Merged Marlin, Marlin non gen6 and Ultimaker changes

This commit is contained in:
Erik van der Zalm 2011-11-04 18:02:56 +01:00
parent 0b1423c303
commit 094afe7c10
22 changed files with 4803 additions and 2044 deletions

View file

@ -1,38 +1,70 @@
#ifndef CONFIGURATION_H #ifndef CONFIGURATION_H
#define CONFIGURATION_H #define CONFIGURATION_H
//#define DEBUG_STEPS
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration // BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
//// The following define selects which electronics board you have. Please choose the one that matches your setup //// The following define selects which electronics board you have. Please choose the one that matches your setup
// MEGA/RAMPS up to 1.2 = 3,
// RAMPS 1.3 = 33
// Gen6 = 5, // Gen6 = 5,
#define MOTHERBOARD 5 // Sanguinololu 1.2 and above = 62
// Ultimaker = 7,
#define MOTHERBOARD 7
//#define MOTHERBOARD 5
//// Thermistor settings: //// Thermistor settings:
// 1 is 100k thermistor // 1 is 100k thermistor
// 2 is 200k thermistor // 2 is 200k thermistor
// 3 is mendel-parts thermistor // 3 is mendel-parts thermistor
#define THERMISTORHEATER 3 #define THERMISTORHEATER 3
// Select one of these only to define how the nozzle temp is read.
//#define HEATER_USES_THERMISTOR
#define HEATER_USES_AD595
// Select one of these only to define how the bed temp is read.
//#define BED_USES_THERMISTOR
//#define BED_USES_AD595
#define HEATER_CHECK_INTERVAL 50
#define BED_CHECK_INTERVAL 5000
#define BNUMTEMPS NUMTEMPS
#define bedtemptable temptable
//// Calibration variables
// X, Y, Z, E steps per unit - Metric Mendel / Orca with V9 extruder:
float axis_steps_per_unit[] = {40, 40, 3333.92, 67};
// For E steps per unit = 67 for v9 with direct drive (needs finetuning) for other extruders this needs to be changed
// Metric Prusa Mendel with Makergear geared stepper extruder:
//float axis_steps_per_unit[] = {80,80,3200/1.25,1380};
//// Endstop Settings //// Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins. // The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops. const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false // For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
// This determines the communication speed of the printer // This determines the communication speed of the printer
#define BAUDRATE 250000 //#define BAUDRATE 250000
#define BAUDRATE 115200
//#define BAUDRATE 230400
// Comment out (using // at the start of the line) to disable SD support: // Comment out (using // at the start of the line) to disable SD support:
//#define SDSUPPORT
// #define ULTRA_LCD //any lcd
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#define ULTIPANEL
#ifdef ULTIPANEL
//#define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
#define ULTRA_LCD
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#endif
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
const int dropsegments=5; //everything with this number of steps will be ignored as move
//// ADVANCED SETTINGS - to tweak parameters //// ADVANCED SETTINGS - to tweak parameters
@ -47,14 +79,14 @@ const bool ENDSTOPS_INVERTING = false; // set to true to invert the logic of the
// Disables axis when it's not being used. // Disables axis when it's not being used.
#define DISABLE_X false #define DISABLE_X false
#define DISABLE_Y false #define DISABLE_Y false
#define DISABLE_Z true #define DISABLE_Z false
#define DISABLE_E false #define DISABLE_E false
// Inverting axis direction // Inverting axis direction
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true #define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false #define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true #define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_E_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false #define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
//// ENDSTOP SETTINGS: //// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN // Sets direction of endstops when homing; 1=MAX, -1=MIN
@ -63,51 +95,81 @@ const bool ENDSTOPS_INVERTING = false; // set to true to invert the logic of the
#define Z_HOME_DIR -1 #define Z_HOME_DIR -1
#define min_software_endstops false //If true, axis won't move to coordinates less than zero. #define min_software_endstops false //If true, axis won't move to coordinates less than zero.
#define max_software_endstops true //If true, axis won't move to coordinates greater than the defined lengths below. #define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
#define X_MAX_LENGTH 200 #define X_MAX_LENGTH 210
#define Y_MAX_LENGTH 200 #define Y_MAX_LENGTH 210
#define Z_MAX_LENGTH 100 #define Z_MAX_LENGTH 210
//// MOVEMENT SETTINGS //// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E #define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
float max_feedrate[] = {60000, 60000, 100, 500000}; // set the max speeds //note: on bernhards ultimaker 200 200 12 are working well.
float homing_feedrate[] = {2400, 2400, 80, 0}; // set the homing speeds #define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
bool axis_relative_modes[] = {false, false, false, false}; //the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
#define TRAVELING_AT_MAXSPEED
#define AXIS_RELATIVE_MODES {false, false, false, false}
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 10
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
#define DEFAULT_MINSEGMENTTIME 20000
#define DEFAULT_XYJERK 30.0*60
#define DEFAULT_ZJERK 10.0*60
//// Acceleration settings
// X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
float acceleration = 2000; // Normal acceleration mm/s^2
float retract_acceleration = 7000; // Normal acceleration mm/s^2
float max_xy_jerk = 20.0*60;
float max_z_jerk = 0.4*60;
long max_acceleration_units_per_sq_second[] = {7000,7000,100,10000}; // X, Y, Z and E max acceleration in mm/s^2 for printing moves or retracts
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature // The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
//this enables the watchdog interrupt.
#define USE_WATCHDOG
//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
#define RESET_MANUAL
#define WATCHDOG_TIMEOUT 4
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109 // If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
//#define WATCHPERIOD 5000 //5 seconds //#define WATCHPERIOD 5000 //5 seconds
//// The minimal temperature defines the temperature below which the heater will not be enabled //// The minimal temperature defines the temperature below which the heater will not be enabled
#define MINTEMP 5 #define MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off. // When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure! // This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection. // You should use MINTEMP for thermistor short/failure protection.
#define MAXTEMP 275 #define MAXTEMP 275
#define BED_MAXTEMP 150
/// PID settings: /// PID settings:
// Uncomment the following line to enable PID support. // Uncomment the following line to enable PID support.
//#define PIDTEMP //#define SMOOTHING
//#define SMOOTHFACTOR 5.0
//float current_raw_average=0;
#define PIDTEMP
#ifdef PIDTEMP #ifdef PIDTEMP
//#define PID_DEBUG 1 // Sends debug data to the serial port. //#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in % //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
#define PID_MAX 156 // limits current to nozzle #define PID_MAX 255 // limits current to nozzle
#define PID_INTEGRAL_DRIVE_MAX 156.0 #define PID_INTEGRAL_DRIVE_MAX 255
#define PID_dT 0.16 #define PID_dT 0.10 // 100ms sample time
double Kp = 20.0; #define DEFAULT_Kp 20.0
double Ki = 1.5*PID_dT; #define DEFAULT_Ki 1.5*PID_dT
double Kd = 80/PID_dT; #define DEFAULT_Kd 80/PID_dT
#define DEFAULT_Kc 0
#endif // PIDTEMP #endif // PIDTEMP
@ -121,7 +183,7 @@ double Kd = 80/PID_dT;
//#define ADVANCE //#define ADVANCE
#ifdef ADVANCE #ifdef ADVANCE
#define EXTRUDER_ADVANCE_K 0.02 #define EXTRUDER_ADVANCE_K .3
#define D_FILAMENT 1.7 #define D_FILAMENT 1.7
#define STEPS_MM_E 65 #define STEPS_MM_E 65
@ -130,4 +192,15 @@ double Kd = 80/PID_dT;
#endif // ADVANCE #endif // ADVANCE
#if defined SDSUPPORT
// The number of linear motions that can be in the plan at any give time.
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
#ifdef SIMPLE_LCD
#define BLOCK_BUFFER_SIZE 16 // A little less buffer for just a simple LCD
#endif
#endif #endif

123
Marlin/EEPROM.h Normal file
View file

@ -0,0 +1,123 @@
#include "planner.h"
#include "temperature.h"
//======================================================================================
template <class T> int EEPROM_writeAnything(int &ee, const T& value)
{
const byte* p = (const byte*)(const void*)&value;
int i;
for (i = 0; i < sizeof(value); i++)
EEPROM.write(ee++, *p++);
return i;
}
//======================================================================================
template <class T> int EEPROM_readAnything(int &ee, T& value)
{
byte* p = (byte*)(void*)&value;
int i;
for (i = 0; i < sizeof(value); i++)
*p++ = EEPROM.read(ee++);
return i;
}
//======================================================================================
#define EEPROM_OFFSET 100
#define EEPROM_VERSION "V04" // IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
// in the functions below, also increment the version number. This makes sure that
// the default values are used whenever there is a change to the data, to prevent
// wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
void StoreSettings() {
char ver[4]= "000";
int i=EEPROM_OFFSET;
EEPROM_writeAnything(i,ver); // invalidate data first
EEPROM_writeAnything(i,axis_steps_per_unit);
EEPROM_writeAnything(i,max_feedrate);
EEPROM_writeAnything(i,max_acceleration_units_per_sq_second);
EEPROM_writeAnything(i,acceleration);
EEPROM_writeAnything(i,retract_acceleration);
EEPROM_writeAnything(i,minimumfeedrate);
EEPROM_writeAnything(i,mintravelfeedrate);
EEPROM_writeAnything(i,minsegmenttime);
EEPROM_writeAnything(i,max_xy_jerk);
EEPROM_writeAnything(i,max_z_jerk);
#ifdef PIDTEMP
EEPROM_writeAnything(i,Kp);
EEPROM_writeAnything(i,Ki);
EEPROM_writeAnything(i,Kd);
#else
EEPROM_writeAnything(i,3000);
EEPROM_writeAnything(i,0);
EEPROM_writeAnything(i,0);
#endif
char ver2[4]=EEPROM_VERSION;
i=EEPROM_OFFSET;
EEPROM_writeAnything(i,ver2); // validate data
ECHOLN("Settings Stored");
}
void RetrieveSettings(bool def=false){ // if def=true, the default values will be used
int i=EEPROM_OFFSET;
char stored_ver[4];
char ver[4]=EEPROM_VERSION;
EEPROM_readAnything(i,stored_ver); //read stored version
// ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
if ((!def)&&(strncmp(ver,stored_ver,3)==0)) { // version number match
EEPROM_readAnything(i,axis_steps_per_unit);
EEPROM_readAnything(i,max_feedrate);
EEPROM_readAnything(i,max_acceleration_units_per_sq_second);
EEPROM_readAnything(i,acceleration);
EEPROM_readAnything(i,retract_acceleration);
EEPROM_readAnything(i,minimumfeedrate);
EEPROM_readAnything(i,mintravelfeedrate);
EEPROM_readAnything(i,minsegmenttime);
EEPROM_readAnything(i,max_xy_jerk);
EEPROM_readAnything(i,max_z_jerk);
#ifndef PIDTEMP
float Kp,Ki,Kd;
#endif
EEPROM_readAnything(i,Kp);
EEPROM_readAnything(i,Ki);
EEPROM_readAnything(i,Kd);
ECHOLN("Stored settings retreived:");
}
else {
float tmp1[]=DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[]=DEFAULT_MAX_FEEDRATE;
long tmp3[]=DEFAULT_MAX_ACCELERATION;
for (int i=0;i<4;i++) {
axis_steps_per_unit[i]=tmp1[i];
max_feedrate[i]=tmp2[i];
max_acceleration_units_per_sq_second[i]=tmp3[i];
}
acceleration=DEFAULT_ACCELERATION;
retract_acceleration=DEFAULT_RETRACT_ACCELERATION;
minimumfeedrate=DEFAULT_MINIMUMFEEDRATE;
minsegmenttime=DEFAULT_MINSEGMENTTIME;
mintravelfeedrate=DEFAULT_MINTRAVELFEEDRATE;
max_xy_jerk=DEFAULT_XYJERK;
max_z_jerk=DEFAULT_ZJERK;
ECHOLN("Using Default settings:");
}
ECHOLN("Steps per unit:");
ECHOLN(" M92 X" <<_FLOAT(axis_steps_per_unit[0],3) << " Y" << _FLOAT(axis_steps_per_unit[1],3) << " Z" << _FLOAT(axis_steps_per_unit[2],3) << " E" << _FLOAT(axis_steps_per_unit[3],3));
ECHOLN("Maximum feedrates (mm/s):");
ECHOLN(" M203 X" <<_FLOAT(max_feedrate[0]/60,2)<<" Y" << _FLOAT(max_feedrate[1]/60,2) << " Z" << _FLOAT(max_feedrate[2]/60,2) << " E" << _FLOAT(max_feedrate[3]/60,2));
ECHOLN("Maximum Acceleration (mm/s2):");
ECHOLN(" M201 X" <<_FLOAT(max_acceleration_units_per_sq_second[0],0) << " Y" << _FLOAT(max_acceleration_units_per_sq_second[1],0) << " Z" << _FLOAT(max_acceleration_units_per_sq_second[2],0) << " E" << _FLOAT(max_acceleration_units_per_sq_second[3],0));
ECHOLN("Acceleration: S=acceleration, T=retract acceleration");
ECHOLN(" M204 S" <<_FLOAT(acceleration,2) << " T" << _FLOAT(retract_acceleration,2));
ECHOLN("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum xY jerk (mm/s), Z=maximum Z jerk (mm/s)");
ECHOLN(" M205 S" <<_FLOAT(minimumfeedrate/60,2) << " T" << _FLOAT(mintravelfeedrate/60,2) << " B" << _FLOAT(minsegmenttime,2) << " X" << _FLOAT(max_xy_jerk/60,2) << " Z" << _FLOAT(max_z_jerk/60,2));
#ifdef PIDTEMP
ECHOLN("PID settings:");
ECHOLN(" M301 P" << _FLOAT(Kp,3) << " I" << _FLOAT(Ki,3) << " D" << _FLOAT(Kd,3));
#endif
}

