW);
|
||||
// Set E direction (Depends on E direction + advance)
|
||||
if (e_steps < 0) {
|
||||
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
||||
e_steps++;
|
||||
WRITE(E_STEP_PIN, HIGH);
|
||||
}
|
||||
if (e_steps > 0) {
|
||||
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||||
e_steps--;
|
||||
WRITE(E_STEP_PIN, HIGH);
|
||||
}
|
||||
old_OCR0A += 25; // 10kHz interrupt
|
||||
OCR0A = old_OCR0A;
|
||||
}
|
||||
#endif // ADVANCE
|
||||
|
||||
void st_init()
|
||||
{
|
||||
//Initialize Dir Pins
|
||||
#if X_DIR_PIN > -1
|
||||
SET_OUTPUT(X_DIR_PIN);
|
||||
#endif
|
||||
#if Y_DIR_PIN > -1
|
||||
SET_OUTPUT(Y_DIR_PIN);
|
||||
#endif
|
||||
#if Z_DIR_PIN > -1
|
||||
SET_OUTPUT(Z_DIR_PIN);
|
||||
#endif
|
||||
#if E_DIR_PIN > -1
|
||||
SET_OUTPUT(E_DIR_PIN);
|
||||
#endif
|
||||
|
||||
//Initialize Enable Pins - steppers default to disabled.
|
||||
|
||||
#if (X_ENABLE_PIN > -1)
|
||||
SET_OUTPUT(X_ENABLE_PIN);
|
||||
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
|
||||
#endif
|
||||
#if (Y_ENABLE_PIN > -1)
|
||||
SET_OUTPUT(Y_ENABLE_PIN);
|
||||
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
|
||||
#endif
|
||||
#if (Z_ENABLE_PIN > -1)
|
||||
SET_OUTPUT(Z_ENABLE_PIN);
|
||||
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
|
||||
#endif
|
||||
#if (E_ENABLE_PIN > -1)
|
||||
SET_OUTPUT(E_ENABLE_PIN);
|
||||
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
|
||||
#endif
|
||||
|
||||
//endstops and pullups
|
||||
#ifdef ENDSTOPPULLUPS
|
||||
#if X_MIN_PIN > -1
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
WRITE(X_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#if X_MAX_PIN > -1
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
WRITE(X_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#if Y_MIN_PIN > -1
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
WRITE(Y_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#if Y_MAX_PIN > -1
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
WRITE(Y_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#if Z_MIN_PIN > -1
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
WRITE(Z_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#if Z_MAX_PIN > -1
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
WRITE(Z_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#else //ENDSTOPPULLUPS
|
||||
#if X_MIN_PIN > -1
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
#endif
|
||||
#if X_MAX_PIN > -1
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
#endif
|
||||
#if Y_MIN_PIN > -1
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
#endif
|
||||
#if Y_MAX_PIN > -1
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
#endif
|
||||
#if Z_MIN_PIN > -1
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
#endif
|
||||
#if Z_MAX_PIN > -1
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
#endif
|
||||
#endif //ENDSTOPPULLUPS
|
||||
|
||||
|
||||
//Initialize Step Pins
|
||||
#if (X_STEP_PIN > -1)
|
||||
SET_OUTPUT(X_STEP_PIN);
|
||||
#endif
|
||||
#if (Y_STEP_PIN > -1)
|
||||
SET_OUTPUT(Y_STEP_PIN);
|
||||
#endif
|
||||
#if (Z_STEP_PIN > -1)
|
||||
SET_OUTPUT(Z_STEP_PIN);
|
||||
#endif
|
||||
#if (E_STEP_PIN > -1)
|
||||
SET_OUTPUT(E_STEP_PIN);
|
||||
#endif
|
||||
|
||||
// waveform generation = 0100 = CTC
|
||||
TCCR1B &= ~(1<<WGM13);
|
||||
TCCR1B |= (1<<WGM12);
|
||||
TCCR1A &= ~(1<<WGM11);
|
||||
TCCR1A &= ~(1<<WGM10);
|
||||
|
||||
// output mode = 00 (disconnected)
|
||||
TCCR1A &= ~(3<<COM1A0);
|
||||
TCCR1A &= ~(3<<COM1B0);
|
||||
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
|
||||
|
||||
OCR1A = 0x4000;
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
#ifdef ADVANCE
|
||||
e_steps = 0;
|
||||
TIMSK0 |= (1<<OCIE0A);
|
||||
#endif //ADVANCE
|
||||
sei();
|
||||
}
|
||||
|
||||
// Block until all buffered steps are executed
|
||||
void st_synchronize()
|
||||
{
|
||||
while(plan_get_current_block()) {
|
||||
manage_heater();
|
||||
manage_inactivity(1);
|
||||
LCD_STATUS;
|
||||
}
|
||||
}
|
40
Marlin/stepper.h
Normal file
40
Marlin/stepper.h
Normal file
|
@ -0,0 +1,40 @@
|
|||
/*
|
||||
stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef stepper_h
|
||||
#define stepper_h
|
||||
// Initialize and start the stepper motor subsystem
|
||||
void st_init();
|
||||
|
||||
// Block until all buffered steps are executed
|
||||
void st_synchronize();
|
||||
|
||||
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
|
||||
// to notify the subsystem that it is time to go to work.
|
||||
void st_wake_up();
|
||||
|
||||
// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
|
||||
// for debugging purposes only, should be disabled by default
|
||||
#ifdef DEBUG_STEPS
|
||||
extern volatile long count_position[NUM_AXIS];
|
||||
extern volatile int count_direction[NUM_AXIS];
|
||||
#endif
|
||||
|
||||
#endif
|
84
Marlin/streaming.h
Normal file
84
Marlin/streaming.h
Normal file
|
@ -0,0 +1,84 @@
|
|||
/*
|
||||
Streaming.h - Arduino library for supporting the << streaming operator
|
||||
Copyright (c) 2010 Mikal Hart. All rights reserved.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#ifndef ARDUINO_STREAMING
|
||||
#define ARDUINO_STREAMING
|
||||
|
||||
//#include <WProgram.h>
|
||||
|
||||
#define STREAMING_LIBRARY_VERSION 4
|
||||
|
||||
// Generic template
|
||||
template<class T>
|
||||
inline Print &operator <<(Print &stream, T arg)
|
||||
{ stream.print(arg); return stream; }
|
||||
|
||||
struct _BASED
|
||||
{
|
||||
long val;
|
||||
int base;
|
||||
_BASED(long v, int b): val(v), base(b)
|
||||
{}
|
||||
};
|
||||
|
||||
#define _HEX(a) _BASED(a, HEX)
|
||||
#define _DEC(a) _BASED(a, DEC)
|
||||
#define _OCT(a) _BASED(a, OCT)
|
||||
#define _BIN(a) _BASED(a, BIN)
|
||||
#define _BYTE(a) _BASED(a, BYTE)
|
||||
|
||||
// Specialization for class _BASED
|
||||
// Thanks to Arduino forum user Ben Combee who suggested this
|
||||
// clever technique to allow for expressions like
|
||||
// Serial << _HEX(a);
|
||||
|
||||
inline Print &operator <<(Print &obj, const _BASED &arg)
|
||||
{ obj.print(arg.val, arg.base); return obj; }
|
||||
|
||||
#if ARDUINO >= 18
|
||||
// Specialization for class _FLOAT
|
||||
// Thanks to Michael Margolis for suggesting a way
|
||||
// to accommodate Arduino 0018's floating point precision
|
||||
// feature like this:
|
||||
// Serial << _FLOAT(gps_latitude, 6); // 6 digits of precision
|
||||
|
||||
struct _FLOAT
|
||||
{
|
||||
float val;
|
||||
int digits;
|
||||
_FLOAT(double v, int d): val(v), digits(d)
|
||||
{}
|
||||
};
|
||||
|
||||
inline Print &operator <<(Print &obj, const _FLOAT &arg)
|
||||
{ obj.print(arg.val, arg.digits); return obj; }
|
||||
#endif
|
||||
|
||||
// Specialization for enum _EndLineCode
|
||||
// Thanks to Arduino forum user Paul V. who suggested this
|
||||
// clever technique to allow for expressions like
|
||||
// Serial << "Hello!" << endl;
|
||||
|
||||
enum _EndLineCode { endl };
|
||||
|
||||
inline Print &operator <<(Print &obj, _EndLineCode arg)
|
||||
{ obj.println(); return obj; }
|
||||
|
||||
#endif
|
||||
|
476
Marlin/temperature.cpp
Normal file
476
Marlin/temperature.cpp
Normal file
|
@ -0,0 +1,476 @@
|
|||
/*
|
||||
temperature.c - temperature control
|
||||
Part of Marlin
|
||||
|
||||
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/*
|
||||
This firmware is a mashup between Sprinter and grbl.
|
||||
(https://github.com/kliment/Sprinter)
|
||||
(https://github.com/simen/grbl/tree)
|
||||
|
||||
It has preliminary support for Matthew Roberts advance algorithm
|
||||
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
||||
|
||||
This firmware is optimized for gen6 electronics.
|
||||
*/
|
||||
|
||||
#include "fastio.h"
|
||||
#include "Configuration.h"
|
||||
#include "pins.h"
|
||||
#include "Marlin.h"
|
||||
#include "ultralcd.h"
|
||||
#include "streaming.h"
|
||||
#include "temperature.h"
|
||||
|
||||
int target_bed_raw = 0;
|
||||
int current_bed_raw = 0;
|
||||
|
||||
int target_raw[3] = {0, 0, 0};
|
||||
int current_raw[3] = {0, 0, 0};
|
||||
unsigned char temp_meas_ready = false;
|
||||
|
||||
unsigned long previous_millis_heater, previous_millis_bed_heater;
|
||||
|
||||
#ifdef PIDTEMP
|
||||
double temp_iState = 0;
|
||||
double temp_dState = 0;
|
||||
double pTerm;
|
||||
double iTerm;
|
||||
double dTerm;
|
||||
//int output;
|
||||
double pid_error;
|
||||
double temp_iState_min;
|
||||
double temp_iState_max;
|
||||
double pid_setpoint = 0.0;
|
||||
double pid_input;
|
||||
double pid_output;
|
||||
bool pid_reset;
|
||||
float HeaterPower;
|
||||
|
||||
float Kp=DEFAULT_Kp;
|
||||
float Ki=DEFAULT_Ki;
|
||||
float Kd=DEFAULT_Kd;
|
||||
float Kc=DEFAULT_Kc;
|
||||
#endif //PIDTEMP
|
||||
|
||||
#ifdef MINTEMP
|
||||
int minttemp = temp2analog(MINTEMP);
|
||||
#endif //MINTEMP
|
||||
#ifdef MAXTEMP
|
||||
int maxttemp = temp2analog(MAXTEMP);
|
||||
#endif //MAXTEMP
|
||||
|
||||
#ifdef BED_MINTEMP
|
||||
int bed_minttemp = temp2analog(BED_MINTEMP);
|
||||
#endif //BED_MINTEMP
|
||||
#ifdef BED_MAXTEMP
|
||||
int bed_maxttemp = temp2analog(BED_MAXTEMP);
|
||||
#endif //BED_MAXTEMP
|
||||
|
||||
void manage_heater()
|
||||
{
|
||||
#ifdef USE_WATCHDOG
|
||||
wd_reset();
|
||||
#endif
|
||||
|
||||
float pid_input;
|
||||
float pid_output;
|
||||
if(temp_meas_ready == true) {
|
||||
|
||||
CRITICAL_SECTION_START;
|
||||
temp_meas_ready = false;
|
||||
CRITICAL_SECTION_END;
|
||||
|
||||
#ifdef PIDTEMP
|
||||
pid_input = analog2temp(current_raw[0]);
|
||||
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error = pid_setpoint - pid_input;
|
||||
if(pid_error > 10){
|
||||
pid_output = PID_MAX;
|
||||
pid_reset = true;
|
||||
}
|
||||
else if(pid_error < -10) {
|
||||
pid_output = 0;
|
||||
pid_reset = true;
|
||||
}
|
||||
else {
|
||||
if(pid_reset == true) {
|
||||
temp_iState = 0.0;
|
||||
pid_reset = false;
|
||||
}
|
||||
pTerm = Kp * pid_error;
|
||||
temp_iState += pid_error;
|
||||
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
|
||||
iTerm = Ki * temp_iState;
|
||||
#define K1 0.95
|
||||
#define K2 (1.0-K1)
|
||||
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
|
||||
temp_dState = pid_input;
|
||||
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
|
||||
}
|
||||
#endif //PID_OPENLOOP
|
||||
#ifdef PID_DEBUG
|
||||
Serial.print(" Input ");
|
||||
Serial.print(pid_input);
|
||||
Serial.print(" Output ");
|
||||
Serial.print(pid_output);
|
||||
Serial.print(" pTerm ");
|
||||
Serial.print(pTerm);
|
||||
Serial.print(" iTerm ");
|
||||
Serial.print(iTerm);
|
||||
Serial.print(" dTerm ");
|
||||
Serial.print(dTerm);
|
||||
Serial.println();
|
||||
#endif //PID_DEBUG
|
||||
analogWrite(HEATER_0_PIN, pid_output);
|
||||
#endif //PIDTEMP
|
||||
|
||||
#ifndef PIDTEMP
|
||||
if(current_raw[0] >= target_raw[0])
|
||||
{
|
||||
WRITE(HEATER_0_PIN,LOW);
|
||||
}
|
||||
else
|
||||
{
|
||||
WRITE(HEATER_0_PIN,HIGH);
|
||||
}
|
||||
#endif
|
||||
|
||||
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
||||
return;
|
||||
previous_millis_bed_heater = millis();
|
||||
|
||||
#if TEMP_1_PIN > -1
|
||||
if(current_raw[1] >= target_raw[1])
|
||||
{
|
||||
WRITE(HEATER_1_PIN,LOW);
|
||||
}
|
||||
else
|
||||
{
|
||||
WRITE(HEATER_1_PIN,HIGH);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Takes hot end temperature value as input and returns corresponding raw value.