View file

@ -1,247 +1,274 @@
# Marlin Arduino Project Makefile
# #
# Makefile Based on: # Arduino 0022 Makefile
# Arduino 0011 Makefile # Uno with DOGS102 Shield
# Arduino adaptation by mellis, eighthave, oli.keller
# #
# This has been tested with Arduino 0022. # written by olikraus@gmail.com
# #
# This makefile allows you to build sketches from the command line # Features:
# without the Arduino environment (or Java). # - boards.txt is used to derive parameters
# - All intermediate files are put into a separate directory (TMPDIRNAME)
# - Simple use: Copy Makefile into the same directory of the .pde file
# #
# Detailed instructions for using the makefile: # Limitations:
# - requires UNIX environment
# - TMPDIRNAME must be subdirectory of the current directory.
# #
# 1. Modify the line containg "INSTALL_DIR" to point to the directory that # Targets
# contains the Arduino installation (for example, under Mac OS X, this # all build everything
# might be /Applications/arduino-0012). # upload build and upload to arduino
# clean remove all temporary files (includes final hex file)
# #
# 2. Modify the line containing "PORT" to refer to the filename # History
# representing the USB or serial connection to your Arduino board # 001 28 Apr 2010 first release
# (e.g. PORT = /dev/tty.USB0). If the exact name of this file # 002 05 Oct 2010 added 'uno'
# changes, you can use * as a wildcard (e.g. PORT = /dev/tty.usb*).
# #
# 3. Set the line containing "MCU" to match your board's processor.
# Older one's are atmega8 based, newer ones like Arduino Mini, Bluetooth
# or Diecimila have the atmega168. If you're using a LilyPad Arduino,
# change F_CPU to 8000000.
#
# 4. Type "make" and press enter to compile/verify your program.
#
# 5. Type "make upload", reset your Arduino board, and press enter to
# upload your program to the Arduino board.
#
# $Id$
TARGET = Marlin #=== user configuration ===
INSTALL_DIR = ../../Desktop/arduino-0018/ # All ...PATH variables must have a '/' at the end
UPLOAD_RATE = 38400
AVRDUDE_PROGRAMMER = stk500v1 # Board (and prozessor) information: see $(ARDUINO_PATH)hardware/arduino/boards.txt
PORT = /dev/ttyUSB0 # Some examples:
#MCU = atmega2560 # BOARD DESCRIPTION
#For "old" Arduino Mega # uno Arduino Uno
#MCU = atmega1280 # atmega328 Arduino Duemilanove or Nano w/ ATmega328
#For Sanguinololu # diecimila Arduino Diecimila, Duemilanove, or Nano w/ ATmega168
MCU = atmega644p # mega Arduino Mega
F_CPU = 16000000 # mini Arduino Mini
# lilypad328 LilyPad Arduino w/ ATmega328
BOARD:=mega
# additional (comma separated) defines
# -DDOGM128_HW board is connected to DOGM128 display
# -DDOGM132_HW board is connected to DOGM132 display
# -DDOGS102_HW board is connected to DOGS102 display
# -DDOG_REVERSE 180 degree rotation
# -DDOG_SPI_SW_ARDUINO force SW shiftOut
DEFS=-DDOGS102_HW -DDOG_DOUBLE_MEMORY -DDOG_SPI_SW_ARDUINO
# The location where the avr tools (e.g. avr-gcc) are located. Requires a '/' at the end.
# Can be empty if all tools are accessable through the search path
AVR_TOOLS_PATH:=/usr/bin/
# Install path of the arduino software. Requires a '/' at the end.
ARDUINO_PATH:=/home/bkubicek/software/arduino-0022/
# Install path for avrdude. Requires a '/' at the end. Can be empty if avrdude is in the search path.
AVRDUDE_PATH:=
# The unix device where we can reach the arduino board
# Uno: /dev/ttyACM0
# Duemilanove: /dev/ttyUSB0
AVRDUDE_PORT:=/dev/ttyACM0
# List of all libaries which should be included.
#EXTRA_DIRS=$(ARDUINO_PATH)libraries/LiquidCrystal/
#EXTRA_DIRS+=$(ARDUINO_PATH)libraries/Dogm/
#EXTRA_DIRS+=/home/kraus/src/arduino/dogm128/hg/libraries/Dogm/
#=== fetch parameter from boards.txt processor parameter ===
# the basic idea is to get most of the information from boards.txt
BOARDS_TXT:=$(ARDUINO_PATH)hardware/arduino/boards.txt
# get the MCU value from the $(BOARD).build.mcu variable. For the atmega328 board this is atmega328p
MCU:=$(shell sed -n -e "s/$(BOARD).build.mcu=\(.*\)/\1/p" $(BOARDS_TXT))
# get the F_CPU value from the $(BOARD).build.f_cpu variable. For the atmega328 board this is 16000000
F_CPU:=$(shell sed -n -e "s/$(BOARD).build.f_cpu=\(.*\)/\1/p" $(BOARDS_TXT))
# avrdude
# get the AVRDUDE_UPLOAD_RATE value from the $(BOARD).upload.speed variable. For the atmega328 board this is 57600
AVRDUDE_UPLOAD_RATE:=$(shell sed -n -e "s/$(BOARD).upload.speed=\(.*\)/\1/p" $(BOARDS_TXT))
# get the AVRDUDE_PROGRAMMER value from the $(BOARD).upload.protocol variable. For the atmega328 board this is stk500
# AVRDUDE_PROGRAMMER:=$(shell sed -n -e "s/$(BOARD).upload.protocol=\(.*\)/\1/p" $(BOARDS_TXT))
# use stk500v1, because stk500 will default to stk500v2
AVRDUDE_PROGRAMMER:=stk500v1
#=== identify user files ===
PDESRC:=$(shell ls *.pde)
TARGETNAME=$(basename $(PDESRC))
CDIRS:=$(EXTRA_DIRS) $(addsuffix utility/,$(EXTRA_DIRS))
CDIRS:=*.c utility/*.c $(addsuffix *.c,$(CDIRS)) $(ARDUINO_PATH)hardware/arduino/cores/arduino/*.c
CSRC:=$(shell ls $(CDIRS) 2>/dev/null)
CCSRC:=$(shell ls *.cc 2>/dev/null)
CPPDIRS:=$(EXTRA_DIRS) $(addsuffix utility/,$(EXTRA_DIRS))
CPPDIRS:=*.cpp utility/*.cpp $(addsuffix *.cpp,$(CPPDIRS)) $(ARDUINO_PATH)hardware/arduino/cores/arduino/*.cpp
CPPSRC:=$(shell ls $(CPPDIRS) 2>/dev/null)
#=== build internal variables ===
# the name of the subdirectory where everything is stored
TMPDIRNAME:=tmp
TMPDIRPATH:=$(TMPDIRNAME)/
AVRTOOLSPATH:=$(AVR_TOOLS_PATH)
OBJCOPY:=$(AVRTOOLSPATH)avr-objcopy
OBJDUMP:=$(AVRTOOLSPATH)avr-objdump
SIZE:=$(AVRTOOLSPATH)avr-size
CPPSRC:=$(addprefix $(TMPDIRPATH),$(PDESRC:.pde=.cpp)) $(CPPSRC)
COBJ:=$(CSRC:.c=.o)
CCOBJ:=$(CCSRC:.cc=.o)
CPPOBJ:=$(CPPSRC:.cpp=.o)
OBJFILES:=$(COBJ) $(CCOBJ) $(CPPOBJ)
DIRS:= $(dir $(OBJFILES))
DEPFILES:=$(OBJFILES:.o=.d)
# assembler files from avr-gcc -S
ASSFILES:=$(OBJFILES:.o=.s)
# disassembled object files with avr-objdump -S
DISFILES:=$(OBJFILES:.o=.dis)
############################################################################ LIBNAME:=$(TMPDIRPATH)$(TARGETNAME).a
# Below here nothing should be changed... ELFNAME:=$(TMPDIRPATH)$(TARGETNAME).elf
HEXNAME:=$(TMPDIRPATH)$(TARGETNAME).hex
ARDUINO = $(INSTALL_DIR)/hardware/Sanguino/cores/arduino AVRDUDE_FLAGS = -V -F
AVR_TOOLS_PATH = $(INSTALL_DIR)/hardware/tools/avr/bin AVRDUDE_FLAGS += -C $(ARDUINO_PATH)/hardware/tools/avrdude.conf
SRC = $(ARDUINO)/pins_arduino.c wiring.c wiring_serial.c \ AVRDUDE_FLAGS += -p $(MCU)
$(ARDUINO)/wiring_analog.c $(ARDUINO)/wiring_digital.c \ AVRDUDE_FLAGS += -P $(AVRDUDE_PORT)
$(ARDUINO)/wiring_pulse.c \ AVRDUDE_FLAGS += -c $(AVRDUDE_PROGRAMMER)
$(ARDUINO)/wiring_shift.c $(ARDUINO)/WInterrupts.c AVRDUDE_FLAGS += -b $(AVRDUDE_UPLOAD_RATE)
CXXSRC = $(ARDUINO)/HardwareSerial.cpp $(ARDUINO)/WMath.cpp \ AVRDUDE_FLAGS += -U flash:w:$(HEXNAME)
$(ARDUINO)/Print.cpp ./SdFile.cpp ./SdVolume.cpp ./Sd2Card.cpp
FORMAT = ihex AVRDUDE = avrdude
#=== predefined variable override ===
# use "make -p -f/dev/null" to see the default rules and definitions
# Build C and C++ flags. Include path information must be placed here
COMMON_FLAGS = -DF_CPU=$(F_CPU) -mmcu=$(MCU) $(DEFS)
# COMMON_FLAGS += -gdwarf-2
COMMON_FLAGS += -Os
COMMON_FLAGS += -Wall -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
COMMON_FLAGS += -I.
COMMON_FLAGS += -I$(ARDUINO_PATH)hardware/arduino/cores/arduino
COMMON_FLAGS += $(addprefix -I,$(EXTRA_DIRS))
COMMON_FLAGS += -ffunction-sections -fdata-sections -Wl,--gc-sections
COMMON_FLAGS += -Wl,--relax
COMMON_FLAGS += -mcall-prologues
CFLAGS = $(COMMON_FLAGS) -std=gnu99 -Wstrict-prototypes
CXXFLAGS = $(COMMON_FLAGS)
# Replace standard build tools by avr tools
CC = $(AVRTOOLSPATH)avr-gcc
CXX = $(AVRTOOLSPATH)avr-g++
AR = @$(AVRTOOLSPATH)avr-ar
# Name of this Makefile (used for "make depend"). # "rm" must be able to delete a directory tree
MAKEFILE = Makefile RM = rm -rf
# Debugging format. #=== rules ===
# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
DEBUG = stabs
OPT = s # add rules for the C/C++ files where the .o file is placed in the TMPDIRPATH
# reuse existing variables as far as possible
# Place -D or -U options here $(TMPDIRPATH)%.o: %.c
CDEFS = -DF_CPU=$(F_CPU) @echo compile $<
CXXDEFS = -DF_CPU=$(F_CPU) @$(COMPILE.c) $(OUTPUT_OPTION) $<
# Place -I options here $(TMPDIRPATH)%.o: %.cc
CINCS = -I$(ARDUINO) @echo compile $<
CXXINCS = -I$(ARDUINO) @$(COMPILE.cc) $(OUTPUT_OPTION) $<
# Compiler flag to set the C Standard level. $(TMPDIRPATH)%.o: %.cpp
# c89 - "ANSI" C @echo compile $<
# gnu89 - c89 plus GCC extensions @$(COMPILE.cpp) $(OUTPUT_OPTION) $<
# c99 - ISO C99 standard (not yet fully implemented)
# gnu99 - c99 plus GCC extensions
#CSTANDARD = -std=gnu99
CDEBUG = -g$(DEBUG)
CWARN = -Wall -Wunused-variable
CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -w -ffunction-sections -fdata-sections -DARDUINO=22
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
CFLAGS = $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CEXTRA) $(CTUNING) $(TMPDIRPATH)%.s: %.c
CXXFLAGS = $(CDEFS) $(CINCS) -O$(OPT) -Wall $(CEXTRA) $(CTUNING) @$(COMPILE.c) $(OUTPUT_OPTION) -S $<
#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
LDFLAGS = -lm
$(TMPDIRPATH)%.s: %.cc
@$(COMPILE.cc) $(OUTPUT_OPTION) -S $<
# Programming support using avrdude. Settings and variables. $(TMPDIRPATH)%.s: %.cpp
AVRDUDE_PORT = $(PORT) @$(COMPILE.cpp) $(OUTPUT_OPTION) -S $<
AVRDUDE_WRITE_FLASH = -U flash:w:applet/$(TARGET).hex:i
AVRDUDE_FLAGS = -D -C $(INSTALL_DIR)/hardware/tools/avrdude.conf \
-p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) \
-b $(UPLOAD_RATE)
# Program settings $(TMPDIRPATH)%.dis: $(TMPDIRPATH)%.o
CC = $(AVR_TOOLS_PATH)/avr-gcc @$(OBJDUMP) -S $< > $@
CXX = $(AVR_TOOLS_PATH)/avr-g++
OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy
OBJDUMP = $(AVR_TOOLS_PATH)/avr-objdump
AR = $(AVR_TOOLS_PATH)/avr-ar
SIZE = $(AVR_TOOLS_PATH)/avr-size
NM = $(AVR_TOOLS_PATH)/avr-nm
AVRDUDE = $(INSTALL_DIR)/hardware/tools/avrdude
REMOVE = rm -f
MV = mv -f
# Define all object files. .SUFFIXES: .elf .hex .pde
OBJ = $(SRC:.c=.o) $(CXXSRC:.cpp=.o) $(ASRC:.S=.o)
# Define all listing files.
LST = $(ASRC:.S=.lst) $(CXXSRC:.cpp=.lst) $(SRC:.c=.lst)
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
ALL_CXXFLAGS = -mmcu=$(MCU) -I. $(CXXFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
# Default target.
all: applet_files_ez build sizeafter
build: elf hex
applet_files_ez: $(TARGET).pde
# Here is the "preprocessing".
# It creates a .cpp file based with the same name as the .pde file.
# On top of the new .cpp file comes the WProgram.h header.
# At the end there is a generic main() function attached.
# Then the .cpp file will be compiled. Errors during compile will
# refer to this new, automatically generated, file.
# Not the original .pde file you actually edit...
test -d applet || mkdir applet
echo '#include "WProgram.h"' > applet/$(TARGET).cpp
cat $(TARGET).pde >> applet/$(TARGET).cpp
cat $(ARDUINO)/main.cpp >> applet/$(TARGET).cpp
elf: applet/$(TARGET).elf
hex: applet/$(TARGET).hex
eep: applet/$(TARGET).eep
lss: applet/$(TARGET).lss
sym: applet/$(TARGET).sym
# Program the device.
upload: applet/$(TARGET).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH)
# Display size of file.
HEXSIZE = $(SIZE) --target=$(FORMAT) applet/$(TARGET).hex
ELFSIZE = $(SIZE) applet/$(TARGET).elf
sizebefore:
@if [ -f applet/$(TARGET).elf ]; then echo; echo $(MSG_SIZE_BEFORE); $(HEXSIZE); echo; fi
sizeafter:
@if [ -f applet/$(TARGET).elf ]; then echo; echo $(MSG_SIZE_AFTER); $(HEXSIZE); echo; fi
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \
--change-section-address .data-0x800000 \
--change-section-address .bss-0x800000 \
--change-section-address .noinit-0x800000 \
--change-section-address .eeprom-0x810000
coff: applet/$(TARGET).elf
$(COFFCONVERT) -O coff-avr applet/$(TARGET).elf $(TARGET).cof
extcoff: $(TARGET).elf
$(COFFCONVERT) -O coff-ext-avr applet/$(TARGET).elf $(TARGET).cof
.SUFFIXES: .elf .hex .eep .lss .sym
.elf.hex: .elf.hex:
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@ @$(OBJCOPY) -O ihex -R .eeprom $< $@
.elf.eep: $(TMPDIRPATH)%.cpp: %.pde
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \ @cat $(ARDUINO_PATH)hardware/arduino/cores/arduino/main.cpp > $@
--change-section-lma .eeprom=0 -O $(FORMAT) $< $@ @cat $< >> $@
@echo >> $@
# Create extended listing file from ELF output file. @echo 'extern "C" void __cxa_pure_virtual() { while (1); }' >> $@
.elf.lss:
$(OBJDUMP) -h -S $< > $@
# Create a symbol table from ELF output file.
.elf.sym:
$(NM) -n $< > $@
# Link: create ELF output file from library.
applet/$(TARGET).elf: $(TARGET).pde applet/core.a
$(CC) $(ALL_CFLAGS) -Wl,--gc-sections -o $@ applet/$(TARGET).cpp -L. applet/core.a $(LDFLAGS)
applet/core.a: $(OBJ)
@for i in $(OBJ); do echo $(AR) rcs applet/core.a $$i; $(AR) rcs applet/core.a $$i; done
.PHONY: all
all: tmpdir $(HEXNAME) assemblersource showsize
ls -al $(HEXNAME) $(ELFNAME)
# Compile: create object files from C++ source files. $(ELFNAME): $(LIBNAME)($(addprefix $(TMPDIRPATH),$(OBJFILES)))
.cpp.o: $(LINK.o) $(COMMON_FLAGS) $(LIBNAME) $(LOADLIBES) $(LDLIBS) -o $@
$(CXX) -c $(ALL_CXXFLAGS) $< -o $@
# Compile: create object files from C source files. $(LIBNAME)(): $(addprefix $(TMPDIRPATH),$(OBJFILES))
.c.o:
$(CC) -c $(ALL_CFLAGS) $< -o $@ #=== create temp directory ===
# not really required, because it will be also created during the dependency handling
.PHONY: tmpdir
tmpdir:
@test -d $(TMPDIRPATH) || mkdir $(TMPDIRPATH)
#=== create assembler files for each C/C++ file ===
.PHONY: assemblersource
assemblersource: $(addprefix $(TMPDIRPATH),$(ASSFILES)) $(addprefix $(TMPDIRPATH),$(DISFILES))
# Compile: create assembler files from C source files. #=== show the section sizes of the ELF file ===
.c.s: .PHONY: showsize
$(CC) -S $(ALL_CFLAGS) $< -o $@ showsize: $(ELFNAME)
$(SIZE) $<
#=== clean up target ===
# Assemble: create object files from assembler source files. # this is simple: the TMPDIRPATH is removed
.S.o: .PHONY: clean
$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Target: clean project.
clean: clean:
$(REMOVE) applet/$(TARGET).hex applet/$(TARGET).eep applet/$(TARGET).cof applet/$(TARGET).elf \ $(RM) $(TMPDIRPATH)
applet/$(TARGET).map applet/$(TARGET).sym applet/$(TARGET).lss applet/core.a \
$(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d) $(CXXSRC:.cpp=.s) $(CXXSRC:.cpp=.d) # Program the device.
# step 1: reset the arduino board with the stty command
# step 2: user avrdude to upload the software
.PHONY: upload
upload: $(HEXNAME)
stty -F $(AVRDUDE_PORT) hupcl
$(AVRDUDE) $(AVRDUDE_FLAGS)
# === dependency handling ===
# From the gnu make manual (section 4.14, Generating Prerequisites Automatically)
# Additionally (because this will be the first executed rule) TMPDIRPATH is created here.
# Instead of "sed" the "echo" command is used
# cd $(TMPDIRPATH); mkdir -p $(DIRS) 2> /dev/null; cd ..
DEPACTION=test -d $(TMPDIRPATH) || mkdir $(TMPDIRPATH);\
mkdir -p $(addprefix $(TMPDIRPATH),$(DIRS));\
set -e; echo -n $@ $(dir $@) > $@; $(CC) -MM $(COMMON_FLAGS) $< >> $@
$(TMPDIRPATH)%.d: %.c
@$(DEPACTION)
$(TMPDIRPATH)%.d: %.cc
@$(DEPACTION)
$(TMPDIRPATH)%.d: %.cpp
@$(DEPACTION)
# Include dependency files. If a .d file is missing, a warning is created and the .d file is created
# This warning is not a problem (gnu make manual, section 3.3 Including Other Makefiles)
-include $(addprefix $(TMPDIRPATH),$(DEPFILES))
depend:
if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \
then \
sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \
$(MAKEFILE).$$$$ && \
$(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \
fi
echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \
>> $(MAKEFILE); \
$(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)
.PHONY: all build elf hex eep lss sym program coff extcoff clean depend applet_files sizebefore sizeafter

View file

@ -1,27 +1,20 @@
#ifndef __MARLINH
#define __MARLINH
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware. // Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// Licence: GPL // Licence: GPL
#include <WProgram.h> #include <WProgram.h>
#include "fastio.h" #include "fastio.h"
extern "C" void __cxa_pure_virtual();
void __cxa_pure_virtual(){};
#define ECHO(x) Serial << "echo: " << x;
#define ECHOLN(x) Serial << "echo: "<<x<<endl;
void get_command(); void get_command();
void process_commands(); void process_commands();
void manage_inactivity(byte debug); void manage_inactivity(byte debug);
void manage_heater();
int temp2analogu(int celsius, const short table[][2], int numtemps);
float analog2tempu(int raw, const short table[][2], int numtemps);
#ifdef HEATER_USES_THERMISTOR
#define HEATERSOURCE 1
#endif
#ifdef BED_USES_THERMISTOR
#define BEDSOURCE 1
#endif
#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)
#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS)
#if X_ENABLE_PIN > -1 #if X_ENABLE_PIN > -1
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON) #define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON) #define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
@ -43,9 +36,12 @@ float analog2tempu(int raw, const short table[][2], int numtemps);
#define enable_z() ; #define enable_z() ;
#define disable_z() ; #define disable_z() ;
#endif #endif
#if E_ENABLE_PIN > -1 #if E_ENABLE_PIN > -1
#define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON)
#define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON) #define enable_e() WRITE(E_ENABLE_PIN, E_ENABLE_ON)
#define disable_e() WRITE(E_ENABLE_PIN,!E_ENABLE_ON)
#else #else
#define enable_e() ; #define enable_e() ;
#define disable_e() ; #define disable_e() ;
@ -61,47 +57,27 @@ void ClearToSend();
void get_coordinates(); void get_coordinates();
void prepare_move(); void prepare_move();
void linear_move(unsigned long steps_remaining[]);
void do_step(int axis);
void kill(byte debug); void kill(byte debug);
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in //void check_axes_activity();
// the source g-code and may never actually be reached if acceleration management is active. //void plan_init();
typedef struct { //void st_init();
// Fields used by the bresenham algorithm for tracing the line //void tp_init();
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis //void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
long step_event_count; // The number of step events required to complete this block //void plan_set_position(float x, float y, float z, float e);
volatile long accelerate_until; // The index of the step event on which to stop acceleration //void st_wake_up();
volatile long decelerate_after; // The index of the step event on which to start decelerating //void st_synchronize();
volatile long acceleration_rate; // The acceleration rate used for acceleration calculation void enquecommand(const char *cmd);
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) void wd_reset();
long advance_rate; #ifndef CRITICAL_SECTION_START
volatile long initial_advance; #define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
volatile long final_advance; #define CRITICAL_SECTION_END SREG = _sreg;
float advance; #endif //CRITICAL_SECTION_START
// Fields used by the motion planner to manage acceleration extern float homing_feedrate[];
float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis extern bool axis_relative_modes[];
float nominal_speed; // The nominal speed for this block in mm/min
float millimeters; // The total travel of this block in mm
float entry_speed;
float acceleration; // acceleration mm/sec^2
// Settings for the trapezoid generator void manage_inactivity(byte debug);
long nominal_rate; // The nominal step rate for this block in step_events/sec
volatile long initial_rate; // The jerk-adjusted step rate at start of block
volatile long final_rate; // The minimal rate at exit
long acceleration_st; // acceleration steps/sec^2
volatile char busy;
} block_t;
void check_axes_activity();
void plan_init();
void st_init();
void tp_init();
void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
void plan_set_position(float x, float y, float z, float e);
void st_wake_up();
void st_synchronize();
#endif