|
||||
// For a thermistor, it uses the RepRap thermistor temp table.
|
||||
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
||||
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
||||
float temp2analog(int celsius) {
|
||||
#ifdef HEATER_USES_THERMISTOR
|
||||
int raw = 0;
|
||||
byte i;
|
||||
|
||||
for (i=1; i<NUMTEMPS; i++)
|
||||
{
|
||||
if (temptable[i][1] < celsius)
|
||||
{
|
||||
raw = temptable[i-1][0] +
|
||||
(celsius - temptable[i-1][1]) *
|
||||
(temptable[i][0] - temptable[i-1][0]) /
|
||||
(temptable[i][1] - temptable[i-1][1]);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == NUMTEMPS) raw = temptable[i-1][0];
|
||||
|
||||
return (1023 * OVERSAMPLENR) - raw;
|
||||
#elif defined HEATER_USES_AD595
|
||||
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Takes bed temperature value as input and returns corresponding raw value.
|
||||
// For a thermistor, it uses the RepRap thermistor temp table.
|
||||
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
||||
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
||||
float temp2analogBed(int celsius) {
|
||||
#ifdef BED_USES_THERMISTOR
|
||||
|
||||
int raw = 0;
|
||||
byte i;
|
||||
|
||||
for (i=1; i<BNUMTEMPS; i++)
|
||||
{
|
||||
if (bedtemptable[i][1] < celsius)
|
||||
{
|
||||
raw = bedtemptable[i-1][0] +
|
||||
(celsius - bedtemptable[i-1][1]) *
|
||||
(bedtemptable[i][0] - bedtemptable[i-1][0]) /
|
||||
(bedtemptable[i][1] - bedtemptable[i-1][1]);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
|
||||
|
||||
return (1023 * OVERSAMPLENR) - raw;
|
||||
#elif defined BED_USES_AD595
|
||||
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Derived from RepRap FiveD extruder::getTemperature()
|
||||
// For hot end temperature measurement.
|
||||
float analog2temp(int raw) {
|
||||
#ifdef HEATER_USES_THERMISTOR
|
||||
int celsius = 0;
|
||||
byte i;
|
||||
raw = (1023 * OVERSAMPLENR) - raw;
|
||||
for (i=1; i<NUMTEMPS; i++)
|
||||
{
|
||||
if (temptable[i][0] > raw)
|
||||
{
|
||||
celsius = temptable[i-1][1] +
|
||||
(raw - temptable[i-1][0]) *
|
||||
(temptable[i][1] - temptable[i-1][1]) /
|
||||
(temptable[i][0] - temptable[i-1][0]);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == NUMTEMPS) celsius = temptable[i-1][1];
|
||||
|
||||
return celsius;
|
||||
#elif defined HEATER_USES_AD595
|
||||
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Derived from RepRap FiveD extruder::getTemperature()
|
||||
// For bed temperature measurement.
|
||||
float analog2tempBed(int raw) {
|
||||
#ifdef BED_USES_THERMISTOR
|
||||
int celsius = 0;
|
||||
byte i;
|
||||
|
||||
raw = (1023 * OVERSAMPLENR) - raw;
|
||||
|
||||
for (i=1; i<NUMTEMPS; i++)
|
||||
{
|
||||
if (bedtemptable[i][0] > raw)
|
||||
{
|
||||
celsius = bedtemptable[i-1][1] +
|
||||
(raw - bedtemptable[i-1][0]) *
|
||||
(bedtemptable[i][1] - bedtemptable[i-1][1]) /
|
||||
(bedtemptable[i][0] - bedtemptable[i-1][0]);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == NUMTEMPS) celsius = bedtemptable[i-1][1];
|
||||
|
||||
return celsius;
|
||||
|
||||
#elif defined BED_USES_AD595
|
||||
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
|
||||
void tp_init()
|
||||
{
|
||||
#if (HEATER_0_PIN > -1)
|
||||
SET_OUTPUT(HEATER_0_PIN);
|
||||
#endif
|
||||
#if (HEATER_1_PIN > -1)
|
||||
SET_OUTPUT(HEATER_1_PIN);
|
||||
#endif
|
||||
#if (HEATER_2_PIN > -1)
|
||||
SET_OUTPUT(HEATER_2_PIN);
|
||||
#endif
|
||||
|
||||
#ifdef PIDTEMP
|
||||
temp_iState_min = 0.0;
|
||||
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
||||
#endif //PIDTEMP
|
||||
|
||||
// Set analog inputs
|
||||
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
||||
|
||||
// Use timer0 for temperature measurement
|
||||
// Interleave temperature interrupt with millies interrupt
|
||||
OCR0B = 128;
|
||||
TIMSK0 |= (1<<OCIE0B);
|
||||
}
|
||||
|
||||
static unsigned char temp_count = 0;
|
||||
static unsigned long raw_temp_0_value = 0;
|
||||
static unsigned long raw_temp_1_value = 0;
|
||||
static unsigned long raw_temp_2_value = 0;
|
||||
static unsigned char temp_state = 0;
|
||||
|
||||
// Timer 0 is shared with millies
|
||||
ISR(TIMER0_COMPB_vect)
|
||||
{
|
||||
switch(temp_state) {
|
||||
case 0: // Prepare TEMP_0
|
||||
#if (TEMP_0_PIN > -1)
|
||||
#if TEMP_0_PIN < 8
|
||||
DIDR0 = 1 << TEMP_0_PIN;
|
||||
#else
|
||||
DIDR2 = 1<<(TEMP_0_PIN - 8);
|
||||
ADCSRB = 1<<MUX5;
|
||||
#endif
|
||||
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
||||
ADCSRA |= 1<<ADSC; // Start conversion
|
||||
#endif
|
||||
#ifdef ULTIPANEL
|
||||
buttons_check();
|
||||
#endif
|
||||
temp_state = 1;
|
||||
break;
|
||||
case 1: // Measure TEMP_0
|
||||
#if (TEMP_0_PIN > -1)
|
||||
raw_temp_0_value += ADC;
|
||||
#endif
|
||||
temp_state = 2;
|
||||
break;
|
||||
case 2: // Prepare TEMP_1
|
||||
#if (TEMP_1_PIN > -1)
|
||||
#if TEMP_1_PIN < 7
|
||||
DIDR0 = 1<<TEMP_1_PIN;
|
||||
#else
|
||||
DIDR2 = 1<<(TEMP_1_PIN - 8);
|
||||
ADCSRB = 1<<MUX5;
|
||||
#endif
|
||||
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
||||
ADCSRA |= 1<<ADSC; // Start conversion
|
||||
#endif
|
||||
#ifdef ULTIPANEL
|
||||
buttons_check();
|
||||
#endif
|
||||
temp_state = 3;
|
||||
break;
|
||||
case 3: // Measure TEMP_1
|
||||
#if (TEMP_1_PIN > -1)
|
||||
raw_temp_1_value += ADC;
|
||||
#endif
|
||||
temp_state = 4;
|
||||
break;
|
||||
case 4: // Prepare TEMP_2
|
||||
#if (TEMP_2_PIN > -1)
|
||||
#if TEMP_2_PIN < 7
|
||||
DIDR0 = 1 << TEMP_2_PIN;
|
||||
#else
|
||||
DIDR2 = 1<<(TEMP_2_PIN - 8);
|
||||
ADCSRB = 1<<MUX5;
|
||||
#endif
|
||||
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
||||
ADCSRA |= 1<<ADSC; // Start conversion
|
||||
#endif
|
||||
#ifdef ULTIPANEL
|
||||
buttons_check();
|
||||
#endif
|
||||
temp_state = 5;
|
||||
break;
|
||||
case 5: // Measure TEMP_2
|
||||
#if (TEMP_2_PIN > -1)
|
||||
raw_temp_2_value += ADC;
|
||||
#endif
|
||||
temp_state = 0;
|
||||
temp_count++;
|
||||
break;
|
||||
default:
|
||||
Serial.println("!! Temp measurement error !!");
|
||||
break;
|
||||
}
|
||||
|
||||
if(temp_count >= 16) // 6 ms * 16 = 96ms.