View file

@ -23,26 +23,29 @@
It has preliminary support for Matthew Roberts advance algorithm It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
This firmware is optimized for gen6 electronics.
*/ */
#include <EEPROM.h>
#include "fastio.h" #include "fastio.h"
#include "Configuration.h" #include "Configuration.h"
#include "pins.h" #include "pins.h"
#include "Marlin.h" #include "Marlin.h"
#include "speed_lookuptable.h" #include "ultralcd.h"
#include "streaming.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
char version_string[] = "0.9.10"; #ifdef SIMPLE_LCD
#include "Simplelcd.h"
#endif
char version_string[] = "1.0.0 Alpha 1";
#ifdef SDSUPPORT #ifdef SDSUPPORT
#include "SdFat.h" #include "SdFat.h"
#endif //SDSUPPORT #endif //SDSUPPORT
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
#define CRITICAL_SECTION_END SREG = _sreg
#endif //CRITICAL_SECTION_START
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
@ -87,9 +90,17 @@ char version_string[] = "0.9.10";
// M115 - Capabilities string // M115 - Capabilities string
// M140 - Set bed target temp // M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp. // M190 - Wait for bed current temp to reach target temp.
// M200 - Set filament diameter
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
// M220 - set speed factor override percentage S:factor in percent
// M301 - Set PID parameters P I and D // M301 - Set PID parameters P I and D
// M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//Stepper Movement Variables //Stepper Movement Variables
@ -100,15 +111,23 @@ float destination[NUM_AXIS] = {
float current_position[NUM_AXIS] = { float current_position[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0}; 0.0, 0.0, 0.0, 0.0};
bool home_all_axis = true; bool home_all_axis = true;
long feedrate = 1500, next_feedrate, saved_feedrate; float feedrate = 1500.0, next_feedrate, saved_feedrate;
long gcode_N, gcode_LastN; long gcode_N, gcode_LastN;
float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
bool relative_mode = false; //Determines Absolute or Relative Coordinates bool relative_mode = false; //Determines Absolute or Relative Coordinates
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode. bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
uint8_t fanpwm=0;
volatile int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
volatile bool feedmultiplychanged=false;
// comm variables // comm variables
#define MAX_CMD_SIZE 96 #define MAX_CMD_SIZE 96
#define BUFSIZE 8 #define BUFSIZE 4
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE]; char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE]; bool fromsd[BUFSIZE];
int bufindr = 0; int bufindr = 0;
@ -119,45 +138,23 @@ char serial_char;
int serial_count = 0; int serial_count = 0;
boolean comment_mode = false; boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
extern float HeaterPower;
// Manage heater variables. #include "EEPROM.h"
int target_raw = 0;
int current_raw = 0;
unsigned char temp_meas_ready = false;
#ifdef PIDTEMP
double temp_iState = 0;
double temp_dState = 0;
double pTerm;
double iTerm;
double dTerm;
//int output;
double pid_error;
double temp_iState_min;
double temp_iState_max;
double pid_setpoint = 0.0;
double pid_input;
double pid_output;
bool pid_reset;
#endif //PIDTEMP
float tt = 0, bt = 0;
#ifdef WATCHPERIOD #ifdef WATCHPERIOD
int watch_raw = -1000; int watch_raw = -1000;
unsigned long watchmillis = 0; unsigned long watchmillis = 0;
#endif //WATCHPERIOD #endif //WATCHPERIOD
#ifdef MINTEMP
int minttemp = temp2analogh(MINTEMP);
#endif //MINTEMP
#ifdef MAXTEMP
int maxttemp = temp2analogh(MAXTEMP);
#endif //MAXTEMP
//Inactivity shutdown variables //Inactivity shutdown variables
unsigned long previous_millis_cmd = 0; unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0; unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0; unsigned long stepper_inactive_time = 0;
unsigned long starttime=0;
unsigned long stoptime=0;
#ifdef SDSUPPORT #ifdef SDSUPPORT
Sd2Card card; Sd2Card card;
SdVolume volume; SdVolume volume;
@ -169,6 +166,7 @@ bool sdmode = false;
bool sdactive = false; bool sdactive = false;
bool savetosd = false; bool savetosd = false;
int16_t n; int16_t n;
long autostart_atmillis=0;
void initsd(){ void initsd(){
sdactive = false; sdactive = false;
@ -184,10 +182,18 @@ void initsd(){
else if (!root.openRoot(&volume)) else if (!root.openRoot(&volume))
Serial.println("openRoot failed"); Serial.println("openRoot failed");
else else
{
sdactive = true; sdactive = true;
Serial.println("SD card ok");
}
#endif //SDSS #endif //SDSS
} }
void quickinitsd(){
sdactive=false;
autostart_atmillis=millis()+5000;
}
inline void write_command(char *buf){ inline void write_command(char *buf){
char* begin = buf; char* begin = buf;
char* npos = 0; char* npos = 0;
@ -210,147 +216,131 @@ inline void write_command(char *buf){
#endif //SDSUPPORT #endif //SDSUPPORT
///adds an command to the main command buffer
void enquecommand(const char *cmd)
{
if(buflen < BUFSIZE)
{
//this is dangerous if a mixing of serial and this happsens
strcpy(&(cmdbuffer[bufindw][0]),cmd);
Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
}
}
void setup() void setup()
{ {
Serial.begin(BAUDRATE);
Serial.print("Marlin ");
Serial.println(version_string);
Serial.println("start");
Serial.begin(BAUDRATE);
ECHOLN("Marlin "<<version_string);
Serial.println("start");
#if defined FANCY_LCD || defined SIMPLE_LCD
lcd_init();
#endif
for(int i = 0; i < BUFSIZE; i++){ for(int i = 0; i < BUFSIZE; i++){
fromsd[i] = false; fromsd[i] = false;
} }
//Initialize Dir Pins RetrieveSettings(); // loads data from EEPROM if available
#if X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#endif
#if Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#endif
#if E_DIR_PIN > -1
SET_OUTPUT(E_DIR_PIN);
#endif
//Initialize Enable Pins - steppers default to disabled.
#if (X_ENABLE_PIN > -1)
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if (Y_ENABLE_PIN > -1)
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#endif
#if (Z_ENABLE_PIN > -1)
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#endif
#if (E_ENABLE_PIN > -1)
SET_OUTPUT(E_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
#endif
//endstops and pullups
#ifdef ENDSTOPPULLUPS
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
WRITE(X_MIN_PIN,HIGH);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
WRITE(X_MAX_PIN,HIGH);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
WRITE(Y_MIN_PIN,HIGH);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
WRITE(Y_MAX_PIN,HIGH);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
WRITE(Z_MIN_PIN,HIGH);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
WRITE(Z_MAX_PIN,HIGH);
#endif
#else //ENDSTOPPULLUPS
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#endif
#endif //ENDSTOPPULLUPS
#if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
//Initialize Step Pins
#if (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN);
#endif
#if (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
#endif
#if (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
#endif
#if (E_STEP_PIN > -1)
SET_OUTPUT(E_STEP_PIN);
#endif
for(int i=0; i < NUM_AXIS; i++){ for(int i=0; i < NUM_AXIS; i++){
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
} }
#ifdef PIDTEMP
temp_iState_min = 0.0;
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif //PIDTEMP
#ifdef SDSUPPORT #ifdef SDSUPPORT
//power to SD reader //power to SD reader
#if SDPOWER > -1 #if SDPOWER > -1
SET_OUTPUT(SDPOWER); SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH); WRITE(SDPOWER,HIGH);
#endif //SDPOWER #endif //SDPOWER
initsd(); quickinitsd();
#endif //SDSUPPORT #endif //SDSUPPORT
plan_init(); // Initialize planner; plan_init(); // Initialize planner;
st_init(); // Initialize stepper; st_init(); // Initialize stepper;
tp_init(); // Initialize temperature loop tp_init(); // Initialize temperature loop
//checkautostart();
} }
#ifdef SDSUPPORT
bool autostart_stilltocheck=true;
void checkautostart(bool force)
{
//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
if(!force)
{
if(!autostart_stilltocheck)
return;
if(autostart_atmillis<millis())
return;
}
autostart_stilltocheck=false;
if(!sdactive)
{
initsd();
if(!sdactive) //fail
return;
}
static int lastnr=0;
char autoname[30];
sprintf(autoname,"auto%i.g",lastnr);
for(int i=0;i<strlen(autoname);i++)
autoname[i]=tolower(autoname[i]);
dir_t p;
root.rewind();
char filename[11];
int cnt=0;
bool found=false;
while (root.readDir(p) > 0)
{
for(int i=0;i<strlen((char*)p.name);i++)
p.name[i]=tolower(p.name[i]);
//Serial.print((char*)p.name);
//Serial.print(" ");
//Serial.println(autoname);
if(p.name[9]!='~') //skip safety copies
if(strncmp((char*)p.name,autoname,5)==0)
{
char cmd[30];
sprintf(cmd,"M23 %s",autoname);
//sprintf(cmd,"M115");
//enquecommand("G92 Z0");
//enquecommand("G1 Z10 F2000");
//enquecommand("G28 X-105 Y-105");
enquecommand(cmd);
enquecommand("M24");
found=true;
}
}
if(!found)
lastnr=-1;
else
lastnr++;
}
#else
inline void checkautostart(bool x)
{
}
#endif
void loop() void loop()
{ {
if(buflen<3) if(buflen<3)
get_command(); get_command();
checkautostart(false);
if(buflen){ if(buflen)
{
#ifdef SDSUPPORT #ifdef SDSUPPORT
if(savetosd){ if(savetosd){
if(strstr(cmdbuffer[bufindr],"M29") == NULL){ if(strstr(cmdbuffer[bufindr],"M29") == NULL){
@ -376,6 +366,7 @@ void loop()
//check heater every n milliseconds //check heater every n milliseconds
manage_heater(); manage_heater();
manage_inactivity(1); manage_inactivity(1);
LCD_STATUS;
} }
@ -482,6 +473,16 @@ inline void get_command()
if(sdpos >= filesize){ if(sdpos >= filesize){
sdmode = false; sdmode = false;
Serial.println("Done printing file"); Serial.println("Done printing file");
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
Serial.println(time);
LCD_MESSAGE(time);
checkautostart(true);
} }
if(!serial_count) return; //if empty line if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string cmdbuffer[bufindw][serial_count] = 0; //terminate string
@ -548,38 +549,41 @@ inline void process_commands()
break; break;
case 28: //G28 Home all Axis one at a time case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate; saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
for(int i=0; i < NUM_AXIS; i++) { for(int i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i]; destination[i] = current_position[i];
} }
feedrate = 0; feedrate = 0.0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))); home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) { if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){ if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
st_synchronize(); // st_synchronize();
current_position[X_AXIS] = 0; current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR; destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS]; feedrate = homing_feedrate[X_AXIS];
prepare_move(); prepare_move();
st_synchronize(); // st_synchronize();
current_position[X_AXIS] = 0; current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = -5 * X_HOME_DIR; destination[X_AXIS] = -5 * X_HOME_DIR;
prepare_move(); prepare_move();
st_synchronize(); // st_synchronize();
destination[X_AXIS] = 10 * X_HOME_DIR; destination[X_AXIS] = 10 * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS]/2 ; feedrate = homing_feedrate[X_AXIS]/2 ;
prepare_move(); prepare_move();
st_synchronize();
// st_synchronize();
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH; current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS]; destination[X_AXIS] = current_position[X_AXIS];
feedrate = 0; feedrate = 0.0;
} }
} }
@ -590,23 +594,23 @@ inline void process_commands()
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR; destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS]; feedrate = homing_feedrate[Y_AXIS];
prepare_move(); prepare_move();
st_synchronize(); // st_synchronize();
current_position[Y_AXIS] = 0; current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = -5 * Y_HOME_DIR; destination[Y_AXIS] = -5 * Y_HOME_DIR;
prepare_move(); prepare_move();
st_synchronize(); // st_synchronize();
destination[Y_AXIS] = 10 * Y_HOME_DIR; destination[Y_AXIS] = 10 * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS]/2; feedrate = homing_feedrate[Y_AXIS]/2;
prepare_move(); prepare_move();
st_synchronize(); // st_synchronize();
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH; current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = current_position[Y_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS];
feedrate = 0; feedrate = 0.0;
} }
} }
@ -617,26 +621,27 @@ inline void process_commands()
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR; destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
prepare_move(); prepare_move();
st_synchronize(); // st_synchronize();
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = -2 * Z_HOME_DIR; destination[Z_AXIS] = -2 * Z_HOME_DIR;
prepare_move(); prepare_move();
st_synchronize(); // st_synchronize();
destination[Z_AXIS] = 3 * Z_HOME_DIR; destination[Z_AXIS] = 3 * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS]/2; feedrate = homing_feedrate[Z_AXIS]/2;
prepare_move(); prepare_move();
st_synchronize(); // st_synchronize();
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH; current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = current_position[Z_AXIS]; destination[Z_AXIS] = current_position[Z_AXIS];
feedrate = 0; feedrate = 0.0;
} }
} }
feedrate = saved_feedrate; feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis(); previous_millis_cmd = millis();
break; break;
case 90: // G90 case 90: // G90
@ -653,7 +658,6 @@ inline void process_commands()
} }
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break; break;
} }
} }
@ -701,6 +705,7 @@ inline void process_commands()
case 24: //M24 - Start SD print case 24: //M24 - Start SD print
if(sdactive){ if(sdactive){
sdmode = true; sdmode = true;
starttime=millis();
} }
break; break;
case 25: //M25 - Pause SD print case 25: //M25 - Pause SD print
@ -753,70 +758,141 @@ inline void process_commands()
//processed in write to file routine above //processed in write to file routine above
//savetosd = false; //savetosd = false;
break; break;
case 30:
{
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
Serial.println(time);
LCD_MESSAGE(time);
}
break;
#endif //SDSUPPORT #endif //SDSUPPORT
case 104: // M104 case 104: // M104
#ifdef PID_OPENLOOP if (code_seen('S')) target_raw[0] = temp2analog(code_value());
if (code_seen('S')) PidTemp_Output = code_value() * (PID_MAX/100.0);
if(pid_output > PID_MAX) pid_output = PID_MAX;
if(pid_output < 0) pid_output = 0;
#else //PID_OPENLOOP
if (code_seen('S')) {
target_raw = temp2analogh(code_value());
#ifdef PIDTEMP #ifdef PIDTEMP
pid_setpoint = code_value(); pid_setpoint = code_value();
#endif //PIDTEMP #endif //PIDTEM
} #ifdef WATCHPERIOD
#ifdef WATCHPERIOD if(target_raw[0] > current_raw[0]){
if(target_raw > current_raw){
watchmillis = max(1,millis()); watchmillis = max(1,millis());
watch_raw = current_raw; watch_raw[0] = current_raw[0];
} }else{
else{
watchmillis = 0; watchmillis = 0;
} }
#endif //WATCHPERIOD #endif
#endif //PID_OPENLOOP break;
case 140: // M140 set bed temp
if (code_seen('S')) target_raw[1] = temp2analogBed(code_value());
break; break;
case 105: // M105 case 105: // M105
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
tt = analog2temp(current_raw[0]);
#endif
#if TEMP_1_PIN > -1
bt = analog2tempBed(current_raw[1]);
#endif
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
Serial.print("ok T:"); Serial.print("ok T:");
Serial.println(analog2temp(current_raw)); Serial.print(tt);
// Serial.print(", raw:");
// Serial.print(current_raw);
#if TEMP_1_PIN > -1
#ifdef PIDTEMP
Serial.print(" B:");
#if TEMP_1_PIN > -1
Serial.println(bt);
#else
Serial.println(HeaterPower);
#endif
#else
Serial.println();
#endif
#else
Serial.println();
#endif
#else
Serial.println("No thermistors - no temp");
#endif
return; return;
//break; //break;
case 109: // M109 - Wait for extruder heater to reach target. case 109: // M109 - Wait for extruder heater to reach target.
if (code_seen('S')) { LCD_MESSAGE("Heating...");
target_raw = temp2analogh(code_value()); if (code_seen('S')) target_raw[0] = temp2analog(code_value());
#ifdef PIDTEMP #ifdef PIDTEMP
pid_setpoint = code_value(); pid_setpoint = code_value();
#endif //PIDTEMP #endif //PIDTEM
} #ifdef WATCHPERIOD
#ifdef WATCHPERIOD if(target_raw[0]>current_raw[0]){
if(target_raw>current_raw){
watchmillis = max(1,millis()); watchmillis = max(1,millis());
watch_raw = current_raw; watch_raw[0] = current_raw[0];
} }else{
else{
watchmillis = 0; watchmillis = 0;
} }
#endif //WATCHERPERIOD #endif
codenum = millis(); codenum = millis();
while(current_raw < target_raw) { starttime=millis();
if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. while(current_raw[0] < target_raw[0]) {
{ if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up.
Serial.print("T:"); Serial.print("T:");
Serial.println( analog2temp(current_raw)); Serial.println( analog2temp(current_raw[0]) );
codenum = millis();
}
LCD_STATUS;
manage_heater();
}
LCD_MESSAGE("UltiMarlin ready.");
break;
case 190: // M190 - Wait bed for heater to reach target.
#if TEMP_1_PIN > -1
if (code_seen('S')) target_raw[1] = temp2analog(code_value());
codenum = millis();
while(current_raw[1] < target_raw[1])
{
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
float tt=analog2temp(current_raw[0]);
Serial.print("T:");
Serial.println( tt );
Serial.print("ok T:");
Serial.print( tt );
Serial.print(" B:");
Serial.println( analog2temp(current_raw[1]) );
codenum = millis(); codenum = millis();
} }
manage_heater(); manage_heater();
} }
#endif
break; break;
case 190: #if FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
WRITE(FAN_PIN,HIGH);
fanpwm=constrain(code_value(),0,255);
analogWrite(FAN_PIN, fanpwm);
}
else {
WRITE(FAN_PIN,HIGH);
fanpwm=255;
analogWrite(FAN_PIN, fanpwm);
}
break; break;
case 107: //M107 Fan Off
WRITE(FAN_PIN,LOW);
analogWrite(FAN_PIN, 0);
break;
#endif
case 82: case 82:
axis_relative_modes[3] = false; axis_relative_modes[3] = false;
break; break;
case 83: case 83:
axis_relative_modes[3] = true; axis_relative_modes[3] = true;
break; break;
case 18:
case 84: case 84:
if(code_seen('S')){ if(code_seen('S')){
stepper_inactive_time = code_value() * 1000; stepper_inactive_time = code_value() * 1000;
@ -850,7 +926,16 @@ inline void process_commands()
Serial.print("Z:"); Serial.print("Z:");
Serial.print(current_position[Z_AXIS]); Serial.print(current_position[Z_AXIS]);
Serial.print("E:"); Serial.print("E:");
Serial.println(current_position[E_AXIS]); Serial.print(current_position[E_AXIS]);
#ifdef DEBUG_STEPS
Serial.print(" Count X:");
Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
Serial.print("Y:");
Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
Serial.print("Z:");
Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
#endif
Serial.println("");
break; break;
case 119: // M119 case 119: // M119
#if (X_MIN_PIN > -1) #if (X_MIN_PIN > -1)
@ -892,18 +977,67 @@ inline void process_commands()
} }
break; break;
#endif #endif
case 203: // M203 max feedrate mm/sec
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ;
if(code_seen('T')) retract_acceleration = code_value() ;
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) minimumfeedrate = code_value()*60 ;
if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_xy_jerk = code_value()*60 ;
if(code_seen('Z')) max_z_jerk = code_value()*60 ;
}
break;
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
feedmultiplychanged=true;
}
}
break;
#ifdef PIDTEMP #ifdef PIDTEMP
case 301: // M301 case 301: // M301
if(code_seen('P')) Kp = code_value(); if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = code_value()*PID_dT; if(code_seen('I')) Ki = code_value()*PID_dT;
if(code_seen('D')) Kd = code_value()/PID_dT; if(code_seen('D')) Kd = code_value()/PID_dT;
Serial.print("Kp ");Serial.println(Kp); // ECHOLN("Kp "<<_FLOAT(Kp,2));
Serial.print("Ki ");Serial.println(Ki/PID_dT); // ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
Serial.print("Kd ");Serial.println(Kd*PID_dT); // ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
temp_iState_min = 0.0;
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki; // temp_iState_min = 0.0;
// if (Ki!=0) {
// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
// }
// else temp_iState_max = 1.0e10;
break; break;
#endif //PIDTEMP #endif //PIDTEMP
case 500: // Store settings in EEPROM
{
StoreSettings();
}
break;
case 501: // Read settings from EEPROM
{
RetrieveSettings();
}
break;
case 502: // Revert to default settings
{
RetrieveSettings(true);
}
break;
} }
} }
else{ else{
@ -947,141 +1081,89 @@ inline void get_coordinates()
void prepare_move() void prepare_move()
{ {
if (min_software_endstops) { plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
}
if (max_software_endstops) {
if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60.0);
for(int i=0; i < NUM_AXIS; i++) { for(int i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i]; current_position[i] = destination[i];
} }
} }
void manage_heater()
{
float pid_input;
float pid_output;
if(temp_meas_ready != true)
return;
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
#ifdef PIDTEMP #ifdef USE_WATCHDOG
pid_input = analog2temp(current_raw);
#ifndef PID_OPENLOOP #include <avr/wdt.h>
pid_error = pid_setpoint - pid_input; #include <avr/interrupt.h>
if(pid_error > 10){
pid_output = PID_MAX; volatile uint8_t timeout_seconds=0;
pid_reset = true;
void(* ctrlaltdelete) (void) = 0;
ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
{
kill();
#ifdef RESET_MANUAL
LCD_MESSAGE("Please Reset!");
ECHOLN("echo_: Something is wrong, please turn off the printer.");
#else
LCD_MESSAGE("Timeout, resetting!");
#endif
//disable watchdog, it will survife reboot.
WDTCSR |= (1<<WDCE) | (1<<WDE);
WDTCSR = 0;
#ifdef RESET_MANUAL
while(1); //wait for user or serial reset
#else
ctrlaltdelete();
#endif
} }
else if(pid_error < -10) {
pid_output = 0;
pid_reset = true;
}
else {
if(pid_reset == true) {
temp_iState = 0.0;
pid_reset = false;
}
pTerm = Kp * pid_error;
temp_iState += pid_error;
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
iTerm = Ki * temp_iState;
#define K1 0.8
#define K2 (1.0-K1)
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
temp_dState = pid_input;
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
}
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
Serial.print(" Input ");
Serial.print(pid_input);
Serial.print(" Output ");
Serial.print(pid_output);
Serial.print(" pTerm ");
Serial.print(pTerm);
Serial.print(" iTerm ");
Serial.print(iTerm);
Serial.print(" dTerm ");
Serial.print(dTerm);
Serial.println();
#endif //PID_DEBUG
OCR2B = pid_output;
#endif //PIDTEMP
} }
/// intialise watch dog with a 1 sec interrupt time
int temp2analogu(int celsius, const short table[][2], int numtemps) { void wd_init() {
int raw = 0; WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
byte i; WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
for (i=1; i<numtemps; i++) {
if (table[i][1] < celsius) {
raw = table[i-1][0] +
(celsius - table[i-1][1]) *
(table[i][0] - table[i-1][0]) /
(table[i][1] - table[i-1][1]);
break;
}
}
// Overflow: Set to last value in the table
if (i == numtemps) raw = table[i-1][0];
return 16383 - raw;
} }
float analog2tempu(int raw,const short table[][2], int numtemps) { /// reset watchdog. MUST be called every 1s after init or avr will reset.
float celsius = 0.0; void wd_reset() {
byte i; wdt_reset();
timeout_seconds=0; //reset counter for resets
raw = 16383 - raw;
for (i=1; i<numtemps; i++) {
if (table[i][0] > raw) {
celsius = (float)table[i-1][1] +
(float)(raw - table[i-1][0]) *
(float)(table[i][1] - table[i-1][1]) /
(float)(table[i][0] - table[i-1][0]);
break;
}
}
// Overflow: Set to last value in the table
if (i == numtemps) celsius = table[i-1][1];
return celsius;
} }
#endif /* USE_WATCHDOG */
inline void kill() inline void kill()
{ {
target_raw=0; #if TEMP_0_PIN > -1
#ifdef PIDTEMP target_raw[0]=0;
pid_setpoint = 0.0; #if HEATER_0_PIN > -1
#endif //PIDTEMP
OCR2B = 0;
WRITE(HEATER_0_PIN,LOW); WRITE(HEATER_0_PIN,LOW);
#endif
#endif
#if TEMP_1_PIN > -1
target_raw[1]=0;
#if HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
#if TEMP_2_PIN > -1
target_raw[2]=0;
#if HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
#endif
disable_x(); disable_x();
disable_y(); disable_y();
disable_z(); disable_z();
disable_e(); disable_e();
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
Serial.println("!! Printer halted. kill() called!!");
while(1); // Wait for reset
} }
inline void manage_inactivity(byte debug) { void manage_inactivity(byte debug) {
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill(); if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) { if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
disable_x(); disable_x();
@ -1091,965 +1173,3 @@ inline void manage_inactivity(byte debug) {
} }
check_axes_activity(); check_axes_activity();
} }
// Planner
/*
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
// The number of linear motions that can be in the plan at any give time
#define BLOCK_BUFFER_SIZE 16
#define BLOCK_BUFFER_MASK 0x0f
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
static volatile unsigned char block_buffer_tail; // Index of the block to process now
// The current position of the tool in absolute steps
static long position[4];
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration:
inline long estimate_acceleration_distance(long initial_rate, long target_rate, long acceleration) {
return(
(target_rate*target_rate-initial_rate*initial_rate)/
(2L*acceleration)
);
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
inline long intersection_distance(long initial_rate, long final_rate, long acceleration, long distance) {
return(
(2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4*acceleration)
);
}
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
if(block->busy == true) return; // If block is busy then bail out.
float entry_factor = entry_speed / block->nominal_speed;
float exit_factor = exit_speed / block->nominal_speed;
long initial_rate = ceil(block->nominal_rate*entry_factor);
long final_rate = ceil(block->nominal_rate*exit_factor);
#ifdef ADVANCE
long initial_advance = block->advance*entry_factor*entry_factor;
long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
// Limit minimal step rate (Otherwise the timer will overflow.)
if(initial_rate <120) initial_rate=120;
if(final_rate < 120) final_rate=120;
// Calculate the acceleration steps
long acceleration = block->acceleration_st;
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
// Calculate the size of Plateau of Nominal Rate.
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
plateau_steps = 0;
}
long decelerate_after = accelerate_steps+plateau_steps;
long acceleration_rate = (long)((float)acceleration * 8.388608);
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if(block->busy == false) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = decelerate_after;
block->acceleration_rate = acceleration_rate;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
#ifdef ADVANCE
block->initial_advance = initial_advance;
block->final_advance = final_advance;
#endif ADVANCE
}
CRITICAL_SECTION_END;
}
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance.
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return(
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
);
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks.
inline float junction_jerk(block_t *before, block_t *after) {
return(sqrt(
pow((before->speed_x-after->speed_x), 2)+
pow((before->speed_y-after->speed_y), 2)));
}
// Return the safe speed which is max_jerk/2, e.g. the
// speed under which you cannot exceed max_jerk no matter what you do.
float safe_speed(block_t *block) {
float safe_speed;
safe_speed = max_xy_jerk/2;
if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
return safe_speed;
}
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) {
return;
}
float entry_speed = current->nominal_speed;
float exit_factor;
float exit_speed;
if (next) {
exit_speed = next->entry_speed;
}
else {
exit_speed = safe_speed(current);
}
// Calculate the entry_factor for the current block.
if (previous) {
// Reduce speed so that junction_jerk is within the maximum allowed
float jerk = junction_jerk(previous, current);
if((previous->steps_x == 0) && (previous->steps_y == 0)) {
entry_speed = safe_speed(current);
}
else if (jerk > max_xy_jerk) {
entry_speed = (max_xy_jerk/jerk) * entry_speed;
}
if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
}
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
if (entry_speed > exit_speed) {
float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
if (max_entry_speed < entry_speed) {
entry_speed = max_entry_speed;
}
}
}
else {
entry_speed = safe_speed(current);
}
// Store result
current->entry_speed = entry_speed;
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the reverse pass.
void planner_reverse_pass() {
char block_index = block_buffer_head;
block_index--;
block_t *block[3] = { NULL, NULL, NULL };
while(block_index != block_buffer_tail) {
block_index--;
if(block_index < 0) block_index = BLOCK_BUFFER_SIZE-1;
block[2]= block[1];
block[1]= block[0];
block[0] = &block_buffer[block_index];
planner_reverse_pass_kernel(block[0], block[1], block[2]);
}
planner_reverse_pass_kernel(NULL, block[0], block[1]);
}
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) {
return;
}
if(previous) {
// If the previous block is an acceleration block, but it is not long enough to
// complete the full speed change within the block, we need to adjust out entry
// speed accordingly. Remember current->entry_factor equals the exit factor of
// the previous block.
if(previous->entry_speed < current->entry_speed) {
float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
if (max_entry_speed < current->entry_speed) {
current->entry_speed = max_entry_speed;
}
}
}
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the forward pass.
void planner_forward_pass() {
char block_index = block_buffer_tail;
block_t *block[3] = {
NULL, NULL, NULL };
while(block_index != block_buffer_head) {
block[0] = block[1];
block[1] = block[2];
block[2] = &block_buffer[block_index];
planner_forward_pass_kernel(block[0],block[1],block[2]);
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
}
planner_forward_pass_kernel(block[1], block[2], NULL);
}
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
// entry_factor for each junction. Must be called by planner_recalculate() after
// updating the blocks.
void planner_recalculate_trapezoids() {
char block_index = block_buffer_tail;
block_t *current;
block_t *next = NULL;
while(block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
}
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
}
calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
}
// Recalculates the motion plan according to the following algorithm:
//
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
// so that:
// a. The junction jerk is within the set limit
// b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster accelleration than the one, true
// constant acceleration.
//
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
// the set limit. Finally it will:
//
// 3. Recalculate trapezoids for all blocks.
void planner_recalculate() {
planner_reverse_pass();
planner_forward_pass();
planner_recalculate_trapezoids();
}
void plan_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position
}
inline void plan_discard_current_block() {
if (block_buffer_head != block_buffer_tail) {
block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
}
}
inline block_t *plan_get_current_block() {
if (block_buffer_head == block_buffer_tail) {
return(NULL);
}
block_t *block = &block_buffer[block_buffer_tail];
block->busy = true;
return(block);
}
void check_axes_activity() {
unsigned char x_active = 0;
unsigned char y_active = 0;
unsigned char z_active = 0;
unsigned char e_active = 0;
block_t *block;
if(block_buffer_tail != block_buffer_head) {
char block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
block = &block_buffer[block_index];
if(block->steps_x != 0) x_active++;
if(block->steps_y != 0) y_active++;
if(block->steps_z != 0) z_active++;
if(block->steps_e != 0) e_active++;
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
}
}
if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0)) disable_e();
}
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
long target[4];
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
// Calculate the buffer head after we push this byte
int next_buffer_head = (block_buffer_head + 1) & BLOCK_BUFFER_MASK;
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while(block_buffer_tail == next_buffer_head) {
manage_heater();
manage_inactivity(1);
}
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// Mark block as not busy (Not executed by the stepper interrupt)
block->busy = false;
// Number of steps for each axis
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
if (block->step_event_count == 0) {
return;
};
//enable active axes
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
if(block->steps_z != 0) enable_z();
if(block->steps_e != 0) enable_e();
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
unsigned long microseconds;
microseconds = lround((block->millimeters/feed_rate)*1000000);
// Calculate speed in mm/minute for each axis
float multiplier = 60.0*1000000.0/microseconds;
block->speed_z = delta_z_mm * multiplier;
block->speed_x = delta_x_mm * multiplier;
block->speed_y = delta_y_mm * multiplier;
block->speed_e = delta_e_mm * multiplier;
// Limit speed per axis
float speed_factor = 1;
float tmp_speed_factor;
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
}
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
if(abs(block->speed_e) > max_feedrate[E_AXIS]){
tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
multiplier = multiplier * speed_factor;
block->speed_z = delta_z_mm * multiplier;
block->speed_x = delta_x_mm * multiplier;
block->speed_y = delta_y_mm * multiplier;
block->speed_e = delta_e_mm * multiplier;
block->nominal_speed = block->millimeters * multiplier;
block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
if(block->nominal_rate < 120) block->nominal_rate = 120;
block->entry_speed = safe_speed(block);
// Compute the acceleration rate for the trapezoid generator.
float travel_per_step = block->millimeters/block->step_event_count;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
}
else {
block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
// Limit acceleration per axis
if((block->acceleration_st * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if((block->acceleration_st * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if((block->acceleration_st * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
if(((block->acceleration_st / block->step_event_count) * block->steps_z ) > axis_steps_per_sqr_second[Z_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
}
block->acceleration = block->acceleration_st * travel_per_step;
#ifdef ADVANCE
// Calculate advance rate
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
block->advance_rate = 0;
block->advance = 0;
}
else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
block->advance = advance;
if(acc_dist == 0) {
block->advance_rate = 0;
}
else {
block->advance_rate = advance / (float)acc_dist;
}
}
#endif // ADVANCE
// compute a preliminary conservative acceleration trapezoid
float safespeed = safe_speed(block);
calculate_trapezoid_for_block(block, safespeed, safespeed);
// Compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) {
block->direction_bits |= (1<<X_AXIS);
}
if (target[Y_AXIS] < position[Y_AXIS]) {
block->direction_bits |= (1<<Y_AXIS);
}
if (target[Z_AXIS] < position[Z_AXIS]) {
block->direction_bits |= (1<<Z_AXIS);
}
if (target[E_AXIS] < position[E_AXIS]) {
block->direction_bits |= (1<<E_AXIS);
}
// Move buffer head
block_buffer_head = next_buffer_head;
// Update position
memcpy(position, target, sizeof(target)); // position[] = target[]
planner_recalculate();
st_wake_up();
}
void plan_set_position(float x, float y, float z, float e)
{
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
}
// Stepper
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
// Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
static block_t *current_block; // A pointer to the block currently being traced
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
static unsigned long step_events_completed; // The number of step events executed in the current block
static long advance_rate, advance, final_advance = 0;
static short old_advance = 0;
static short e_steps;
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
static long acceleration_time, deceleration_time;
static long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
void st_wake_up() {
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
inline unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
if(step_rate < 32) step_rate = 32;
step_rate -= 32; // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) timer = 100;
return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
inline void trapezoid_generator_reset() {
accelerate_until = current_block->accelerate_until;
decelerate_after = current_block->decelerate_after;
acceleration_rate = current_block->acceleration_rate;
initial_rate = current_block->initial_rate;
final_rate = current_block->final_rate;
nominal_rate = current_block->nominal_rate;
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
deceleration_time = 0;
advance_rate = current_block->advance_rate;
// step_rate to timer interval
acc_step_rate = initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect)
{
if(busy){ /*Serial.println("BUSY")*/;
return;
} // The busy-flag is used to avoid reentering this interrupt
busy = true;
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) {
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0;
e_steps = 0;
}
else {
DISABLE_STEPPER_DRIVER_INTERRUPT();
}
}
if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
#ifdef ADVANCE
// Calculate E early.
counter_e += current_block->steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
CRITICAL_SECTION_START;
e_steps--;
CRITICAL_SECTION_END;
}
else {
CRITICAL_SECTION_START;
e_steps++;
CRITICAL_SECTION_END;
}
}
// Do E steps + advance steps
CRITICAL_SECTION_START;
e_steps += ((advance >> 16) - old_advance);
CRITICAL_SECTION_END;
old_advance = advance >> 16;
#endif //ADVANCE
// Set direction en check limit switches
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
WRITE(X_DIR_PIN, INVERT_X_DIR);
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
}
else // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR);
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
}
else // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
}
else // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
#ifndef ADVANCE
if ((out_bits & (1<<E_AXIS)) != 0) // -direction
WRITE(E_DIR_PIN,INVERT_E_DIR);
else // +direction
WRITE(E_DIR_PIN,!INVERT_E_DIR);
#endif //!ADVANCE
counter_x += current_block->steps_x;
if (counter_x > 0) {
WRITE(X_STEP_PIN, HIGH);
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW);
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
WRITE(Y_STEP_PIN, HIGH);
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW);
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE(Z_STEP_PIN, HIGH);
counter_z -= current_block->step_event_count;
WRITE(Z_STEP_PIN, LOW);
}
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE(E_STEP_PIN, HIGH);
counter_e -= current_block->step_event_count;
WRITE(E_STEP_PIN, LOW);
}
#endif //!ADVANCE
// Calculare new timer value
unsigned short timer;
unsigned short step_rate;
if (step_events_completed < accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, acceleration_rate);
acc_step_rate += initial_rate;
// upper limit
if(acc_step_rate > nominal_rate)
acc_step_rate = nominal_rate;
// step_rate to timer interval
timer = calc_timer(acc_step_rate);
advance += advance_rate;
acceleration_time += timer;
OCR1A = timer;
}
else if (step_events_completed >= decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = final_rate;
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
}
// lower limit
if(step_rate < final_rate)
step_rate = final_rate;
// step_rate to timer interval
timer = calc_timer(step_rate);
#ifdef ADVANCE
advance -= advance_rate;
if(advance < final_advance)
advance = final_advance;
#endif //ADVANCE
deceleration_time += timer;
OCR1A = timer;
}
// If current block is finished, reset pointer
step_events_completed += 1;
if (step_events_completed >= current_block->step_event_count) {
current_block = NULL;
plan_discard_current_block();
}
}
busy=false;
}
#ifdef ADVANCE
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect)
{
// Critical section needed because Timer 1 interrupt has higher priority.
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
WRITE(E_STEP_PIN, LOW);
// Set E direction (Depends on E direction + advance)
if (e_steps < 0) {
WRITE(E_DIR_PIN,INVERT_E_DIR);
e_steps++;
WRITE(E_STEP_PIN, HIGH);
}
if (e_steps > 0) {
WRITE(E_DIR_PIN,!INVERT_E_DIR);
e_steps--;
WRITE(E_STEP_PIN, HIGH);
}
old_OCR0A += 25; // 10kHz interrupt
OCR0A = old_OCR0A;
}
#endif // ADVANCE
void st_init()
{
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
OCR1A = 0x4000;
DISABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE
e_steps = 0;
TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE
sei();
}
// Block until all buffered steps are executed
void st_synchronize()
{
while(plan_get_current_block()) {
manage_heater();
manage_inactivity(1);
}
}
// Temperature loop
void tp_init()
{
DIDR0 = 1<<5; // TEMP_0_PIN for GEN6
ADMUX = ((1 << REFS0) | (5 & 0x07));
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, 1/128 prescaler.
TCCR2B = 0; //Stop timer in case of running
#ifdef PIDTEMP
TCCR2A = 0x23; //OC2A disable; FastPWM noninverting; FastPWM mode 7
#else
TCCR2A = 0x03; //OC2A disable; FastPWM noninverting; FastPWM mode 7
#endif //PIDTEMP
OCR2A = 156; //Period is ~10ms
OCR2B = 0; //Duty Cycle for heater pin is 0 (startup)
TIMSK2 = 0x01; //Enable overflow interrupt
TCCR2B = 0x0F; //1/1024 prescaler, start
}
static unsigned char temp_count = 0;
static unsigned long raw_temp_value = 0;
ISR(TIMER2_OVF_vect)
{
// uint8_t low, high;
// low = ADCL;
// high = ADCH;
raw_temp_value += ADC;
// raw_temp_value = (ADCH <<8) | ADCL;
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, Enable Interrupt, 1/128 prescaler.
// raw_temp_value += (high <<8) | low;
temp_count++;
if(temp_count >= 16)
{
current_raw = 16383 - raw_temp_value;
temp_meas_ready = true;
temp_count = 0;
raw_temp_value = 0;
#ifdef MAXTEMP
if(current_raw >= maxttemp) {
target_raw = 0;
#ifdef PIDTEMP
OCR2B = 0;
#else
WRITE(HEATER_0_PIN,LOW);
#endif //PIDTEMP
}
#endif //MAXTEMP
#ifdef MINTEMP
if(current_raw <= minttemp) {
target_raw = 0;
#ifdef PIDTEMP
OCR2B = 0;
#else
WRITE(HEATER_0_PIN,LOW);
#endif //PIDTEMP
}
#endif //MAXTEMP
#ifndef PIDTEMP
if(current_raw >= target_raw)
{
WRITE(HEATER_0_PIN,LOW);
}
else
{
WRITE(HEATER_0_PIN,HIGH);
}
#endif //PIDTEMP
}
}