|
||||
{
|
||||
#ifdef HEATER_USES_AD595
|
||||
current_raw[0] = raw_temp_0_value;
|
||||
current_raw[2] = raw_temp_2_value;
|
||||
#else
|
||||
current_raw[0] = 16383 - raw_temp_0_value;
|
||||
current_raw[2] = 16383 - raw_temp_2_value;
|
||||
#endif
|
||||
|
||||
#ifdef BED_USES_AD595
|
||||
current_raw[1] = raw_temp_1_value;
|
||||
#else
|
||||
current_raw[1] = 16383 - raw_temp_1_value;
|
||||
#endif
|
||||
|
||||
temp_meas_ready = true;
|
||||
temp_count = 0;
|
||||
raw_temp_0_value = 0;
|
||||
raw_temp_1_value = 0;
|
||||
raw_temp_2_value = 0;
|
||||
#ifdef MAXTEMP
|
||||
#if (HEATER_0_PIN > -1)
|
||||
if(current_raw[0] >= maxttemp) {
|
||||
target_raw[0] = 0;
|
||||
analogWrite(HEATER_0_PIN, 0);
|
||||
Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");
|
||||
}
|
||||
#endif
|
||||
#if (HEATER_2_PIN > -1)
|
||||
if(current_raw[2] >= maxttemp) {
|
||||
target_raw[2] = 0;
|
||||
analogWrite(HEATER_2_PIN, 0);
|
||||
Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");
|
||||
}
|
||||
#endif
|
||||
#endif //MAXTEMP
|
||||
#ifdef MINTEMP
|
||||
#if (HEATER_0_PIN > -1)
|
||||
if(current_raw[0] <= minttemp) {
|
||||
target_raw[0] = 0;
|
||||
analogWrite(HEATER_0_PIN, 0);
|
||||
Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");
|
||||
}
|
||||
#endif
|
||||
#if (HEATER_2_PIN > -1)
|
||||
if(current_raw[2] <= minttemp) {
|
||||
target_raw[2] = 0;
|
||||
analogWrite(HEATER_2_PIN, 0);
|
||||
Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");
|
||||
}
|
||||
#endif
|
||||
#endif //MAXTEMP
|
||||
#ifdef BED_MINTEMP
|
||||
#if (HEATER_1_PIN > -1)
|
||||
if(current_raw[1] <= bed_minttemp) {
|
||||
target_raw[1] = 0;
|
||||
WRITE(HEATER_1_PIN, 0);
|
||||
Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#ifdef BED_MAXTEMP
|
||||
#if (HEATER_1_PIN > -1)
|
||||
if(current_raw[1] >= bed_maxttemp) {
|
||||
target_raw[1] = 0;
|
||||
WRITE(HEATER_1_PIN, 0);
|
||||
Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
}
|
55
Marlin/temperature.h
Normal file
55
Marlin/temperature.h
Normal file
|
@ -0,0 +1,55 @@
|
|||
/*
|
||||
temperature.h - temperature controller
|
||||
Part of Marlin
|
||||
|
||||
Copyright (c) 2011 Erik van der Zalm
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef temperature_h
|
||||
#define temperature_h
|
||||
|
||||
void manage_inactivity(byte debug);
|
||||
|
||||
void tp_init();
|
||||
void manage_heater();
|
||||
//int temp2analogu(int celsius, const short table[][2], int numtemps);
|
||||
//float analog2tempu(int raw, const short table[][2], int numtemps);
|
||||
float temp2analog(int celsius);
|
||||
float temp2analogBed(int celsius);
|
||||
float analog2temp(int raw);
|
||||
float analog2tempBed(int raw);
|
||||
|
||||
#ifdef HEATER_USES_THERMISTOR
|
||||
#define HEATERSOURCE 1
|
||||
#endif
|
||||
#ifdef BED_USES_THERMISTOR
|
||||
#define BEDSOURCE 1
|
||||
#endif
|
||||
|
||||
//#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)
|
||||
//#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS
|
||||
|
||||
|
||||
extern float Kp;
|
||||
extern float Ki;
|
||||
extern float Kd;
|
||||
extern float Kc;
|
||||
|
||||
extern int target_raw[3];
|
||||
extern int current_raw[3];
|
||||
extern double pid_setpoint;
|
||||
|
||||
#endif
|
|
@ -1,132 +1,133 @@
|
|||
#ifndef THERMISTORTABLES_H_
|
||||
#define THERMISTORTABLES_H_
|
||||
|
||||
#define OVERSAMPLENR 16
|
||||
#if (THERMISTORHEATER == 1) || (THERMISTORBED == 1) //100k bed thermistor
|
||||
|
||||
|
||||
#define NUMTEMPS_1 61
|
||||
const short temptable_1[NUMTEMPS_1][2] = {
|
||||
{ (23*16) , 300 },
|
||||
{ (25*16) , 295 },
|
||||
{ (27*16) , 290 },
|
||||
{ (28*16) , 285 },
|
||||
{ (31*16) , 280 },
|
||||
{ (33*16) , 275 },
|
||||
{ (35*16) , 270 },
|
||||
{ (38*16) , 265 },
|
||||
{ (41*16) , 260 },
|
||||
{ (44*16) , 255 },
|
||||
{ (48*16) , 250 },
|
||||
{ (52*16) , 245 },
|
||||
{ (56*16) , 240 },
|
||||
{ (61*16) , 235 },
|
||||
{ (66*16) , 230 },
|
||||
{ (71*16) , 225 },
|
||||
{ (78*16) , 220 },
|
||||
{ (84*16) , 215 },
|
||||
{ (92*16) , 210 },
|
||||
{ (100*16), 205 },
|
||||
{ (109*16), 200 },
|
||||
{ (120*16), 195 },
|
||||
{ (131*16), 190 },
|
||||
{ (143*16), 185 },
|
||||
{ (156*16), 180 },
|
||||
{ (171*16), 175 },
|
||||
{ (187*16), 170 },
|
||||
{ (205*16), 165 },
|
||||
{ (224*16), 160 },
|
||||
{ (245*16), 155 },
|
||||
{ (268*16), 150 },
|
||||
{ (293*16), 145 },
|
||||
{ (320*16), 140 },
|
||||
{ (348*16), 135 },
|
||||
{ (379*16), 130 },
|
||||
{ (411*16), 125 },
|
||||
{ (445*16), 120 },
|
||||
{ (480*16), 115 },
|
||||
{ (516*16), 110 },
|
||||
{ (553*16), 105 },
|
||||
{ (591*16), 100 },
|
||||
{ (628*16), 95 },
|
||||
{ (665*16), 90 },
|
||||
{ (702*16), 85 },
|
||||
{ (737*16), 80 },
|
||||
{ (770*16), 75 },
|
||||
{ (801*16), 70 },
|
||||
{ (830*16), 65 },
|
||||
{ (857*16), 60 },
|
||||
{ (881*16), 55 },
|
||||
{ (903*16), 50 },
|
||||
{ (922*16), 45 },
|
||||
{ (939*16), 40 },
|
||||
{ (954*16), 35 },
|
||||
{ (966*16), 30 },
|
||||
{ (977*16), 25 },
|
||||
{ (985*16), 20 },
|
||||
{ (993*16), 15 },
|
||||
{ (999*16), 10 },
|
||||
{ (1004*16), 5 },
|
||||
{ (1008*16), 0 } //safety
|
||||
{ (23*OVERSAMPLENR) , 300 },
|
||||
{ (25*OVERSAMPLENR) , 295 },
|
||||
{ (27*OVERSAMPLENR) , 290 },
|
||||
{ (28*OVERSAMPLENR) , 285 },
|
||||
{ (31*OVERSAMPLENR) , 280 },
|
||||
{ (33*OVERSAMPLENR) , 275 },
|
||||
{ (35*OVERSAMPLENR) , 270 },
|
||||
{ (38*OVERSAMPLENR) , 265 },
|
||||
{ (41*OVERSAMPLENR) , 260 },
|
||||
{ (44*OVERSAMPLENR) , 255 },
|
||||
{ (48*OVERSAMPLENR) , 250 },
|
||||
{ (52*OVERSAMPLENR) , 245 },
|
||||
{ (56*OVERSAMPLENR) , 240 },
|
||||
{ (61*OVERSAMPLENR) , 235 },
|
||||
{ (66*OVERSAMPLENR) , 230 },
|
||||
{ (71*OVERSAMPLENR) , 225 },
|
||||
{ (78*OVERSAMPLENR) , 220 },
|
||||
{ (84*OVERSAMPLENR) , 215 },
|
||||
{ (92*OVERSAMPLENR) , 210 },
|
||||
{ (100*OVERSAMPLENR), 205 },
|
||||
{ (109*OVERSAMPLENR), 200 },
|
||||
{ (120*OVERSAMPLENR), 195 },
|
||||
{ (131*OVERSAMPLENR), 190 },
|
||||
{ (143*OVERSAMPLENR), 185 },
|
||||
{ (156*OVERSAMPLENR), 180 },
|
||||
{ (171*OVERSAMPLENR), 175 },
|
||||
{ (187*OVERSAMPLENR), 170 },
|
||||
{ (205*OVERSAMPLENR), 165 },
|
||||
{ (224*OVERSAMPLENR), 160 },
|
||||
{ (245*OVERSAMPLENR), 155 },
|
||||
{ (268*OVERSAMPLENR), 150 },
|
||||
{ (293*OVERSAMPLENR), 145 },
|
||||
{ (320*OVERSAMPLENR), 140 },
|
||||
{ (348*OVERSAMPLENR), 135 },
|
||||
{ (379*OVERSAMPLENR), 130 },
|
||||
{ (411*OVERSAMPLENR), 125 },
|
||||
{ (445*OVERSAMPLENR), 120 },
|
||||
{ (480*OVERSAMPLENR), 115 },
|
||||
{ (516*OVERSAMPLENR), 110 },
|
||||
{ (553*OVERSAMPLENR), 105 },
|
||||
{ (591*OVERSAMPLENR), 100 },
|
||||
{ (628*OVERSAMPLENR), 95 },
|
||||
{ (665*OVERSAMPLENR), 90 },
|
||||
{ (702*OVERSAMPLENR), 85 },
|
||||
{ (737*OVERSAMPLENR), 80 },
|
||||
{ (770*OVERSAMPLENR), 75 },
|
||||
{ (801*OVERSAMPLENR), 70 },
|
||||
{ (830*OVERSAMPLENR), 65 },
|
||||
{ (857*OVERSAMPLENR), 60 },
|
||||
{ (881*OVERSAMPLENR), 55 },
|
||||
{ (903*OVERSAMPLENR), 50 },
|
||||
{ (922*OVERSAMPLENR), 45 },
|
||||
{ (939*OVERSAMPLENR), 40 },
|
||||
{ (954*OVERSAMPLENR), 35 },
|
||||
{ (966*OVERSAMPLENR), 30 },
|
||||
{ (977*OVERSAMPLENR), 25 },
|
||||
{ (985*OVERSAMPLENR), 20 },
|
||||
{ (993*OVERSAMPLENR), 15 },
|
||||
{ (999*OVERSAMPLENR), 10 },
|
||||
{ (1004*OVERSAMPLENR), 5 },
|
||||
{ (1008*OVERSAMPLENR), 0 } //safety
|
||||
};
|
||||
#endif
|
||||
#if (THERMISTORHEATER == 2) || (THERMISTORBED == 2) //200k bed thermistor
|
||||
#define NUMTEMPS_2 21
|
||||
const short temptable_2[NUMTEMPS_2][2] = {
|
||||
{(1*16), 848},
|
||||
{(54*16), 275},
|
||||
{(107*16), 228},
|
||||
{(160*16), 202},
|
||||
{(213*16), 185},
|
||||
{(266*16), 171},
|
||||
{(319*16), 160},
|
||||
{(372*16), 150},
|
||||
{(425*16), 141},
|
||||
{(478*16), 133},
|
||||
{(531*16), 125},
|
||||
{(584*16), 118},
|
||||
{(637*16), 110},
|
||||
{(690*16), 103},
|
||||
{(743*16), 95},
|
||||
{(796*16), 86},
|
||||
{(849*16), 77},
|
||||
{(902*16), 65},
|
||||
{(955*16), 49},
|
||||
{(1008*16), 17},
|
||||
{(1020*16), 0} //safety
|
||||
{(1*OVERSAMPLENR), 848},
|
||||
{(54*OVERSAMPLENR), 275},
|
||||
{(107*OVERSAMPLENR), 228},
|
||||
{(160*OVERSAMPLENR), 202},
|
||||
{(213*OVERSAMPLENR), 185},
|
||||
{(266*OVERSAMPLENR), 171},
|
||||
{(319*OVERSAMPLENR), 160},
|
||||
{(372*OVERSAMPLENR), 150},
|
||||
{(425*OVERSAMPLENR), 141},
|
||||
{(478*OVERSAMPLENR), 133},
|
||||
{(531*OVERSAMPLENR), 125},
|
||||
{(584*OVERSAMPLENR), 118},
|
||||
{(637*OVERSAMPLENR), 110},
|
||||
{(690*OVERSAMPLENR), 103},
|
||||
{(743*OVERSAMPLENR), 95},
|
||||
{(796*OVERSAMPLENR), 86},
|
||||
{(849*OVERSAMPLENR), 77},
|
||||
{(902*OVERSAMPLENR), 65},
|
||||
{(955*OVERSAMPLENR), 49},
|
||||
{(1008*OVERSAMPLENR), 17},
|
||||
{(1020*OVERSAMPLENR), 0} //safety
|
||||
};
|
||||
|
||||
#endif
|
||||
#if (THERMISTORHEATER == 3) || (THERMISTORBED == 3) //mendel-parts
|
||||
#define NUMTEMPS_3 28
|
||||
const short temptable_3[NUMTEMPS_3][2] = {
|
||||
{(1*16),864},
|
||||
{(21*16),300},
|
||||
{(25*16),290},
|
||||
{(29*16),280},
|
||||
{(33*16),270},
|
||||
{(39*16),260},
|
||||
{(46*16),250},
|
||||
{(54*16),240},
|
||||
{(64*16),230},
|
||||
{(75*16),220},
|
||||
{(90*16),210},
|
||||
{(107*16),200},
|
||||
{(128*16),190},
|
||||
{(154*16),180},
|
||||
{(184*16),170},
|
||||
{(221*16),160},
|
||||
{(265*16),150},
|
||||
{(316*16),140},
|
||||
{(375*16),130},
|
||||
{(441*16),120},
|
||||
{(513*16),110},
|
||||
{(588*16),100},
|
||||
{(734*16),80},
|
||||
{(856*16),60},
|
||||
{(938*16),40},
|
||||
{(986*16),20},
|
||||
{(1008*16),0},
|
||||
{(1018*16),-20}
|
||||
{(1*OVERSAMPLENR),864},
|
||||
{(21*OVERSAMPLENR),300},
|
||||
{(25*OVERSAMPLENR),290},
|
||||
{(29*OVERSAMPLENR),280},
|
||||
{(33*OVERSAMPLENR),270},
|
||||
{(39*OVERSAMPLENR),260},
|
||||
{(46*OVERSAMPLENR),250},
|
||||
{(54*OVERSAMPLENR),240},
|
||||
{(64*OVERSAMPLENR),230},
|
||||
{(75*OVERSAMPLENR),220},
|
||||