View file

@ -27,6 +27,7 @@
#define _READ(IO) ((bool)(DIO ## IO ## _RPORT & MASK(DIO ## IO ## _PIN))) #define _READ(IO) ((bool)(DIO ## IO ## _RPORT & MASK(DIO ## IO ## _PIN)))
/// write to a pin /// write to a pin
#define _WRITE(IO, v) do { if (v) {DIO ## IO ## _WPORT |= MASK(DIO ## IO ## _PIN); } else {DIO ## IO ## _WPORT &= ~MASK(DIO ## IO ## _PIN); }; } while (0) #define _WRITE(IO, v) do { if (v) {DIO ## IO ## _WPORT |= MASK(DIO ## IO ## _PIN); } else {DIO ## IO ## _WPORT &= ~MASK(DIO ## IO ## _PIN); }; } while (0)
//#define _WRITE(IO, v) do { #if (DIO ## IO ## _WPORT >= 0x100) CRITICAL_SECTION_START; if (v) {DIO ## IO ## _WPORT |= MASK(DIO ## IO ## _PIN); } else {DIO ## IO ## _WPORT &= ~MASK(DIO ## IO ## _PIN); };#if (DIO ## IO ## _WPORT >= 0x100) CRITICAL_SECTION_END; } while (0)
/// toggle a pin /// toggle a pin
#define _TOGGLE(IO) do {DIO ## IO ## _RPORT = MASK(DIO ## IO ## _PIN); } while (0) #define _TOGGLE(IO) do {DIO ## IO ## _RPORT = MASK(DIO ## IO ## _PIN); } while (0)