{(90*OVERSAMPLENR),210},
|
||||
{(107*OVERSAMPLENR),200},
|
||||
{(128*OVERSAMPLENR),190},
|
||||
{(154*OVERSAMPLENR),180},
|
||||
{(184*OVERSAMPLENR),170},
|
||||
{(221*OVERSAMPLENR),160},
|
||||
{(265*OVERSAMPLENR),150},
|
||||
{(316*OVERSAMPLENR),140},
|
||||
{(375*OVERSAMPLENR),130},
|
||||
{(441*OVERSAMPLENR),120},
|
||||
{(513*OVERSAMPLENR),110},
|
||||
{(588*OVERSAMPLENR),100},
|
||||
{(734*OVERSAMPLENR),80},
|
||||
{(856*OVERSAMPLENR),60},
|
||||
{(938*OVERSAMPLENR),40},
|
||||
{(986*OVERSAMPLENR),20},
|
||||
{(1008*OVERSAMPLENR),0},
|
||||
{(1018*OVERSAMPLENR),-20}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
156
Marlin/ultralcd.h
Normal file
156
Marlin/ultralcd.h
Normal file
|
@ -0,0 +1,156 @@
|
|||
#ifndef __ULTRALCDH
|
||||
#define __ULTRALCDH
|
||||
#include "Configuration.h"
|
||||
|
||||
#ifdef ULTRA_LCD
|
||||
|
||||
void lcd_status();
|
||||
void lcd_init();
|
||||
void lcd_status(const char* message);
|
||||
void beep();
|
||||
void buttons_check();
|
||||
#define LCDSTATUSRIGHT
|
||||
|
||||
#define LCD_UPDATE_INTERVAL 100
|
||||
#define STATUSTIMEOUT 15000
|
||||
|
||||
#include "Configuration.h"
|
||||
|
||||
#include <LiquidCrystal.h>
|
||||
extern LiquidCrystal lcd;
|
||||
|
||||
//lcd display size
|
||||
|
||||
#ifdef NEWPANEL
|
||||
//arduino pin witch triggers an piezzo beeper
|
||||
#define BEEPER 18
|
||||
|
||||
#define LCD_PINS_RS 20
|
||||
#define LCD_PINS_ENABLE 17
|
||||
#define LCD_PINS_D4 16
|
||||
#define LCD_PINS_D5 21
|
||||
#define LCD_PINS_D6 5
|
||||
#define LCD_PINS_D7 6
|
||||
|
||||
//buttons are directly attached
|
||||
#define BTN_EN1 40
|
||||
#define BTN_EN2 42
|
||||
#define BTN_ENC 19 //the click
|
||||
|
||||
#define BLEN_C 2
|
||||
#define BLEN_B 1
|
||||
#define BLEN_A 0
|
||||
|
||||
#define SDCARDDETECT 38
|
||||
|
||||
#define EN_C (1<<BLEN_C)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_A (1<<BLEN_A)
|
||||
|
||||
//encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
|
||||
|
||||
#define CLICKED (buttons&EN_C)
|
||||
#define BLOCK {blocking=millis()+blocktime;}
|
||||
#define CARDINSERTED (READ(SDCARDDETECT)==0)
|
||||
|
||||
#else
|
||||
//arduino pin witch triggers an piezzo beeper
|
||||
#define BEEPER 18
|
||||
|
||||
//buttons are attached to a shift register
|
||||
#define SHIFT_CLK 38
|
||||
#define SHIFT_LD 42
|
||||
#define SHIFT_OUT 40
|
||||
#define SHIFT_EN 17
|
||||
|
||||
#define LCD_PINS_RS 16
|
||||
#define LCD_PINS_ENABLE 5
|
||||
#define LCD_PINS_D4 6
|
||||
#define LCD_PINS_D5 21
|
||||
#define LCD_PINS_D6 20
|
||||
#define LCD_PINS_D7 19
|
||||
|
||||
//bits in the shift register that carry the buttons for:
|
||||
// left up center down right red
|
||||
#define BL_LE 7
|
||||
#define BL_UP 6
|
||||
#define BL_MI 5
|
||||
#define BL_DW 4
|
||||
#define BL_RI 3
|
||||
#define BL_ST 2
|
||||
|
||||
#define BLEN_B 1
|
||||
#define BLEN_A 0
|
||||
|
||||
//encoder rotation values
|
||||
#define encrot0 0
|
||||
#define encrot1 2
|
||||
#define encrot2 3
|
||||
#define encrot3 1
|
||||
|
||||
//atomatic, do not change
|
||||
#define B_LE (1<<BL_LE)
|
||||
#define B_UP (1<<BL_UP)
|
||||
#define B_MI (1<<BL_MI)
|
||||
#define B_DW (1<<BL_DW)
|
||||
#define B_RI (1<<BL_RI)
|
||||
#define B_ST (1<<BL_ST)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_A (1<<BLEN_A)
|
||||
|
||||
#define CLICKED ((buttons&B_MI)||(buttons&B_ST))
|
||||
#define BLOCK {blocking[BL_MI]=millis()+blocktime;blocking[BL_ST]=millis()+blocktime;}
|
||||
|
||||
#endif
|
||||
// blocking time for recognizing a new keypress of one key, ms
|
||||
#define blocktime 500
|
||||
#define lcdslow 5
|
||||
enum MainStatus{Main_Status, Main_Menu, Main_Prepare, Main_Control, Main_SD};
|
||||
|
||||
class MainMenu{
|
||||
public:
|
||||
MainMenu();
|
||||
void update();
|
||||
void getfilename(const uint8_t nr);
|
||||
uint8_t activeline;
|
||||
MainStatus status;
|
||||
uint8_t displayStartingRow;
|
||||
|
||||
void showStatus();
|
||||
void showMainMenu();
|
||||
void showPrepare();
|
||||
void showControl();
|
||||
void showSD();
|
||||
bool force_lcd_update;
|
||||
int lastencoderpos;
|
||||
int8_t lineoffset;
|
||||
int8_t lastlineoffset;
|
||||
char filename[11];
|
||||
bool linechanging;
|
||||
};
|
||||
|
||||
char *fillto(int8_t n,char *c);
|
||||
char *ftostr51(const float &x);
|
||||
char *ftostr31(const float &x);
|
||||
char *ftostr3(const float &x);
|
||||
|
||||
|
||||
|
||||
#define LCD_MESSAGE(x) lcd_status(x);
|
||||
#define LCD_STATUS lcd_status()
|
||||
#else //no lcd
|
||||
#define LCD_STATUS
|
||||
#define LCD_MESSAGE(x)
|
||||
#endif
|
||||
|
||||
#ifndef ULTIPANEL
|
||||
#define CLICKED false
|
||||
#define BLOCK ;
|
||||
#endif
|
||||
#endif //ULTRALCD
|
||||
|
1593
Marlin/ultralcd.pde
Normal file
1593
Marlin/ultralcd.pde
Normal file
|
@ -0,0 +1,1593 @@
|
|||
#include "ultralcd.h"
|
||||
|
||||
|
||||
#ifdef ULTRA_LCD
|
||||
extern volatile int feedmultiply;
|
||||
extern long position[4];
|
||||
|
||||
char messagetext[LCD_WIDTH]="";
|
||||
|
||||
#include <LiquidCrystal.h>
|
||||
LiquidCrystal lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5,LCD_PINS_D6,LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7
|
||||
|
||||
unsigned long previous_millis_lcd=0;
|
||||
|
||||
|
||||
|
||||
volatile char buttons=0; //the last checked buttons in a bit array.
|
||||
int encoderpos=0;
|
||||
short lastenc=0;
|
||||
#ifdef NEWPANEL
|
||||
long blocking=0;
|
||||
#else
|
||||
long blocking[8]={0,0,0,0,0,0,0,0};
|
||||
#endif
|
||||
MainMenu menu;
|
||||
|
||||
void lcd_status(const char* message)
|
||||
{
|
||||
strncpy(messagetext,message,LCD_WIDTH);
|
||||
}
|
||||
|
||||
void clear()
|
||||
{
|
||||
//lcd.setCursor(0,0);
|
||||
lcd.clear();
|
||||
//delay(1);
|
||||
// lcd.begin(LCD_WIDTH,LCD_HEIGHT);
|
||||
//lcd_init();
|
||||
}
|
||||
long previous_millis_buttons=0;
|
||||
|
||||
void lcd_init()
|
||||
{
|
||||
//beep();
|
||||
byte Degree[8] =
|
||||
{
|
||||
B01100,
|
||||
B10010,
|
||||
B10010,
|
||||
B01100,
|
||||
B00000,
|
||||
B00000,
|
||||
B00000,
|
||||
B00000
|
||||
};
|
||||
byte Thermometer[8] =
|
||||
{
|
||||
B00100,
|
||||
B01010,
|
||||
B01010,
|
||||
B01010,
|
||||
B01010,
|
||||
B10001,
|
||||
B10001,
|
||||
B01110
|
||||
};
|
||||
byte uplevel[8]={0x04, 0x0e, 0x1f, 0x04, 0x1c, 0x00, 0x00, 0x00};//thanks joris
|
||||
byte refresh[8]={0x00, 0x06, 0x19, 0x18, 0x03, 0x13, 0x0c, 0x00}; //thanks joris
|
||||
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
|
||||
lcd.createChar(1,Degree);
|
||||
lcd.createChar(2,Thermometer);
|
||||
lcd.createChar(3,uplevel);
|
||||
lcd.createChar(4,refresh);
|
||||
LCD_MESSAGE(fillto(LCD_WIDTH,"UltiMarlin ready."));
|
||||
}
|
||||
|
||||
|
||||
void beep()
|
||||
{
|
||||
//return;
|
||||
#ifdef ULTIPANEL
|
||||
pinMode(BEEPER,OUTPUT);
|
||||
for(int i=0;i<20;i++){
|
||||
WRITE(BEEPER,HIGH);
|
||||
delay(5);
|
||||
WRITE(BEEPER,LOW);
|
||||
delay(5);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void beepshort()
|
||||
{
|
||||
//return;
|
||||
#ifdef ULTIPANEL
|
||||
pinMode(BEEPER,OUTPUT);
|
||||
for(int i=0;i<10;i++){
|
||||
WRITE(BEEPER,HIGH);
|
||||
delay(3);
|
||||
WRITE(BEEPER,LOW);
|
||||
delay(3);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
void lcd_status()
|
||||
{
|
||||
#ifdef ULTIPANEL
|
||||
static uint8_t oldbuttons=0;
|
||||
static long previous_millis_buttons=0;
|
||||
static long previous_lcdinit=0;
|
||||
// buttons_check(); // Done in temperature interrupt
|
||||
//previous_millis_buttons=millis();
|
||||
|
||||
if((buttons==oldbuttons) && ((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )
|
||||
return;
|
||||
oldbuttons=buttons;
|
||||
#else
|
||||
|
||||
if(((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )
|
||||
return;
|
||||
#endif
|
||||
|
||||
previous_millis_lcd=millis();
|
||||
menu.update();
|
||||
}
|
||||
#ifdef ULTIPANEL
|
||||
void buttons_init()
|
||||
{
|
||||
#ifdef NEWPANEL
|
||||
pinMode(BTN_EN1,INPUT);
|
||||
pinMode(BTN_EN2,INPUT);
|
||||
pinMode(BTN_ENC,INPUT);
|
||||
pinMode(SDCARDDETECT,INPUT);
|
||||
WRITE(BTN_EN1,HIGH);
|
||||
WRITE(BTN_EN2,HIGH);
|
||||
WRITE(BTN_ENC,HIGH);
|
||||
WRITE(SDCARDDETECT,HIGH);
|
||||
#else
|
||||
pinMode(SHIFT_CLK,OUTPUT);
|
||||
pinMode(SHIFT_LD,OUTPUT);
|
||||
pinMode(SHIFT_EN,OUTPUT);
|
||||
pinMode(SHIFT_OUT,INPUT);
|
||||
WRITE(SHIFT_OUT,HIGH);
|
||||
WRITE(SHIFT_LD,HIGH);
|
||||
WRITE(SHIFT_EN,LOW);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void buttons_check()
|
||||
{
|
||||
// volatile static bool busy=false;
|
||||
// if(busy)
|
||||
// return;
|
||||
// busy=true;
|
||||
|
||||
#ifdef NEWPANEL
|
||||
uint8_t newbutton=0;
|
||||
if(READ(BTN_EN1)==0) newbutton|=EN_A;
|
||||
if(READ(BTN_EN2)==0) newbutton|=EN_B;
|
||||
if((blocking<millis()) &&(READ(BTN_ENC)==0))
|
||||
newbutton|=EN_C;
|
||||
buttons=newbutton;
|
||||
#else
|
||||
//read it from the shift register
|
||||
uint8_t newbutton=0;
|
||||
WRITE(SHIFT_LD,LOW);
|
||||
WRITE(SHIFT_LD,HIGH);
|
||||
unsigned char tmp_buttons=0;
|
||||
for(unsigned char i=0;i<8;i++)
|
||||
{
|
||||
newbutton = newbutton>>1;
|
||||
if(READ(SHIFT_OUT))
|
||||
newbutton|=(1<<7);
|
||||
WRITE(SHIFT_CLK,HIGH);
|
||||
WRITE(SHIFT_CLK,LOW);
|
||||
}
|
||||
buttons=~newbutton; //invert it, because a pressed switch produces a logical 0
|
||||
#endif
|
||||
char enc=0;
|
||||
if(buttons&EN_A)
|
||||
enc|=(1<<0);
|
||||
if(buttons&EN_B)
|
||||
enc|=(1<<1);
|
||||
if(enc!=lastenc)
|
||||
{
|
||||
switch(enc)
|
||||
{
|
||||
case encrot0:
|
||||
if(lastenc==encrot3)
|
||||
encoderpos++;
|
||||
else if(lastenc==encrot1)
|
||||
encoderpos--;
|
||||
break;
|
||||
case encrot1:
|
||||
if(lastenc==encrot0)
|
||||
encoderpos++;
|
||||
else if(lastenc==encrot2)
|
||||
encoderpos--;
|
||||
break;
|
||||
case encrot2:
|
||||
if(lastenc==encrot1)
|
||||
encoderpos++;
|
||||
else if(lastenc==encrot3)
|
||||
encoderpos--;
|
||||
break;
|
||||
case encrot3:
|
||||
if(lastenc==encrot2)
|
||||
encoderpos++;
|
||||
else if(lastenc==encrot0)
|
||||
encoderpos--;
|
||||
break;
|
||||
default:
|
||||
;
|
||||
}
|
||||
}
|
||||
lastenc=enc;
|
||||
// busy=false;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
MainMenu::MainMenu()
|
||||
{
|
||||
status=Main_Status;
|
||||
displayStartingRow=0;
|
||||
activeline=0;
|
||||
force_lcd_update=true;
|
||||
#ifdef ULTIPANEL
|
||||
buttons_init();
|
||||
#endif
|
||||
lcd_init();
|
||||
linechanging=false;
|
||||
}
|
||||
|
||||
extern volatile bool feedmultiplychanged;
|
||||
|
||||
void MainMenu::showStatus()
|
||||
{
|
||||
#if LCD_HEIGHT==4
|
||||
static int oldcurrentraw=-1;
|
||||
static int oldtargetraw=-1;
|
||||
//force_lcd_update=true;
|
||||
if(force_lcd_update||feedmultiplychanged) //initial display of content
|
||||
{
|
||||
feedmultiplychanged=false;
|
||||
encoderpos=feedmultiply;
|
||||
clear();
|
||||
lcd.setCursor(0,0);lcd.print("\002123/567\001 ");
|
||||
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
|
||||
lcd.setCursor(10,0);lcd.print("B123/567\001 ");
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
if((abs(current_raw[0]-oldcurrentraw)>3)||force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(1,0);
|
||||
lcd.print(ftostr3(analog2temp(current_raw[0])));
|
||||
oldcurrentraw=current_raw[0];
|
||||
}
|
||||
if((target_raw[0]!=oldtargetraw)||force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(5,0);
|
||||
lcd.print(ftostr3(analog2temp(target_raw[0])));
|
||||
oldtargetraw=target_raw[0];
|
||||
}
|
||||
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
|
||||
static int oldcurrentbedraw=-1;
|
||||
static int oldtargetbedraw=-1;
|
||||
if((current_bed_raw!=oldcurrentbedraw)||force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(1,0);
|
||||
lcd.print(ftostr3(analog2temp(current_bed_raw)));
|
||||
oldcurrentraw=current_raw[1];
|
||||
}
|
||||
if((target_bed_raw!=oldtargebedtraw)||force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(5,0);
|
||||
lcd.print(ftostr3(analog2temp(target_bed_raw)));
|
||||
oldtargetraw=target_bed_raw;
|
||||
}
|
||||
#endif
|
||||
//starttime=2;
|
||||
static uint16_t oldtime=0;
|
||||
if(starttime!=0)
|
||||
{
|
||||
lcd.setCursor(0,1);
|
||||
uint16_t time=millis()/60000-starttime/60000;
|
||||
|
||||
if(starttime!=oldtime)
|
||||
{
|
||||
lcd.print(itostr2(time/60));lcd.print("h ");lcd.print(itostr2(time%60));lcd.print("m");
|
||||
oldtime=time;
|
||||
}
|
||||
}
|
||||
static int oldzpos=0;
|
||||
int currentz=current_position[2]*10;
|
||||
if((currentz!=oldzpos)||force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(10,1);
|
||||
lcd.print("Z:");lcd.print(itostr31(currentz));
|
||||
oldzpos=currentz;
|
||||
}
|
||||
static int oldfeedmultiply=0;
|
||||
int curfeedmultiply=feedmultiply;
|
||||
if(encoderpos!=curfeedmultiply||force_lcd_update)
|
||||
{
|
||||
curfeedmultiply=encoderpos;
|
||||
if(curfeedmultiply<10)
|
||||
curfeedmultiply=10;
|
||||
if(curfeedmultiply>999)
|
||||
curfeedmultiply=999;
|
||||
feedmultiply=curfeedmultiply;
|
||||
encoderpos=curfeedmultiply;
|
||||
}
|
||||
if((curfeedmultiply!=oldfeedmultiply)||force_lcd_update)
|
||||
{
|
||||
oldfeedmultiply=curfeedmultiply;
|
||||
lcd.setCursor(0,2);
|
||||
lcd.print(itostr3(curfeedmultiply));lcd.print("% ");
|
||||
}
|
||||
if(messagetext[0]!='\0')
|
||||
{
|
||||
lcd.setCursor(0,LCD_HEIGHT-1);
|
||||
lcd.print(fillto(LCD_WIDTH,messagetext));
|
||||
messagetext[0]='\0';
|
||||
}
|
||||
#else //smaller LCDS----------------------------------
|
||||
static int oldcurrentraw=-1;
|
||||
static int oldtargetraw=-1;
|
||||
if(force_lcd_update) //initial display of content
|
||||
{
|
||||
encoderpos=feedmultiply;
|
||||
lcd.setCursor(0,0);lcd.print("\002123/567\001 ");
|
||||
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
|
||||
lcd.setCursor(10,0);lcd.print("B123/567\001 ");
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
if((abs(current_raw[0]-oldcurrentraw)>3)||force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(1,0);
|
||||
lcd.print(ftostr3(analog2temp(current_raw[0])));
|
||||
oldcurrentraw=current_raw[0];
|
||||
}
|
||||
if((target_raw[0]!=oldtargetraw)||force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(5,0);
|
||||
lcd.print(ftostr3(analog2temp(target_raw[0])));
|
||||
oldtargetraw=target_raw[0];
|
||||
}
|
||||
|
||||
if(messagetext[0]!='\0')
|
||||
{
|
||||
lcd.setCursor(0,LCD_HEIGHT-1);
|
||||
lcd.print(fillto(LCD_WIDTH,messagetext));
|
||||
messagetext[0]='\0';
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
enum {ItemP_exit, ItemP_home, ItemP_origin, ItemP_preheat, ItemP_extrude, ItemP_disstep};
|
||||
|
||||
void MainMenu::showPrepare()
|
||||
{
|
||||
uint8_t line=0;
|
||||
if(lastlineoffset!=lineoffset)
|
||||
{
|
||||
force_lcd_update=true;
|
||||
clear();
|
||||
}
|
||||
for(uint8_t i=lineoffset;i<lineoffset+LCD_HEIGHT;i++)
|
||||
{
|
||||
//Serial.println((int)(line-lineoffset));
|
||||
switch(i)
|
||||
{
|
||||
case ItemP_exit:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Prepare");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK
|
||||
status=Main_Menu;
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
case ItemP_home:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Auto Home");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK
|
||||
enquecommand("G28 X-105 Y-105 Z0");
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
case ItemP_origin:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Set Origin");
|
||||
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK
|
||||
enquecommand("G92 X0 Y0 Z0");
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
case ItemP_preheat:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Preheat");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK
|
||||
target_raw[0] = temp2analog(170);
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
case ItemP_extrude:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Extrude");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK
|
||||
enquecommand("G92 E0");
|
||||
enquecommand("G1 F700 E50");
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
case ItemP_disstep:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Disable Steppers");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK
|
||||
enquecommand("M84");
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
line++;
|
||||
}
|
||||
lastlineoffset=lineoffset;
|
||||
if((encoderpos/lcdslow!=lastencoderpos/lcdslow)||force_lcd_update)
|
||||
{
|
||||
|
||||
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?' ':' ');
|
||||
|
||||
if(encoderpos<0)
|
||||
{
|
||||
lineoffset--;
|
||||
if(lineoffset<0)
|
||||
lineoffset=0;
|
||||
encoderpos=0;
|
||||
force_lcd_update=true;
|
||||
}
|
||||
if(encoderpos/lcdslow>3)
|
||||
{
|
||||
lineoffset++;
|
||||
encoderpos=3*lcdslow;
|
||||
if(lineoffset>(ItemP_disstep+1-LCD_HEIGHT))
|
||||
lineoffset=ItemP_disstep+1-LCD_HEIGHT;
|
||||
force_lcd_update=true;
|
||||
}
|
||||
//encoderpos=encoderpos%LCD_HEIGHT;
|
||||
lastencoderpos=encoderpos;
|
||||
activeline=encoderpos/lcdslow;
|
||||
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?'>':'\003');
|
||||
}
|
||||
}
|
||||
enum {
|
||||
ItemC_exit, ItemC_nozzle,
|
||||
ItemC_PID_P,ItemC_PID_I,ItemC_PID_D,ItemC_PID_C,
|
||||
ItemC_fan,
|
||||
ItemC_acc, ItemC_xyjerk,
|
||||
ItemC_vmaxx, ItemC_vmaxy, ItemC_vmaxz, ItemC_vmaxe,
|
||||
ItemC_vtravmin,ItemC_vmin,
|
||||
ItemC_amaxx, ItemC_amaxy, ItemC_amaxz, ItemC_amaxe,
|
||||
ItemC_aret,ItemC_esteps, ItemC_store, ItemC_load,ItemC_failsafe
|
||||
};
|
||||
|
||||
void MainMenu::showControl()
|
||||
{
|
||||
uint8_t line=0;
|
||||
if((lastlineoffset!=lineoffset)||force_lcd_update)
|
||||
{
|
||||
force_lcd_update=true;
|
||||
clear();
|
||||
}
|
||||
for(uint8_t i=lineoffset;i<lineoffset+LCD_HEIGHT;i++)
|
||||
{
|
||||
switch(i)
|
||||
{
|
||||
case ItemC_exit:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Control");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK
|
||||
status=Main_Menu;
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
case ItemC_nozzle:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" \002Nozzle:");
|
||||
lcd.setCursor(13,line);lcd.print(ftostr3(analog2temp(target_raw[0])));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)analog2temp(target_raw[0]);
|
||||
}
|
||||
else
|
||||
{
|
||||
target_raw[0] = temp2analog(encoderpos);
|
||||
encoderpos=activeline*lcdslow;
|
||||
beepshort();
|
||||
}
|
||||
BLOCK;
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<0) encoderpos=0;
|
||||
if(encoderpos>260) encoderpos=260;
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
|
||||
case ItemC_fan:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Fan speed:");
|
||||
lcd.setCursor(13,line);lcd.print(ftostr3(fanpwm));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED) //nalogWrite(FAN_PIN, fanpwm);
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=fanpwm;
|
||||
}
|
||||
else
|
||||
{
|
||||
fanpwm = constrain(encoderpos,0,255);
|
||||
encoderpos=fanpwm;
|
||||
analogWrite(FAN_PIN, fanpwm);
|
||||
|
||||
beepshort();
|
||||
}
|
||||
BLOCK;
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<0) encoderpos=0;
|
||||
if(encoderpos>255) encoderpos=255;
|
||||
fanpwm=encoderpos;
|
||||
analogWrite(FAN_PIN, fanpwm);
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_acc:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Acc:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(acceleration/100));lcd.print("00");
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)acceleration/100;
|
||||
}
|
||||
else
|
||||
{
|
||||
acceleration= encoderpos*100;
|
||||
encoderpos=activeline*lcdslow;
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<5) encoderpos=5;