10
Marlin/lcd.h Normal file
View file

@ -0,0 +1,10 @@
#ifndef __LCDH
#define __LCDH
#endif

1
Marlin/lcd.pde Normal file
View file

@ -0,0 +1 @@

View file

@ -60,8 +60,8 @@
#define HEATER_0_PIN 6 #define HEATER_0_PIN 6
#define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! #define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#define HEATER_1_PIN -1
#define HEATER_2_PIN -1
#endif #endif
@ -133,7 +133,8 @@
#define HEATER_0_PIN 14 #define HEATER_0_PIN 14
#define TEMP_0_PIN 4 //D27 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! #define TEMP_0_PIN 4 //D27 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#define HEATER_1_PIN -1
#define HEATER_2_PIN -1
/* Unused (1) (2) (3) 4 5 6 7 8 9 10 11 12 13 (14) (15) (16) 17 (18) (19) (20) (21) (22) (23) 24 (25) (26) (27) 28 (29) (30) (31) */ /* Unused (1) (2) (3) 4 5 6 7 8 9 10 11 12 13 (14) (15) (16) 17 (18) (19) (20) (21) (22) (23) 24 (25) (26) (27) 28 (29) (30) (31) */
@ -194,7 +195,8 @@
#define HEATER_0_PIN -1 #define HEATER_0_PIN -1
#define TEMP_0_PIN -1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! #define TEMP_0_PIN -1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#define HEATER_1_PIN -1
#define HEATER_2_PIN -1
@ -255,8 +257,10 @@
#define HEATER_0_PIN 10 #define HEATER_0_PIN 10
#define HEATER_1_PIN 8 #define HEATER_1_PIN 8
#define HEATER_2_PIN -1
#define TEMP_0_PIN 13 // ANALOG NUMBERING #define TEMP_0_PIN 13 // ANALOG NUMBERING
#define TEMP_1_PIN 14 // ANALOG NUMBERING #define TEMP_1_PIN 14 // ANALOG NUMBERING
#define TEMP_2_PIN -1 // ANALOG NUMBERING
#else // RAMPS_V_1_1 or RAMPS_V_1_2 as default #else // RAMPS_V_1_1 or RAMPS_V_1_2 as default
@ -301,9 +305,10 @@
#define HEATER_1_PIN 8 // RAMPS 1.1 #define HEATER_1_PIN 8 // RAMPS 1.1
#define FAN_PIN 9 // RAMPS 1.1 #define FAN_PIN 9 // RAMPS 1.1
#endif #endif
#define HEATER_2_PIN -1
#define TEMP_0_PIN 2 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! #define TEMP_0_PIN 2 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#define TEMP_1_PIN 1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! #define TEMP_1_PIN 1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#define TEMP_2_PIN -1 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#endif #endif
// SPI for Max6675 Thermocouple // SPI for Max6675 Thermocouple
@ -361,7 +366,8 @@
#define HEATER_0_PIN 6 #define HEATER_0_PIN 6
#define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! #define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!!
#define HEATER_1_PIN -1
#define HEATER_2_PIN -1
#endif #endif
@ -404,12 +410,13 @@
#define TEMP_0_PIN 5 //changed @ rkoeppl 20110410 #define TEMP_0_PIN 5 //changed @ rkoeppl 20110410
#define HEATER_0_PIN 14 //changed @ rkoeppl 20110410 #define HEATER_0_PIN 14 //changed @ rkoeppl 20110410
#define HEATER_1_PIN -1 //changed @ rkoeppl 20110410 #define HEATER_1_PIN -1 //changed @ rkoeppl 20110410
#define HEATER_2_PIN -1
#define SDPOWER -1 #define SDPOWER -1
#define SDSS 17 #define SDSS 17
#define LED_PIN -1 //changed @ rkoeppl 20110410 #define LED_PIN -1 //changed @ rkoeppl 20110410
#define TEMP_1_PIN -1 //changed @ rkoeppl 20110410 #define TEMP_1_PIN -1 //changed @ rkoeppl 20110410
#define TEMP_2_PIN -1
#define FAN_PIN -1 //changed @ rkoeppl 20110410 #define FAN_PIN -1 //changed @ rkoeppl 20110410
#define PS_ON_PIN -1 //changed @ rkoeppl 20110410 #define PS_ON_PIN -1 //changed @ rkoeppl 20110410
//our pin for debugging. //our pin for debugging.
@ -421,6 +428,7 @@
#define RX_ENABLE_PIN 13 #define RX_ENABLE_PIN 13
#endif #endif
/**************************************************************************************** /****************************************************************************************
* Sanguinololu pin assignment * Sanguinololu pin assignment
* *
@ -482,13 +490,77 @@
#define TEMP_0_PIN 7 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder) #define TEMP_0_PIN 7 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder)
#define TEMP_1_PIN 6 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed) #define TEMP_1_PIN 6 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed)
#define TEMP_2_PIN -1
#define SDPOWER -1 #define SDPOWER -1
#define SDSS 31 #define SDSS 31
#define HEATER_2_PIN -1
#endif
#if MOTHERBOARD == 7
#define KNOWN_BOARD
/*****************************************************************
* Ultimaker pin assignment
******************************************************************/
#ifndef __AVR_ATmega1280__
#ifndef __AVR_ATmega2560__
#error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
#endif
#endif
#define X_STEP_PIN 25
#define X_DIR_PIN 23
#define X_MIN_PIN 22
#define X_MAX_PIN 24
#define X_ENABLE_PIN 27
#define Y_STEP_PIN 31
#define Y_DIR_PIN 33
#define Y_MIN_PIN 26
#define Y_MAX_PIN 28
#define Y_ENABLE_PIN 29
#define Z_STEP_PIN 37
#define Z_DIR_PIN 39
#define Z_MIN_PIN 30
#define Z_MAX_PIN 32
#define Z_ENABLE_PIN 35
#define HEATER_1_PIN 4
#define TEMP_1_PIN 11
#define EXTRUDER_0_STEP_PIN 43
#define EXTRUDER_0_DIR_PIN 45
#define EXTRUDER_0_ENABLE_PIN 41
#define HEATER_0_PIN 2
#define TEMP_0_PIN 8
#define EXTRUDER_1_STEP_PIN 49
#define EXTRUDER_1_DIR_PIN 47
#define EXTRUDER_1_ENABLE_PIN 51
#define EXTRUDER_1_HEATER_PIN 3
#define EXTRUDER_1_TEMPERATURE_PIN 10
#define HEATER_2_PIN 51
#define TEMP_2_PIN 3
#define E_STEP_PIN EXTRUDER_0_STEP_PIN
#define E_DIR_PIN EXTRUDER_0_DIR_PIN
#define E_ENABLE_PIN EXTRUDER_0_ENABLE_PIN
#define SDPOWER -1
#define SDSS 53
#define LED_PIN 13
#define FAN_PIN 7
#define PS_ON_PIN 12
#define KILL_PIN -1
#endif
#ifndef KNOWN_BOARD #ifndef KNOWN_BOARD
#error Unknown MOTHERBOARD value in configuration.h #error Unknown MOTHERBOARD value in configuration.h
#endif #endif
#endif
#endif #endif

584
Marlin/planner.cpp Normal file
View file

@ -0,0 +1,584 @@
/*
planner.c - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
/*
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
//#include <inttypes.h>
//#include <math.h>
//#include <stdlib.h>
#include "Marlin.h"
#include "Configuration.h"
#include "pins.h"
#include "fastio.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "ultralcd.h"
unsigned long minsegmenttime;
float max_feedrate[4]; // set the max speeds
float axis_steps_per_unit[4];
long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
float minimumfeedrate;
float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
float max_z_jerk;
float mintravelfeedrate;
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
// Manage heater variables.
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
static volatile unsigned char block_buffer_tail; // Index of the block to process now
// The current position of the tool in absolute steps
long position[4];
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration:
inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
if (acceleration!=0) {
return((target_rate*target_rate-initial_rate*initial_rate)/
(2.0*acceleration));
}
else {
return 0.0; // acceleration was 0, set acceleration distance to 0
}
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
if (acceleration!=0) {
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4.0*acceleration) );
}
else {
return 0.0; // acceleration was 0, set intersection distance to 0
}
}
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
if(block->busy == true) return; // If block is busy then bail out.
float entry_factor = entry_speed / block->nominal_speed;
float exit_factor = exit_speed / block->nominal_speed;
long initial_rate = ceil(block->nominal_rate*entry_factor);
long final_rate = ceil(block->nominal_rate*exit_factor);
#ifdef ADVANCE
long initial_advance = block->advance*entry_factor*entry_factor;
long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
// Limit minimal step rate (Otherwise the timer will overflow.)
if(initial_rate <120) initial_rate=120;
if(final_rate < 120) final_rate=120;
// Calculate the acceleration steps
long acceleration = block->acceleration_st;
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
// Calculate the size of Plateau of Nominal Rate.
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
plateau_steps = 0;
}
long decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if(block->busy == false) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = decelerate_after;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
#ifdef ADVANCE
block->initial_advance = initial_advance;
block->final_advance = final_advance;
#endif //ADVANCE
}
CRITICAL_SECTION_END;
}
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance.
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return(
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
);
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks.
inline float junction_jerk(block_t *before, block_t *after) {
return(sqrt(
pow((before->speed_x-after->speed_x), 2)+
pow((before->speed_y-after->speed_y), 2)));
}
// Return the safe speed which is max_jerk/2, e.g. the
// speed under which you cannot exceed max_jerk no matter what you do.
float safe_speed(block_t *block) {
float safe_speed;
safe_speed = max_xy_jerk/2;
if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
return safe_speed;
}
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) {
return;
}
float entry_speed = current->nominal_speed;
float exit_factor;
float exit_speed;
if (next) {
exit_speed = next->entry_speed;
}
else {
exit_speed = safe_speed(current);
}
// Calculate the entry_factor for the current block.
if (previous) {
// Reduce speed so that junction_jerk is within the maximum allowed
float jerk = junction_jerk(previous, current);
if((previous->steps_x == 0) && (previous->steps_y == 0)) {
entry_speed = safe_speed(current);
}
else if (jerk > max_xy_jerk) {
entry_speed = (max_xy_jerk/jerk) * entry_speed;
}
if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
}
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
if (entry_speed > exit_speed) {
float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
if (max_entry_speed < entry_speed) {
entry_speed = max_entry_speed;
}
}
}
else {
entry_speed = safe_speed(current);
}
// Store result
current->entry_speed = entry_speed;
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the reverse pass.
void planner_reverse_pass() {
char block_index = block_buffer_head;
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
block_t *block[5] = {
NULL, NULL, NULL, NULL, NULL };
while(block_index != block_buffer_tail) {
block_index = (block_index-1) & (BLOCK_BUFFER_SIZE -1);
block[2]= block[1];
block[1]= block[0];
block[0] = &block_buffer[block_index];
planner_reverse_pass_kernel(block[0], block[1], block[2]);
}
planner_reverse_pass_kernel(NULL, block[0], block[1]);
}
}
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) {
return;
}
if(previous) {
// If the previous block is an acceleration block, but it is not long enough to
// complete the full speed change within the block, we need to adjust out entry
// speed accordingly. Remember current->entry_factor equals the exit factor of
// the previous block.
if(previous->entry_speed < current->entry_speed) {
float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
if (max_entry_speed < current->entry_speed) {
current->entry_speed = max_entry_speed;
}
}
}
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the forward pass.
void planner_forward_pass() {
char block_index = block_buffer_tail;
block_t *block[3] = {
NULL, NULL, NULL };
while(block_index != block_buffer_head) {
block[0] = block[1];
block[1] = block[2];
block[2] = &block_buffer[block_index];
planner_forward_pass_kernel(block[0],block[1],block[2]);
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
planner_forward_pass_kernel(block[1], block[2], NULL);
}
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
// entry_factor for each junction. Must be called by planner_recalculate() after
// updating the blocks.
void planner_recalculate_trapezoids() {
char block_index = block_buffer_tail;
block_t *current;
block_t *next = NULL;
while(block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
}
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
}
// Recalculates the motion plan according to the following algorithm:
//
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
// so that:
// a. The junction jerk is within the set limit
// b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster accelleration than the one, true
// constant acceleration.
//
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
// the set limit. Finally it will:
//
// 3. Recalculate trapezoids for all blocks.
void planner_recalculate() {
planner_reverse_pass();
planner_forward_pass();
planner_recalculate_trapezoids();
}
void plan_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position
}
void plan_discard_current_block() {
if (block_buffer_head != block_buffer_tail) {
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
}
}
block_t *plan_get_current_block() {
if (block_buffer_head == block_buffer_tail) {
return(NULL);
}
block_t *block = &block_buffer[block_buffer_tail];
block->busy = true;
return(block);
}
void check_axes_activity() {
unsigned char x_active = 0;
unsigned char y_active = 0;
unsigned char z_active = 0;
unsigned char e_active = 0;
block_t *block;
if(block_buffer_tail != block_buffer_head) {
char block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
block = &block_buffer[block_index];
if(block->steps_x != 0) x_active++;
if(block->steps_y != 0) y_active++;
if(block->steps_z != 0) z_active++;
if(block->steps_e != 0) e_active++;
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
}
if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0)) disable_e();
}
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
long target[4];
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
// Calculate the buffer head after we push this byte
int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while(block_buffer_tail == next_buffer_head) {
manage_heater();
manage_inactivity(1);
LCD_STATUS;
}
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// Mark block as not busy (Not executed by the stepper interrupt)
block->busy = false;
// Number of steps for each axis
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
if (block->step_event_count <=dropsegments) {
return;
};
//enable active axes
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
if(block->steps_z != 0) enable_z();
if(block->steps_e != 0) enable_e();
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
unsigned long microseconds;
if (block->steps_e == 0) {
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
}
else {
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
}
microseconds = lround((block->millimeters/feed_rate)*1000000);
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
// reduces/removes corner blobs as the machine won't come to a full stop.
int blockcount=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
if (microseconds<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
microseconds=microseconds+lround(2*(minsegmenttime-microseconds)/blockcount);
}
}
else {
if (microseconds<minsegmenttime) microseconds=minsegmenttime;
}
// END OF SLOW DOWN SECTION
// Calculate speed in mm/minute for each axis
float multiplier = 60.0*1000000.0/microseconds;
block->speed_z = delta_z_mm * multiplier;
block->speed_x = delta_x_mm * multiplier;
block->speed_y = delta_y_mm * multiplier;
block->speed_e = delta_e_mm * multiplier;
// Limit speed per axis
float speed_factor = 1; //factor <=1 do decrease speed
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
//// [ErikDeBruijn] IS THIS THE BUG WE'RE LOOING FOR????
//// [bernhard] No its not, according to Zalm.
//// the if would always be true, since tmp_speedfactor <=0 due the inial if, so its safe to set. the next lines actually compare.
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
//if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
float tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
if(abs(block->speed_e) > max_feedrate[E_AXIS]){
float tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
multiplier = multiplier * speed_factor;
block->speed_z = delta_z_mm * multiplier;
block->speed_x = delta_x_mm * multiplier;
block->speed_y = delta_y_mm * multiplier;
block->speed_e = delta_e_mm * multiplier;
block->nominal_speed = block->millimeters * multiplier;
block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
if(block->nominal_rate < 120) block->nominal_rate = 120;
block->entry_speed = safe_speed(block);
// Compute the acceleration rate for the trapezoid generator.
float travel_per_step = block->millimeters/block->step_event_count;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
}
else {
block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
float tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
// Limit acceleration per axis
if((tmp_acceleration * block->steps_x) > axis_steps_per_sqr_second[X_AXIS]) {
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
}
if((tmp_acceleration * block->steps_y) > axis_steps_per_sqr_second[Y_AXIS]) {
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
}
if((tmp_acceleration * block->steps_e) > axis_steps_per_sqr_second[E_AXIS]) {
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
}
if((tmp_acceleration * block->steps_z) > axis_steps_per_sqr_second[Z_AXIS]) {
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
}
}
block->acceleration = block->acceleration_st * travel_per_step;
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
#ifdef ADVANCE
// Calculate advance rate
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
block->advance_rate = 0;
block->advance = 0;
}
else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
block->advance = advance;
if(acc_dist == 0) {
block->advance_rate = 0;
}
else {
block->advance_rate = advance / (float)acc_dist;
}
}
#endif // ADVANCE
// compute a preliminary conservative acceleration trapezoid
float safespeed = safe_speed(block);
calculate_trapezoid_for_block(block, safespeed, safespeed);
// Compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) {
block->direction_bits |= (1<<X_AXIS);
}
if (target[Y_AXIS] < position[Y_AXIS]) {
block->direction_bits |= (1<<Y_AXIS);
}
if (target[Z_AXIS] < position[Z_AXIS]) {
block->direction_bits |= (1<<Z_AXIS);
}
if (target[E_AXIS] < position[E_AXIS]) {
block->direction_bits |= (1<<E_AXIS);
}
// Move buffer head
block_buffer_head = next_buffer_head;
// Update position
memcpy(position, target, sizeof(target)); // position[] = target[]
planner_recalculate();
st_wake_up();
}
void plan_set_position(float x, float y, float z, float e)
{
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
}

90
Marlin/planner.h Normal file
View file

@ -0,0 +1,90 @@
/*
planner.h - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
// This module is to be considered a sub-module of stepper.c. Please don't include
// this file from any other module.
#ifndef planner_h
#define planner_h
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
// the source g-code and may never actually be reached if acceleration management is active.
typedef struct {
// Fields used by the bresenham algorithm for tracing the line
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
long step_event_count; // The number of step events required to complete this block
volatile long accelerate_until; // The index of the step event on which to stop acceleration
volatile long decelerate_after; // The index of the step event on which to start decelerating
volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
#ifdef ADVANCE
long advance_rate;
volatile long initial_advance;
volatile long final_advance;
float advance;
#endif
// Fields used by the motion planner to manage acceleration
float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
float nominal_speed; // The nominal speed for this block in mm/min
float millimeters; // The total travel of this block in mm
float entry_speed;
float acceleration; // acceleration mm/sec^2
// Settings for the trapezoid generator
long nominal_rate; // The nominal step rate for this block in step_events/sec
volatile long initial_rate; // The jerk-adjusted step rate at start of block
volatile long final_rate; // The minimal rate at exit
long acceleration_st; // acceleration steps/sec^2
volatile char busy;
} block_t;
// Initialize the motion plan subsystem
void plan_init();
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
// millimaters. Feed rate specifies the speed of the motion.
void plan_buffer_line(float x, float y, float z, float e, float feed_rate);
// Set position. Used for G92 instructions.
void plan_set_position(float x, float y, float z, float e);
// Called when the current block is no longer needed. Discards the block and makes the memory
// availible for new blocks.
void plan_discard_current_block();
// Gets the current block. Returns NULL if buffer empty
block_t *plan_get_current_block();
void check_axes_activity();
extern unsigned long minsegmenttime;
extern float max_feedrate[4]; // set the max speeds
extern float axis_steps_per_unit[4];
extern long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
extern float minimumfeedrate;
extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
extern float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
extern float max_z_jerk;
extern float mintravelfeedrate;
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
#endif

View file

@ -3,7 +3,7 @@
#include <avr/pgmspace.h> #include <avr/pgmspace.h>
uint16_t speed_lookuptable_fast[256][2] PROGMEM = { uint16_t speed_lookuptable_fast[256][2] PROGMEM = {\
{ 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135}, { 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135},
{ 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32}, { 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32},
{ 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14}, { 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14},
@ -35,9 +35,9 @@ uint16_t speed_lookuptable_fast[256][2] PROGMEM = {
{ 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0},
{ 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0},
{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0},
{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}, { 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}
}; };
uint16_t speed_lookuptable_slow[256][2] PROGMEM = { uint16_t speed_lookuptable_slow[256][2] PROGMEM = {\
{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894}, { 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894},
{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657}, { 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657},
{ 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331}, { 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331},
@ -69,7 +69,7 @@ uint16_t speed_lookuptable_slow[256][2] PROGMEM = {
{ 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4}, { 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4},
{ 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4}, { 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4},
{ 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4}, { 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4},
{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3}, { 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3}
}; };
#endif #endif

592
Marlin/stepper.cpp Normal file
View file

@ -0,0 +1,592 @@
/*
stepper.c - stepper motor driver: executes motion plans using stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
#include "stepper.h"
#include "Configuration.h"
#include "Marlin.h"
#include "planner.h"
#include "pins.h"
#include "fastio.h"
#include "temperature.h"
#include "ultralcd.h"
#include "speed_lookuptable.h"
// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
// for debugging purposes only, should be disabled by default
#ifdef DEBUG_STEPS
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
#endif
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
"r26" \
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
// Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
static block_t *current_block; // A pointer to the block currently being traced
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE
static long advance_rate, advance, final_advance = 0;
static short old_advance = 0;
static short e_steps;
#endif
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point
static char step_loops;
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
void st_wake_up() {
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
inline unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = step_rate >> 2;
step_loops = 4;
}
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
step_rate = step_rate >> 1;
step_loops = 2;
}
else {
step_loops = 1;
}
if(step_rate < 32) step_rate = 32;
step_rate -= 32; // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) timer = 100;
return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
inline void trapezoid_generator_reset() {
#ifdef ADVANCE
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
#endif
deceleration_time = 0;
// advance_rate = current_block->advance_rate;
// step_rate to timer interval
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect)
{
if(busy){ Serial.print(*(unsigned short *)OCR1A); Serial.println(" BUSY");
return;
} // The busy-flag is used to avoid reentering this interrupt
busy = true;
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) {
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0;
#ifdef ADVANCE
e_steps = 0;
#endif
}
else {
// DISABLE_STEPPER_DRIVER_INTERRUPT();
}
}
if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
#ifdef ADVANCE
// Calculate E early.
counter_e += current_block->steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
CRITICAL_SECTION_START;
e_steps--;
CRITICAL_SECTION_END;
}
else {
CRITICAL_SECTION_START;
e_steps++;
CRITICAL_SECTION_END;
}
}
// Do E steps + advance steps
CRITICAL_SECTION_START;
e_steps += ((advance >> 16) - old_advance);
CRITICAL_SECTION_END;
old_advance = advance >> 16;
#endif //ADVANCE
// Set direction en check limit switches
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
WRITE(X_DIR_PIN, INVERT_X_DIR);
#ifdef DEBUG_STEPS
count_direction[X_AXIS]=-1;
#endif
#if X_MIN_PIN > -1
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
#endif
}
else { // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR);
#ifdef DEBUG_STEPS
count_direction[X_AXIS]=1;
#endif
#if X_MAX_PIN > -1
if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
step_events_completed = current_block->step_event_count;
}
#endif
}
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
#ifdef DEBUG_STEPS
count_direction[Y_AXIS]=-1;
#endif
#if Y_MIN_PIN > -1
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
#endif
}
else { // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
#ifdef DEBUG_STEPS
count_direction[Y_AXIS]=1;
#endif
#if Y_MAX_PIN > -1
if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
step_events_completed = current_block->step_event_count;
}
#endif
}
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
#ifdef DEBUG_STEPS
count_direction[Z_AXIS]=-1;
#endif
#if Z_MIN_PIN > -1
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
#endif
}
else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
#ifdef DEBUG_STEPS
count_direction[Z_AXIS]=1;
#endif
#if Z_MAX_PIN > -1
if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
step_events_completed = current_block->step_event_count;
}
#endif
}
#ifndef ADVANCE
if ((out_bits & (1<<E_AXIS)) != 0) // -direction
WRITE(E_DIR_PIN,INVERT_E_DIR);
else // +direction
WRITE(E_DIR_PIN,!INVERT_E_DIR);
#endif //!ADVANCE
for(char i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
counter_x += current_block->steps_x;
if (counter_x > 0) {
WRITE(X_STEP_PIN, HIGH);
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW);
#ifdef DEBUG_STEPS
count_position[X_AXIS]+=count_direction[X_AXIS];
#endif
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
WRITE(Y_STEP_PIN, HIGH);
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW);
#ifdef DEBUG_STEPS
count_position[Y_AXIS]+=count_direction[Y_AXIS];
#endif
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE(Z_STEP_PIN, HIGH);
counter_z -= current_block->step_event_count;
WRITE(Z_STEP_PIN, LOW);
#ifdef DEBUG_STEPS
count_position[Z_AXIS]+=count_direction[Z_AXIS];
#endif
}
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE(E_STEP_PIN, HIGH);
counter_e -= current_block->step_event_count;
WRITE(E_STEP_PIN, LOW);
}
#endif //!ADVANCE
step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break;
}
// Calculare new timer value
unsigned short timer;
unsigned short step_rate;
if (step_events_completed <= current_block->accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate;
// upper limit
if(acc_step_rate > current_block->nominal_rate)
acc_step_rate = current_block->nominal_rate;
// step_rate to timer interval
timer = calc_timer(acc_step_rate);
#ifdef ADVANCE
advance += advance_rate;
#endif
acceleration_time += timer;
OCR1A = timer;
}
else if (step_events_completed > current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate;
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
}
// lower limit
if(step_rate < current_block->final_rate)
step_rate = current_block->final_rate;
// step_rate to timer interval
timer = calc_timer(step_rate);
#ifdef ADVANCE
advance -= advance_rate;
if(advance < final_advance)
advance = final_advance;
#endif //ADVANCE
deceleration_time += timer;
OCR1A = timer;
}
// If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) {
current_block = NULL;
plan_discard_current_block();
}
}
cli(); // disable interrupts
busy=false;
}
#ifdef ADVANCE
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect)
{
// Critical section needed because Timer 1 interrupt has higher priority.
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
WRITE(E_STEP_PIN, LOW);
// Set E direction (Depends on E direction + advance)
if (e_steps < 0) {
WRITE(E_DIR_PIN,INVERT_E_DIR);
e_steps++;
WRITE(E_STEP_PIN, HIGH);
}
if (e_steps > 0) {
WRITE(E_DIR_PIN,!INVERT_E_DIR);
e_steps--;
WRITE(E_STEP_PIN, HIGH);
}
old_OCR0A += 25; // 10kHz interrupt
OCR0A = old_OCR0A;
}
#endif // ADVANCE
void st_init()
{
//Initialize Dir Pins
#if X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#endif
#if Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#endif
#if E_DIR_PIN > -1
SET_OUTPUT(E_DIR_PIN);
#endif
//Initialize Enable Pins - steppers default to disabled.
#if (X_ENABLE_PIN > -1)
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if (Y_ENABLE_PIN > -1)
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#endif
#if (Z_ENABLE_PIN > -1)
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#endif
#if (E_ENABLE_PIN > -1)
SET_OUTPUT(E_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
#endif
//endstops and pullups
#ifdef ENDSTOPPULLUPS
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
WRITE(X_MIN_PIN,HIGH);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
WRITE(X_MAX_PIN,HIGH);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
WRITE(Y_MIN_PIN,HIGH);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
WRITE(Y_MAX_PIN,HIGH);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
WRITE(Z_MIN_PIN,HIGH);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
WRITE(Z_MAX_PIN,HIGH);
#endif
#else //ENDSTOPPULLUPS
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#endif
#endif //ENDSTOPPULLUPS
//Initialize Step Pins
#if (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN);
#endif
#if (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
#endif
#if (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
#endif
#if (E_STEP_PIN > -1)
SET_OUTPUT(E_STEP_PIN);
#endif
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
OCR1A = 0x4000;
DISABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE
e_steps = 0;
TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE
sei();
}
// Block until all buffered steps are executed
void st_synchronize()
{
while(plan_get_current_block()) {
manage_heater();
manage_inactivity(1);
LCD_STATUS;
}
}

40
Marlin/stepper.h Normal file
View file

@ -0,0 +1,40 @@
/*
stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef stepper_h
#define stepper_h
// Initialize and start the stepper motor subsystem
void st_init();
// Block until all buffered steps are executed
void st_synchronize();
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
void st_wake_up();
// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
// for debugging purposes only, should be disabled by default
#ifdef DEBUG_STEPS
extern volatile long count_position[NUM_AXIS];
extern volatile int count_direction[NUM_AXIS];
#endif
#endif

84
Marlin/streaming.h Normal file
View file

@ -0,0 +1,84 @@
/*
Streaming.h - Arduino library for supporting the << streaming operator
Copyright (c) 2010 Mikal Hart. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef ARDUINO_STREAMING
#define ARDUINO_STREAMING
//#include <WProgram.h>
#define STREAMING_LIBRARY_VERSION 4
// Generic template
template<class T>
inline Print &operator <<(Print &stream, T arg)
{ stream.print(arg); return stream; }
struct _BASED
{
long val;
int base;
_BASED(long v, int b): val(v), base(b)
{}
};
#define _HEX(a) _BASED(a, HEX)
#define _DEC(a) _BASED(a, DEC)
#define _OCT(a) _BASED(a, OCT)
#define _BIN(a) _BASED(a, BIN)
#define _BYTE(a) _BASED(a, BYTE)
// Specialization for class _BASED
// Thanks to Arduino forum user Ben Combee who suggested this
// clever technique to allow for expressions like
// Serial << _HEX(a);
inline Print &operator <<(Print &obj, const _BASED &arg)
{ obj.print(arg.val, arg.base); return obj; }
#if ARDUINO >= 18
// Specialization for class _FLOAT
// Thanks to Michael Margolis for suggesting a way
// to accommodate Arduino 0018's floating point precision
// feature like this:
// Serial << _FLOAT(gps_latitude, 6); // 6 digits of precision
struct _FLOAT
{
float val;
int digits;
_FLOAT(double v, int d): val(v), digits(d)
{}
};
inline Print &operator <<(Print &obj, const _FLOAT &arg)
{ obj.print(arg.val, arg.digits); return obj; }
#endif
// Specialization for enum _EndLineCode
// Thanks to Arduino forum user Paul V. who suggested this
// clever technique to allow for expressions like
// Serial << "Hello!" << endl;
enum _EndLineCode { endl };
inline Print &operator <<(Print &obj, _EndLineCode arg)
{ obj.println(); return obj; }
#endif