|
||||
if(encoderpos>990) encoderpos=990;
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));lcd.print("00");
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_xyjerk: //max_xy_jerk
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Vxy-jerk: ");
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(max_xy_jerk/60));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)max_xy_jerk/60;
|
||||
}
|
||||
else
|
||||
{
|
||||
max_xy_jerk= encoderpos*60;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<1) encoderpos=1;
|
||||
if(encoderpos>990) encoderpos=990;
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_PID_P:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" PID-P: ");
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(Kp));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)Kp/5;
|
||||
}
|
||||
else
|
||||
{
|
||||
Kp= encoderpos*5;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<1) encoderpos=1;
|
||||
if(encoderpos>9990/5) encoderpos=9990/5;
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos*5));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_PID_I:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" PID-I: ");
|
||||
lcd.setCursor(13,line);lcd.print(ftostr51(Ki));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)(Ki*10);
|
||||
}
|
||||
else
|
||||
{
|
||||
Ki= encoderpos/10.;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<0) encoderpos=0;
|
||||
if(encoderpos>9990) encoderpos=9990;
|
||||
lcd.setCursor(13,line);lcd.print(ftostr51(encoderpos/10.));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_PID_D:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" PID-D: ");
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(Kd));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)Kd/5;
|
||||
}
|
||||
else
|
||||
{
|
||||
Kd= encoderpos*5;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<0) encoderpos=0;
|
||||
if(encoderpos>9990/5) encoderpos=9990/5;
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos*5));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
|
||||
|
||||
|
||||
case ItemC_PID_C:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" PID-C: ");
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(Kc));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)Kc;
|
||||
}
|
||||
else
|
||||
{
|
||||
Kc= encoderpos;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<0) encoderpos=0;
|
||||
if(encoderpos>990) encoderpos=990;
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_vmaxx:
|
||||
case ItemC_vmaxy:
|
||||
case ItemC_vmaxz:
|
||||
case ItemC_vmaxe:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Vmax ");
|
||||
if(i==ItemC_vmaxx)lcd.print("x:");
|
||||
if(i==ItemC_vmaxy)lcd.print("y:");
|
||||
if(i==ItemC_vmaxz)lcd.print("z:");
|
||||
if(i==ItemC_vmaxe)lcd.print("e:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(max_feedrate[i-ItemC_vmaxx]/60));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)max_feedrate[i-ItemC_vmaxx]/60;
|
||||
}
|
||||
else
|
||||
{
|
||||
max_feedrate[i-ItemC_vmaxx]= encoderpos*60;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<1) encoderpos=1;
|
||||
if(encoderpos>990) encoderpos=990;
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
|
||||
case ItemC_vmin:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Vmin:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(minimumfeedrate/60));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)(minimumfeedrate/60.);
|
||||
}
|
||||
else
|
||||
{
|
||||
minimumfeedrate= encoderpos*60;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<0) encoderpos=0;
|
||||
if(encoderpos>990) encoderpos=990;
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_vtravmin:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" VTrav min:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(mintravelfeedrate/60));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)mintravelfeedrate/60;
|
||||
}
|
||||
else
|
||||
{
|
||||
mintravelfeedrate= encoderpos*60;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<0) encoderpos=0;
|
||||
if(encoderpos>990) encoderpos=990;
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
|
||||
case ItemC_amaxx:
|
||||
case ItemC_amaxy:
|
||||
case ItemC_amaxz:
|
||||
case ItemC_amaxe:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Amax ");
|
||||
if(i==ItemC_amaxx)lcd.print("x:");
|
||||
if(i==ItemC_amaxy)lcd.print("y:");
|
||||
if(i==ItemC_amaxz)lcd.print("z:");
|
||||
if(i==ItemC_amaxe)lcd.print("e:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(max_acceleration_units_per_sq_second[i-ItemC_amaxx]/100));lcd.print("00");
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)max_acceleration_units_per_sq_second[i-ItemC_amaxx]/100;
|
||||
}
|
||||
else
|
||||
{
|
||||
max_acceleration_units_per_sq_second[i-ItemC_amaxx]= encoderpos*100;
|
||||
encoderpos=activeline*lcdslow;
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<1) encoderpos=1;
|
||||
if(encoderpos>990) encoderpos=990;
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));lcd.print("00");
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_aret://float retract_acceleration = 7000;
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" A-retract:");
|
||||
lcd.setCursor(13,line);lcd.print(ftostr3(retract_acceleration/100));lcd.print("00");
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)retract_acceleration/100;
|
||||
}
|
||||
else
|
||||
{
|
||||
retract_acceleration= encoderpos*100;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<10) encoderpos=10;
|
||||
if(encoderpos>990) encoderpos=990;
|
||||
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));lcd.print("00");
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_esteps://axis_steps_per_unit[i] = code_value();
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Esteps/mm:");
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[3]));
|
||||
}
|
||||
|
||||
if((activeline==line) )
|
||||
{
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=!linechanging;
|
||||
if(linechanging)
|
||||
{
|
||||
encoderpos=(int)axis_steps_per_unit[3];
|
||||
}
|
||||
else
|
||||
{
|
||||
float factor=float(encoderpos)/float(axis_steps_per_unit[3]);
|
||||
position[E_AXIS]=lround(position[E_AXIS]*factor);
|
||||
//current_position[3]*=factor;
|
||||
axis_steps_per_unit[E_AXIS]= encoderpos;
|
||||
encoderpos=activeline*lcdslow;
|
||||
|
||||
}
|
||||
BLOCK;
|
||||
beepshort();
|
||||
}
|
||||
if(linechanging)
|
||||
{
|
||||
if(encoderpos<5) encoderpos=5;
|
||||
if(encoderpos>9999) encoderpos=9999;
|
||||
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
|
||||
}
|
||||
}
|
||||
}break;
|
||||
case ItemC_store:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Store EPROM");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
//enquecommand("M84");
|
||||
beepshort();
|
||||
BLOCK;
|
||||
StoreSettings();
|
||||
}
|
||||
}break;
|
||||
case ItemC_load:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Load EPROM");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
//enquecommand("M84");
|
||||
beepshort();
|
||||
BLOCK;
|
||||
RetrieveSettings();
|
||||
}
|
||||
}break;
|
||||
case ItemC_failsafe:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" Restore Failsafe");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
//enquecommand("M84");
|
||||
beepshort();
|
||||
BLOCK;
|
||||
RetrieveSettings(true);
|
||||
}
|
||||
}break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
line++;
|
||||
}
|
||||
lastlineoffset=lineoffset;
|
||||
|
||||
if(!linechanging && ((encoderpos/lcdslow!=lastencoderpos/lcdslow)||force_lcd_update))
|
||||
{
|
||||
|
||||
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?' ':' ');
|
||||
|
||||
if(encoderpos<0)
|
||||
{
|
||||
lineoffset--;
|
||||
if(lineoffset<0)
|
||||
lineoffset=0;
|
||||
encoderpos=0;
|
||||
force_lcd_update=true;
|
||||
}
|
||||
if(encoderpos/lcdslow>3)
|
||||
{
|
||||
lineoffset++;
|
||||
encoderpos=3*lcdslow;
|
||||
if(lineoffset>(ItemC_failsafe+1-LCD_HEIGHT))
|
||||
lineoffset=ItemC_failsafe+1-LCD_HEIGHT;
|
||||
force_lcd_update=true;
|
||||
}
|
||||
//encoderpos=encoderpos%LCD_HEIGHT;
|
||||
lastencoderpos=encoderpos;
|
||||
activeline=encoderpos/lcdslow;
|
||||
if(activeline>3) activeline=3;
|
||||
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?'>':'\003');
|
||||
}
|
||||
}
|
||||
|
||||
#include "SdFat.h"
|
||||
|
||||
void MainMenu::getfilename(const uint8_t nr)
|
||||
{
|
||||
#ifdef SDSUPPORT
|
||||
dir_t p;
|
||||
root.rewind();
|
||||
uint8_t cnt=0;
|
||||
filename[0]='\0';
|
||||
while (root.readDir(p) > 0)
|
||||
{
|
||||
if (p.name[0] == DIR_NAME_FREE) break;
|
||||
if (p.name[0] == DIR_NAME_DELETED || p.name[0] == '.'|| p.name[0] == '_') continue;
|
||||
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
|
||||
if(p.name[8]!='G') continue;
|
||||
if(p.name[9]=='~') continue;
|
||||
if(cnt++!=nr) continue;
|
||||
//Serial.println((char*)p.name);
|
||||
uint8_t writepos=0;
|
||||
for (uint8_t i = 0; i < 11; i++)
|
||||
{
|
||||
if (p.name[i] == ' ') continue;
|
||||
if (i == 8) {
|
||||
filename[writepos++]='.';
|
||||
}
|
||||
filename[writepos++]=p.name[i];
|
||||
}
|
||||
filename[writepos++]=0;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
uint8_t getnrfilenames()
|
||||
{
|
||||
#ifdef SDSUPPORT
|
||||
dir_t p;
|
||||
root.rewind();
|
||||
uint8_t cnt=0;
|
||||
while (root.readDir(p) > 0)
|
||||
{
|
||||
if (p.name[0] == DIR_NAME_FREE) break;
|
||||
if (p.name[0] == DIR_NAME_DELETED || p.name[0] == '.'|| p.name[0] == '_') continue;
|
||||
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
|
||||
if(p.name[8]!='G') continue;
|
||||
if(p.name[9]=='~') continue;
|
||||
cnt++;
|
||||
}
|
||||
return cnt;
|
||||
#endif
|
||||
}
|
||||
|
||||
void MainMenu::showSD()
|
||||
{
|
||||
|
||||
#ifdef SDSUPPORT
|
||||
uint8_t line=0;
|
||||
|
||||
if(lastlineoffset!=lineoffset)
|
||||
{
|
||||
force_lcd_update=true;
|
||||
}
|
||||
static uint8_t nrfiles=0;
|
||||
if(force_lcd_update)
|
||||
{
|
||||
clear();
|
||||
if(sdactive)
|
||||
{
|
||||
nrfiles=getnrfilenames();
|
||||
}
|
||||
else
|
||||
{
|
||||
nrfiles=0;
|
||||
lineoffset=0;
|
||||
}
|
||||
//Serial.print("Nr files:"); Serial.println((int)nrfiles);
|
||||
}
|
||||
|
||||
for(int8_t i=lineoffset;i<lineoffset+LCD_HEIGHT;i++)
|
||||
{
|
||||
switch(i)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);lcd.print(" File");
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK
|
||||
status=Main_Menu;
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
case 1:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);
|
||||
#ifdef CARDINSERTED
|
||||
if(CARDINSERTED)
|
||||
#else
|
||||
if(true)
|
||||
#endif
|
||||
{
|
||||
lcd.print(" \004Refresh");
|
||||
}
|
||||
else
|
||||
{
|
||||
lcd.print(" \004Insert Card");
|
||||
}
|
||||
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK;
|
||||
beepshort();
|
||||
initsd();
|
||||
force_lcd_update=true;
|
||||
nrfiles=getnrfilenames();
|
||||
}
|
||||
}break;
|
||||
default:
|
||||
{
|
||||
if(i-2<nrfiles)
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
getfilename(i-2);
|
||||
//Serial.print("Filenr:");Serial.println(i-2);
|
||||
lcd.setCursor(0,line);lcd.print(" ");lcd.print(filename);
|
||||
}
|
||||
if((activeline==line) && CLICKED)
|
||||
{
|
||||
BLOCK
|
||||
getfilename(i-2);
|
||||
char cmd[30];
|
||||
for(int i=0;i<strlen(filename);i++)
|
||||
filename[i]=tolower(filename[i]);
|
||||
sprintf(cmd,"M23 %s",filename);
|
||||
//sprintf(cmd,"M115");
|
||||
enquecommand(cmd);
|
||||
enquecommand("M24");
|
||||
beep();
|
||||
status=Main_Status;
|
||||
lcd_status(filename);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
break;
|
||||
}
|
||||
line++;
|
||||
}
|
||||
lastlineoffset=lineoffset;
|
||||
if((encoderpos!=lastencoderpos)||force_lcd_update)
|
||||
{
|
||||
|
||||
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?' ':' ');
|
||||
|
||||
if(encoderpos<0)
|
||||
{
|
||||
lineoffset--;
|
||||
if(lineoffset<0)
|
||||
lineoffset=0;
|
||||
encoderpos=0;
|
||||
force_lcd_update=true;
|
||||
}
|
||||
if(encoderpos/lcdslow>3)
|
||||
{
|
||||
lineoffset++;
|
||||
encoderpos=3*lcdslow;
|
||||
if(lineoffset>(1+nrfiles+1-LCD_HEIGHT))
|
||||
lineoffset=1+nrfiles+1-LCD_HEIGHT;
|
||||
force_lcd_update=true;
|
||||
|
||||
}
|
||||
lastencoderpos=encoderpos;
|
||||
activeline=encoderpos;
|
||||
if(activeline>3)
|
||||
{
|
||||
activeline=3;
|
||||
}
|
||||
if(activeline<0)
|
||||
{
|
||||
activeline=0;
|
||||
}
|
||||
if(activeline>1+nrfiles) activeline=1+nrfiles;
|
||||
if(lineoffset>1+nrfiles) lineoffset=1+nrfiles;
|
||||
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?'>':'\003');
|
||||
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
enum {ItemM_watch, ItemM_prepare, ItemM_control, ItemM_file };
|
||||
void MainMenu::showMainMenu()
|
||||
{
|
||||
//if(int(encoderpos/lcdslow)!=int(lastencoderpos/lcdslow))
|
||||
// force_lcd_update=true;
|
||||
#ifndef ULTIPANEL
|
||||
force_lcd_update=false;
|
||||
#endif
|
||||
//Serial.println((int)activeline);
|
||||
if(force_lcd_update)
|
||||
clear();
|
||||
for(short line=0;line<LCD_HEIGHT;line++)
|
||||
{
|
||||
switch(line)
|
||||
{
|
||||
case ItemM_watch:
|
||||
{
|
||||
if(force_lcd_update) {lcd.setCursor(0,line);lcd.print(" Watch \x7E");}
|
||||
if((activeline==line)&&CLICKED)
|
||||
{
|
||||
BLOCK;
|
||||
beepshort();
|
||||
status=Main_Status;
|
||||
}
|
||||
} break;
|
||||
case ItemM_prepare:
|
||||
{
|
||||
if(force_lcd_update) {lcd.setCursor(0,line);lcd.print(" Prepare \x7E");}
|
||||
if((activeline==line)&&CLICKED)
|
||||
{
|
||||
BLOCK;
|
||||
status=Main_Prepare;
|
||||
beepshort();
|
||||
}
|
||||
} break;
|
||||
|
||||
case ItemM_control:
|
||||
{
|
||||
if(force_lcd_update) {lcd.setCursor(0,line);lcd.print(" Control \x7E");}
|
||||
if((activeline==line)&&CLICKED)
|
||||
{
|
||||
BLOCK;
|
||||
status=Main_Control;
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
#ifdef SDSUPPORT
|
||||
case ItemM_file:
|
||||
{
|
||||
if(force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,line);
|
||||
#ifdef CARDINSERTED
|
||||
if(CARDINSERTED)
|
||||
#else
|
||||
if(true)
|
||||
#endif
|
||||
{
|
||||
if(sdmode)
|
||||
lcd.print(" Stop Print \x7E");
|
||||
else
|
||||
lcd.print(" Card Menu \x7E");
|
||||
}
|
||||
else
|
||||
{
|
||||
lcd.print(" No Card");
|
||||
}
|
||||
}
|
||||
#ifdef CARDINSERTED
|
||||
if(CARDINSERTED)
|
||||
#endif
|
||||
if((activeline==line)&&CLICKED)
|
||||
{
|
||||
sdmode = false;
|
||||
BLOCK;
|
||||
status=Main_SD;
|
||||
beepshort();
|
||||
}
|
||||
}break;
|
||||
#endif
|
||||
default:
|
||||
Serial.println('NEVER say never');
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(activeline<0) activeline=0;
|
||||
if(activeline>=LCD_HEIGHT) activeline=LCD_HEIGHT-1;
|
||||
if((encoderpos!=lastencoderpos)||force_lcd_update)
|
||||
{
|
||||
lcd.setCursor(0,activeline);lcd.print(activeline?' ':' ');
|
||||
if(encoderpos<0) encoderpos=0;
|
||||
if(encoderpos>3*lcdslow) encoderpos=3*lcdslow;
|
||||
activeline=abs(encoderpos/lcdslow)%LCD_HEIGHT;
|
||||
if(activeline<0) activeline=0;
|
||||
if(activeline>=LCD_HEIGHT) activeline=LCD_HEIGHT-1;
|
||||
lastencoderpos=encoderpos;
|
||||
lcd.setCursor(0,activeline);lcd.print(activeline?'>':'\003');
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
void MainMenu::update()
|
||||
{
|
||||
static MainStatus oldstatus=Main_Menu; //init automatically causes foce_lcd_update=true
|
||||
static long timeoutToStatus=0;
|
||||
static bool oldcardstatus=false;
|
||||
#ifdef CARDINSERTED
|
||||
if((CARDINSERTED != oldcardstatus))
|
||||
{
|
||||
force_lcd_update=true;
|
||||
oldcardstatus=CARDINSERTED;
|
||||
//Serial.println("SD CHANGE");
|
||||
if(CARDINSERTED)
|
||||
{
|
||||
initsd();
|
||||
lcd_status("Card inserted");
|
||||
}
|
||||
else
|
||||
{
|
||||
sdactive=false;
|
||||
lcd_status("Card removed");
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if(status!=oldstatus)
|
||||
{
|
||||
//Serial.println(status);
|
||||
//clear();
|
||||
force_lcd_update=true;
|
||||
encoderpos=0;
|
||||
lineoffset=0;
|
||||
|
||||
oldstatus=status;
|
||||
}
|
||||
if( (encoderpos!=lastencoderpos) || CLICKED)
|
||||
timeoutToStatus=millis()+STATUSTIMEOUT;
|
||||
|
||||
switch(status)
|
||||
{
|
||||
case Main_Status:
|
||||
{
|
||||
showStatus();
|
||||
if(CLICKED)
|
||||
{
|
||||
linechanging=false;
|
||||
BLOCK
|
||||
status=Main_Menu;
|
||||
timeoutToStatus=millis()+STATUSTIMEOUT;
|
||||
}
|
||||
}break;
|
||||
case Main_Menu:
|
||||
{
|
||||
showMainMenu();
|
||||
linechanging=false;
|
||||
}break;
|
||||
case Main_Prepare:
|
||||
{
|
||||
showPrepare();
|
||||
}break;
|
||||
case Main_Control:
|
||||
{
|
||||
showControl();
|
||||
}break;
|
||||
case Main_SD:
|
||||
{
|
||||
showSD();
|
||||
}break;
|
||||
}
|
||||
|
||||
if(timeoutToStatus<millis())
|
||||
status=Main_Status;
|
||||
force_lcd_update=false;
|
||||
lastencoderpos=encoderpos;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//return for string conversion routines
|
||||
char conv[8];
|
||||
|
||||
/// convert float to string with +123.4 format
|
||||
char *ftostr3(const float &x)
|
||||
{
|
||||
//sprintf(conv,"%5.1f",x);
|
||||
int xx=x;
|
||||
conv[0]=(xx/100)%10+'0';
|
||||
conv[1]=(xx/10)%10+'0';
|
||||
conv[2]=(xx)%10+'0';
|
||||
conv[3]=0;
|
||||
return conv;
|
||||
}
|
||||
char *itostr2(const uint8_t &x)
|
||||
{
|
||||
//sprintf(conv,"%5.1f",x);
|
||||
int xx=x;
|
||||
conv[0]=(xx/10)%10+'0';
|
||||
conv[1]=(xx)%10+'0';
|
||||
conv[2]=0;
|
||||
return conv;
|
||||
}
|
||||
/// convert float to string with +123.4 format
|
||||
char *ftostr31(const float &x)
|
||||
{
|
||||
//sprintf(conv,"%5.1f",x);
|
||||
int xx=x*10;
|
||||
conv[0]=(xx>=0)?'+':'-';
|
||||
xx=abs(xx);
|
||||
conv[1]=(xx/1000)%10+'0';
|
||||
conv[2]=(xx/100)%10+'0';
|
||||
conv[3]=(xx/10)%10+'0';
|
||||
conv[4]='.';
|
||||
conv[5]=(xx)%10+'0';
|
||||
conv[6]=0;
|
||||
return conv;
|
||||
}
|
||||
|
||||
char *itostr31(const int &xx)
|
||||
{
|
||||
//sprintf(conv,"%5.1f",x);
|
||||
conv[0]=(xx>=0)?'+':'-';
|
||||
conv[1]=(xx/1000)%10+'0';
|
||||
conv[2]=(xx/100)%10+'0';
|
||||
conv[3]=(xx/10)%10+'0';
|
||||
conv[4]='.';
|
||||
conv[5]=(xx)%10+'0';
|
||||
conv[6]=0;
|
||||
return conv;
|
||||
}
|
||||
char *itostr3(const int &xx)
|
||||
{
|
||||
conv[0]=(xx/100)%10+'0';
|
||||
conv[1]=(xx/10)%10+'0';
|
||||
conv[2]=(xx)%10+'0';
|
||||
conv[3]=0;
|
||||
return conv;
|
||||
}
|
||||
|
||||
char *itostr4(const int &xx)
|
||||
{
|
||||
conv[0]=(xx/1000)%10+'0';
|
||||
conv[1]=(xx/100)%10+'0';
|
||||
conv[2]=(xx/10)%10+'0';
|
||||
conv[3]=(xx)%10+'0';
|
||||
conv[4]=0;
|
||||
return conv;
|
||||
}
|
||||
|
||||
/// convert float to string with +1234.5 format
|
||||
char *ftostr51(const float &x)
|
||||
{
|
||||
int xx=x*10;
|
||||
conv[0]=(xx>=0)?'+':'-';
|
||||
xx=abs(xx);
|
||||
conv[1]=(xx/10000)%10+'0';
|
||||
conv[2]=(xx/1000)%10+'0';
|
||||
conv[3]=(xx/100)%10+'0';
|
||||
conv[4]=(xx/10)%10+'0';
|
||||
conv[5]='.';
|
||||
conv[6]=(xx)%10+'0';
|
||||
conv[7]=0;
|
||||
return conv;
|
||||
}
|
||||
|
||||
char *fillto(int8_t n,char *c)
|
||||
{
|
||||
static char ret[25];
|
||||
bool endfound=false;
|
||||
for(int8_t i=0;i<n;i++)
|
||||
{
|
||||
ret[i]=c[i];
|
||||
if(c[i]==0)
|
||||
{
|
||||
endfound=true;
|
||||
}
|
||||
if(endfound)
|
||||
{
|
||||
ret[i]=' ';
|
||||
}
|
||||
}
|
||||
ret[n]=0;
|
||||
return ret;
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
inline void lcd_status() {};
|
||||
#endif
|
||||
|
176
Marlin/wiring.c
176
Marlin/wiring.c
|
@ -1,176 +0,0 @@
|
|||
/*
|
||||
wiring.c - Partial implementation of the Wiring API for the ATmega8.
|
||||
Part of Arduino - http://www.arduino.cc/
|
||||
|
||||
Copyright (c) 2005-2006 David A. Mellis
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General
|
||||
Public License along with this library; if not, write to the
|
||||
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
||||
Boston, MA 02111-1307 USA
|
||||
|
||||
$Id: wiring.c 388 2008-03-08 22:05:23Z mellis $
|
||||
*/
|
||||
|
||||
#include "wiring_private.h"
|
||||
|
||||
volatile unsigned long timer0_millis = 0;
|
||||
|
||||
SIGNAL(TIMER0_OVF_vect)
|
||||
{
|
||||
// timer 0 prescale factor is 64 and the timer overflows at 256
|
||||
timer0_millis++;
|
||||
}
|
||||
|
||||
unsigned long millis()
|
||||
{
|
||||
unsigned long m;
|
||||
uint8_t oldSREG = SREG;
|
||||
|
||||
// disable interrupts while we read timer0_millis or we might get an
|
||||
// inconsistent value (e.g. in the middle of the timer0_millis++)
|
||||
cli();
|
||||
m = timer0_millis;
|
||||
SREG = oldSREG;
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
void delay(unsigned long ms)
|
||||
{
|
||||
unsigned long start = millis();
|
||||
|
||||
while (millis() - start <= ms)
|
||||
;
|
||||
}
|
||||
|
||||
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock.
|
||||
* Disables interrupts, which will disrupt the millis() function if used
|
||||
* too frequently. */
|
||||
void delayMicroseconds(unsigned int us)
|
||||
{
|
||||
uint8_t oldSREG;
|
||||
|
||||
// calling avrlib's delay_us() function with low values (e.g. 1 or
|
||||
// 2 microseconds) gives delays longer than desired.
|
||||
//delay_us(us);
|
||||
|
||||
#if F_CPU >= 16000000L
|
||||
// for the 16 MHz clock on most Arduino boards
|
||||
|
||||
// for a one-microsecond delay, simply return. the overhead
|
||||
// of the function call yields a delay of approximately 1 1/8 us.
|
||||
if (--us == 0)
|
||||
return;
|
||||
|
||||
// the following loop takes a quarter of a microsecond (4 cycles)
|
||||
// per iteration, so execute it four times for each microsecond of
|
||||
// delay requested.
|
||||
us <<= 2;
|
||||
|
||||
// account for the time taken in the preceeding commands.
|
||||
us -= 2;
|
||||
#else
|
||||
// for the 8 MHz internal clock on the ATmega168
|
||||
|
||||
// for a one- or two-microsecond delay, simply return. the overhead of
|
||||
// the function calls takes more than two microseconds. can't just
|
||||
// subtract two, since us is unsigned; we'd overflow.
|
||||
if (--us == 0)
|
||||
return;
|
||||
if (--us == 0)
|
||||
return;
|
||||
|
||||
// the following loop takes half of a microsecond (4 cycles)
|
||||
// per iteration, so execute it twice for each microsecond of
|
||||
// delay requested.
|
||||
us <<= 1;
|
||||
|
||||
// partially compensate for the time taken by the preceeding commands.
|
||||
// we can't subtract any more than this or we'd overflow w/ small delays.
|
||||
us--;
|
||||
#endif
|
||||
|
||||
// disable interrupts, otherwise the timer 0 overflow interrupt that
|
||||
// tracks milliseconds will make us delay longer than we want.
|
||||
oldSREG = SREG;
|
||||
cli();
|
||||
|
||||
// busy wait
|
||||
__asm__ __volatile__ (
|
||||
"1: sbiw %0,1" "\n\t" // 2 cycles
|
||||
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
|
||||
);
|
||||
|
||||
// reenable interrupts.
|
||||
SREG = oldSREG;
|
||||
}
|
||||
|
||||
void init()
|
||||
{
|
||||
// this needs to be called before setup() or some functions won't
|
||||
// work there
|
||||
sei();
|
||||
|
||||
// on the ATmega168, timer 0 is also used for fast hardware pwm
|
||||
// (using phase-correct PWM would mean that timer 0 overflowed half as often
|
||||
// resulting in different millis() behavior on the ATmega8 and ATmega168)
|
||||
sbi(TCCR0A, WGM01);
|
||||
sbi(TCCR0A, WGM00);
|
||||
|
||||
// set timer 0 prescale factor to 64
|
||||
sbi(TCCR0B, CS01);
|
||||
sbi(TCCR0B, CS00);
|
||||
|
||||
// enable timer 0 overflow interrupt
|
||||
sbi(TIMSK0, TOIE0);
|
||||
|
||||
// timers 1 and 2 are used for phase-correct hardware pwm
|
||||
// this is better for motors as it ensures an even waveform
|
||||
// note, however, that fast pwm mode can achieve a frequency of up
|
||||
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
|
||||
#if 0
|
||||
// set timer 1 prescale factor to 64
|
||||
sbi(TCCR1B, CS11);
|
||||
sbi(TCCR1B, CS10);
|
||||
|
||||
// put timer 1 in 8-bit phase correct pwm mode
|
||||
sbi(TCCR1A, WGM10);
|
||||
|
||||
// set timer 2 prescale factor to 64
|
||||
sbi(TCCR2B, CS22);
|
||||
|
||||
// configure timer 2 for phase correct pwm (8-bit)
|
||||
sbi(TCCR2A, WGM20);
|
||||
|
||||
// set a2d prescale factor to 128
|
||||
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
|
||||
// XXX: this will not work properly for other clock speeds, and
|
||||
// this code should use F_CPU to determine the prescale factor.
|
||||
sbi(ADCSRA, ADPS2);
|
||||
sbi(ADCSRA, ADPS1);
|
||||
sbi(ADCSRA, ADPS0);
|
||||
|
||||
// enable a2d conversions
|
||||
sbi(ADCSRA, ADEN);
|
||||
|
||||
// the bootloader connects pins 0 and 1 to the USART; disconnect them
|
||||
// here so they can be used as normal digital i/o; they will be
|
||||
// reconnected in Serial.begin()
|
||||
UCSR0B = 0;
|
||||
#if defined(__AVR_ATmega644P__)
|
||||
//TODO: test to see if disabling this helps?
|
||||
//UCSR1B = 0;
|
||||
#endif
|
||||
#endif
|
||||
}
|
|
@ -1,139 +0,0 @@
|
|||
/*
|
||||
wiring_serial.c - serial functions.
|
||||
Part of Arduino - http://www.arduino.cc/
|
||||
|
||||
Copyright (c) 2005-2006 David A. Mellis
|
||||
Modified 29 January 2009, Marius Kintel for Sanguino - http://www.sanguino.cc/
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General
|
||||
Public License along with this library; if not, write to the
|
||||
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
||||
Boston, MA 02111-1307 USA
|
||||
|
||||
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
|
||||
*/
|
||||
|
||||
|
||||
#include "wiring_private.h"
|
||||
|
||||
// Define constants and variables for buffering incoming serial data. We're
|
||||
// using a ring buffer (I think), in which rx_buffer_head is the index of the
|
||||
// location to which to write the next incoming character and rx_buffer_tail
|
||||
// is the index of the location from which to read.
|
||||
#define RX_BUFFER_SIZE 128
|
||||
#define RX_BUFFER_MASK 0x7f
|
||||
|
||||
#if defined(__AVR_ATmega644P__)
|
||||
unsigned char rx_buffer[2][RX_BUFFER_SIZE];
|
||||
int rx_buffer_head[2] = {0, 0};
|
||||
int rx_buffer_tail[2] = {0, 0};
|
||||
#else
|
||||
unsigned char rx_buffer[1][RX_BUFFER_SIZE];
|
||||
int rx_buffer_head[1] = {0};
|
||||
int rx_buffer_tail[1] = {0};
|
||||
#endif
|
||||
|
||||
|
||||
#define BEGIN_SERIAL(uart_, baud_) \
|
||||
{ \
|
||||
UBRR##uart_##H = ((F_CPU / 16 + baud / 2) / baud - 1) >> 8; \
|
||||
UBRR##uart_##L = ((F_CPU / 16 + baud / 2) / baud - 1); \
|
||||
\
|
||||
/* reset config for UART */ \
|
||||
UCSR##uart_##A = 0; \
|
||||
UCSR##uart_##B = 0; \
|
||||
UCSR##uart_##C = 0; \
|
||||
\
|
||||
/* enable rx and tx */ \
|
||||
sbi(UCSR##uart_##B, RXEN##uart_);\
|
||||
sbi(UCSR##uart_##B, TXEN##uart_);\
|
||||
\
|
||||
/* enable interrupt on complete reception of a byte */ \
|
||||
sbi(UCSR##uart_##B, RXCIE##uart_); \
|
||||
UCSR##uart_##C = _BV(UCSZ##uart_##1)|_BV(UCSZ##uart_##0); \
|
||||
/* defaults to 8-bit, no parity, 1 stop bit */ \
|
||||
}
|
||||
|
||||
void beginSerial(uint8_t uart, long baud)
|
||||
{
|
||||
if (uart == 0) BEGIN_SERIAL(0, baud)
|
||||
#if defined(__AVR_ATmega644P__)
|
||||
else BEGIN_SERIAL(1, baud)
|
||||
#endif
|
||||
}
|
||||
|
||||
#define SERIAL_WRITE(uart_, c_) \
|
||||
while (!(UCSR##uart_##A & (1 << UDRE##uart_))) \
|
||||
; \
|
||||
UDR##uart_ = c
|
||||
|
||||
void serialWrite(uint8_t uart, unsigned char c)
|
||||
{
|
||||
if (uart == 0) {
|
||||
SERIAL_WRITE(0, c);
|
||||
}
|
||||
#if defined(__AVR_ATmega644P__)
|
||||
else {
|
||||
SERIAL_WRITE(1, c);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
int serialAvailable(uint8_t uart)
|
||||
{
|
||||
return (RX_BUFFER_SIZE + rx_buffer_head[uart] - rx_buffer_tail[uart]) & RX_BUFFER_MASK;
|
||||
}
|
||||
|
||||
int serialRead(uint8_t uart)
|
||||
{
|
||||
// if the head isn't ahead of the tail, we don't have any characters
|
||||
if (rx_buffer_head[uart] == rx_buffer_tail[uart]) {
|
||||
return -1;
|
||||
} else {
|
||||
unsigned char c = rx_buffer[uart][rx_buffer_tail[uart]];
|
||||
rx_buffer_tail[uart] = (rx_buffer_tail[uart] + 1) & RX_BUFFER_MASK;
|
||||
return c;
|
||||
}
|
||||
}
|
||||
|
||||
void serialFlush(uint8_t uart)
|
||||
{
|
||||
// don't reverse this or there may be problems if the RX interrupt
|
||||
// occurs after reading the value of rx_buffer_head but before writing
|
||||
// the value to rx_buffer_tail; the previous value of rx_buffer_head
|
||||
// may be written to rx_buffer_tail, making it appear as if the buffer
|
||||
// were full, not empty.
|
||||
rx_buffer_head[uart] = rx_buffer_tail[uart];
|
||||
}
|
||||
|
||||
#define UART_ISR(uart_) \
|
||||
ISR(USART##uart_##_RX_vect) \
|
||||
{ \
|
||||
unsigned char c = UDR##uart_; \
|
||||
\
|
||||
int i = (rx_buffer_head[uart_] + 1) & RX_BUFFER_MASK; \
|
||||
\
|
||||
/* if we should be storing the received character into the location \
|
||||
just before the tail (meaning that the head would advance to the \
|
||||
current location of the tail), we're about to overflow the buffer \
|
||||
and so we don't write the character or advance the head. */ \
|
||||
if (i != rx_buffer_tail[uart_]) { \
|
||||
rx_buffer[uart_][rx_buffer_head[uart_]] = c; \
|
||||
rx_buffer_head[uart_] = i; \
|
||||
} \
|
||||
}
|
||||
|
||||
UART_ISR(0)
|
||||
#if defined(__AVR_ATmega644P__)
|
||||
UART_ISR(1)
|
||||
#endif
|
Reference in a new issue