476
Marlin/temperature.cpp Normal file
View file

@ -0,0 +1,476 @@
/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
This firmware is optimized for gen6 electronics.
*/
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
#include "ultralcd.h"
#include "streaming.h"
#include "temperature.h"
int target_bed_raw = 0;
int current_bed_raw = 0;
int target_raw[3] = {0, 0, 0};
int current_raw[3] = {0, 0, 0};
unsigned char temp_meas_ready = false;
unsigned long previous_millis_heater, previous_millis_bed_heater;
#ifdef PIDTEMP
double temp_iState = 0;
double temp_dState = 0;
double pTerm;
double iTerm;
double dTerm;
//int output;
double pid_error;
double temp_iState_min;
double temp_iState_max;
double pid_setpoint = 0.0;
double pid_input;
double pid_output;
bool pid_reset;
float HeaterPower;
float Kp=DEFAULT_Kp;
float Ki=DEFAULT_Ki;
float Kd=DEFAULT_Kd;
float Kc=DEFAULT_Kc;
#endif //PIDTEMP
#ifdef MINTEMP
int minttemp = temp2analog(MINTEMP);
#endif //MINTEMP
#ifdef MAXTEMP
int maxttemp = temp2analog(MAXTEMP);
#endif //MAXTEMP
#ifdef BED_MINTEMP
int bed_minttemp = temp2analog(BED_MINTEMP);
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
int bed_maxttemp = temp2analog(BED_MAXTEMP);
#endif //BED_MAXTEMP
void manage_heater()
{
#ifdef USE_WATCHDOG
wd_reset();
#endif
float pid_input;
float pid_output;
if(temp_meas_ready == true) {
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
#ifdef PIDTEMP
pid_input = analog2temp(current_raw[0]);
#ifndef PID_OPENLOOP
pid_error = pid_setpoint - pid_input;
if(pid_error > 10){
pid_output = PID_MAX;
pid_reset = true;
}
else if(pid_error < -10) {
pid_output = 0;
pid_reset = true;
}
else {
if(pid_reset == true) {
temp_iState = 0.0;
pid_reset = false;
}
pTerm = Kp * pid_error;
temp_iState += pid_error;
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
iTerm = Ki * temp_iState;
#define K1 0.95
#define K2 (1.0-K1)
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
temp_dState = pid_input;
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
}
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
Serial.print(" Input ");
Serial.print(pid_input);
Serial.print(" Output ");
Serial.print(pid_output);
Serial.print(" pTerm ");
Serial.print(pTerm);
Serial.print(" iTerm ");
Serial.print(iTerm);
Serial.print(" dTerm ");
Serial.print(dTerm);
Serial.println();
#endif //PID_DEBUG
analogWrite(HEATER_0_PIN, pid_output);
#endif //PIDTEMP
#ifndef PIDTEMP
if(current_raw[0] >= target_raw[0])
{
WRITE(HEATER_0_PIN,LOW);
}
else
{
WRITE(HEATER_0_PIN,HIGH);
}
#endif
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = millis();
#if TEMP_1_PIN > -1
if(current_raw[1] >= target_raw[1])
{
WRITE(HEATER_1_PIN,LOW);
}
else
{
WRITE(HEATER_1_PIN,HIGH);
}
#endif
}
}
// Takes hot end temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
float temp2analog(int celsius) {
#ifdef HEATER_USES_THERMISTOR
int raw = 0;
byte i;
for (i=1; i<NUMTEMPS; i++)
{
if (temptable[i][1] < celsius)
{
raw = temptable[i-1][0] +
(celsius - temptable[i-1][1]) *
(temptable[i][0] - temptable[i-1][0]) /
(temptable[i][1] - temptable[i-1][1]);
break;
}
}
// Overflow: Set to last value in the table
if (i == NUMTEMPS) raw = temptable[i-1][0];
return (1023 * OVERSAMPLENR) - raw;
#elif defined HEATER_USES_AD595
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
#endif
}
// Takes bed temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
float temp2analogBed(int celsius) {
#ifdef BED_USES_THERMISTOR
int raw = 0;
byte i;
for (i=1; i<BNUMTEMPS; i++)
{
if (bedtemptable[i][1] < celsius)
{
raw = bedtemptable[i-1][0] +
(celsius - bedtemptable[i-1][1]) *
(bedtemptable[i][0] - bedtemptable[i-1][0]) /
(bedtemptable[i][1] - bedtemptable[i-1][1]);
break;
}
}
// Overflow: Set to last value in the table
if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
return (1023 * OVERSAMPLENR) - raw;
#elif defined BED_USES_AD595
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
#endif
}
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float analog2temp(int raw) {
#ifdef HEATER_USES_THERMISTOR
int celsius = 0;
byte i;
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<NUMTEMPS; i++)
{
if (temptable[i][0] > raw)
{
celsius = temptable[i-1][1] +
(raw - temptable[i-1][0]) *
(temptable[i][1] - temptable[i-1][1]) /
(temptable[i][0] - temptable[i-1][0]);
break;
}
}
// Overflow: Set to last value in the table
if (i == NUMTEMPS) celsius = temptable[i-1][1];
return celsius;
#elif defined HEATER_USES_AD595
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
#endif
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
int celsius = 0;
byte i;
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<NUMTEMPS; i++)
{
if (bedtemptable[i][0] > raw)
{
celsius = bedtemptable[i-1][1] +
(raw - bedtemptable[i-1][0]) *
(bedtemptable[i][1] - bedtemptable[i-1][1]) /
(bedtemptable[i][0] - bedtemptable[i-1][0]);
break;
}
}
// Overflow: Set to last value in the table
if (i == NUMTEMPS) celsius = bedtemptable[i-1][1];
return celsius;
#elif defined BED_USES_AD595
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
#endif
}
void tp_init()
{
#if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#ifdef PIDTEMP
temp_iState_min = 0.0;
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif //PIDTEMP
// Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
TIMSK0 |= (1<<OCIE0B);
}
static unsigned char temp_count = 0;
static unsigned long raw_temp_0_value = 0;
static unsigned long raw_temp_1_value = 0;
static unsigned long raw_temp_2_value = 0;
static unsigned char temp_state = 0;
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect)
{
switch(temp_state) {
case 0: // Prepare TEMP_0
#if (TEMP_0_PIN > -1)
#if TEMP_0_PIN < 8
DIDR0 = 1 << TEMP_0_PIN;
#else
DIDR2 = 1<<(TEMP_0_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 1;
break;
case 1: // Measure TEMP_0
#if (TEMP_0_PIN > -1)
raw_temp_0_value += ADC;
#endif
temp_state = 2;
break;
case 2: // Prepare TEMP_1
#if (TEMP_1_PIN > -1)
#if TEMP_1_PIN < 7
DIDR0 = 1<<TEMP_1_PIN;
#else
DIDR2 = 1<<(TEMP_1_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 3;
break;
case 3: // Measure TEMP_1
#if (TEMP_1_PIN > -1)
raw_temp_1_value += ADC;
#endif
temp_state = 4;
break;
case 4: // Prepare TEMP_2
#if (TEMP_2_PIN > -1)
#if TEMP_2_PIN < 7
DIDR0 = 1 << TEMP_2_PIN;
#else
DIDR2 = 1<<(TEMP_2_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 5;
break;
case 5: // Measure TEMP_2
#if (TEMP_2_PIN > -1)
raw_temp_2_value += ADC;
#endif
temp_state = 0;
temp_count++;
break;
default:
Serial.println("!! Temp measurement error !!");
break;
}
if(temp_count >= 16) // 6 ms * 16 = 96ms.
{
#ifdef HEATER_USES_AD595
current_raw[0] = raw_temp_0_value;
current_raw[2] = raw_temp_2_value;
#else
current_raw[0] = 16383 - raw_temp_0_value;
current_raw[2] = 16383 - raw_temp_2_value;
#endif
#ifdef BED_USES_AD595
current_raw[1] = raw_temp_1_value;
#else
current_raw[1] = 16383 - raw_temp_1_value;
#endif
temp_meas_ready = true;
temp_count = 0;
raw_temp_0_value = 0;
raw_temp_1_value = 0;
raw_temp_2_value = 0;
#ifdef MAXTEMP
#if (HEATER_0_PIN > -1)
if(current_raw[0] >= maxttemp) {
target_raw[0] = 0;
analogWrite(HEATER_0_PIN, 0);
Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");
}
#endif
#if (HEATER_2_PIN > -1)
if(current_raw[2] >= maxttemp) {
target_raw[2] = 0;
analogWrite(HEATER_2_PIN, 0);
Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");
}
#endif
#endif //MAXTEMP
#ifdef MINTEMP
#if (HEATER_0_PIN > -1)
if(current_raw[0] <= minttemp) {
target_raw[0] = 0;
analogWrite(HEATER_0_PIN, 0);
Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");
}
#endif
#if (HEATER_2_PIN > -1)
if(current_raw[2] <= minttemp) {
target_raw[2] = 0;
analogWrite(HEATER_2_PIN, 0);
Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");
}
#endif
#endif //MAXTEMP
#ifdef BED_MINTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] <= bed_minttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");
}
#endif
#endif
#ifdef BED_MAXTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] >= bed_maxttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");
}
#endif
#endif
}
}

55
Marlin/temperature.h Normal file
View file

@ -0,0 +1,55 @@
/*
temperature.h - temperature controller
Part of Marlin
Copyright (c) 2011 Erik van der Zalm
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef temperature_h
#define temperature_h
void manage_inactivity(byte debug);
void tp_init();
void manage_heater();
//int temp2analogu(int celsius, const short table[][2], int numtemps);
//float analog2tempu(int raw, const short table[][2], int numtemps);
float temp2analog(int celsius);
float temp2analogBed(int celsius);
float analog2temp(int raw);
float analog2tempBed(int raw);
#ifdef HEATER_USES_THERMISTOR
#define HEATERSOURCE 1
#endif
#ifdef BED_USES_THERMISTOR
#define BEDSOURCE 1
#endif
//#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)
//#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS
extern float Kp;
extern float Ki;
extern float Kd;
extern float Kc;
extern int target_raw[3];
extern int current_raw[3];
extern double pid_setpoint;
#endif

View file

@ -1,132 +1,133 @@
#ifndef THERMISTORTABLES_H_ #ifndef THERMISTORTABLES_H_
#define THERMISTORTABLES_H_ #define THERMISTORTABLES_H_
#define OVERSAMPLENR 16
#if (THERMISTORHEATER == 1) || (THERMISTORBED == 1) //100k bed thermistor #if (THERMISTORHEATER == 1) || (THERMISTORBED == 1) //100k bed thermistor
#define NUMTEMPS_1 61 #define NUMTEMPS_1 61
const short temptable_1[NUMTEMPS_1][2] = { const short temptable_1[NUMTEMPS_1][2] = {
{ (23*16) , 300 }, { (23*OVERSAMPLENR) , 300 },
{ (25*16) , 295 }, { (25*OVERSAMPLENR) , 295 },
{ (27*16) , 290 }, { (27*OVERSAMPLENR) , 290 },
{ (28*16) , 285 }, { (28*OVERSAMPLENR) , 285 },
{ (31*16) , 280 }, { (31*OVERSAMPLENR) , 280 },
{ (33*16) , 275 }, { (33*OVERSAMPLENR) , 275 },
{ (35*16) , 270 }, { (35*OVERSAMPLENR) , 270 },
{ (38*16) , 265 }, { (38*OVERSAMPLENR) , 265 },
{ (41*16) , 260 }, { (41*OVERSAMPLENR) , 260 },
{ (44*16) , 255 }, { (44*OVERSAMPLENR) , 255 },
{ (48*16) , 250 }, { (48*OVERSAMPLENR) , 250 },
{ (52*16) , 245 }, { (52*OVERSAMPLENR) , 245 },
{ (56*16) , 240 }, { (56*OVERSAMPLENR) , 240 },
{ (61*16) , 235 }, { (61*OVERSAMPLENR) , 235 },
{ (66*16) , 230 }, { (66*OVERSAMPLENR) , 230 },
{ (71*16) , 225 }, { (71*OVERSAMPLENR) , 225 },
{ (78*16) , 220 }, { (78*OVERSAMPLENR) , 220 },
{ (84*16) , 215 }, { (84*OVERSAMPLENR) , 215 },
{ (92*16) , 210 }, { (92*OVERSAMPLENR) , 210 },
{ (100*16), 205 }, { (100*OVERSAMPLENR), 205 },
{ (109*16), 200 }, { (109*OVERSAMPLENR), 200 },
{ (120*16), 195 }, { (120*OVERSAMPLENR), 195 },
{ (131*16), 190 }, { (131*OVERSAMPLENR), 190 },
{ (143*16), 185 }, { (143*OVERSAMPLENR), 185 },
{ (156*16), 180 }, { (156*OVERSAMPLENR), 180 },
{ (171*16), 175 }, { (171*OVERSAMPLENR), 175 },
{ (187*16), 170 }, { (187*OVERSAMPLENR), 170 },
{ (205*16), 165 }, { (205*OVERSAMPLENR), 165 },
{ (224*16), 160 }, { (224*OVERSAMPLENR), 160 },
{ (245*16), 155 }, { (245*OVERSAMPLENR), 155 },
{ (268*16), 150 }, { (268*OVERSAMPLENR), 150 },
{ (293*16), 145 }, { (293*OVERSAMPLENR), 145 },
{ (320*16), 140 }, { (320*OVERSAMPLENR), 140 },
{ (348*16), 135 }, { (348*OVERSAMPLENR), 135 },
{ (379*16), 130 }, { (379*OVERSAMPLENR), 130 },
{ (411*16), 125 }, { (411*OVERSAMPLENR), 125 },
{ (445*16), 120 }, { (445*OVERSAMPLENR), 120 },
{ (480*16), 115 }, { (480*OVERSAMPLENR), 115 },
{ (516*16), 110 }, { (516*OVERSAMPLENR), 110 },
{ (553*16), 105 }, { (553*OVERSAMPLENR), 105 },
{ (591*16), 100 }, { (591*OVERSAMPLENR), 100 },
{ (628*16), 95 }, { (628*OVERSAMPLENR), 95 },
{ (665*16), 90 }, { (665*OVERSAMPLENR), 90 },
{ (702*16), 85 }, { (702*OVERSAMPLENR), 85 },
{ (737*16), 80 }, { (737*OVERSAMPLENR), 80 },
{ (770*16), 75 }, { (770*OVERSAMPLENR), 75 },
{ (801*16), 70 }, { (801*OVERSAMPLENR), 70 },
{ (830*16), 65 }, { (830*OVERSAMPLENR), 65 },
{ (857*16), 60 }, { (857*OVERSAMPLENR), 60 },
{ (881*16), 55 }, { (881*OVERSAMPLENR), 55 },
{ (903*16), 50 }, { (903*OVERSAMPLENR), 50 },
{ (922*16), 45 }, { (922*OVERSAMPLENR), 45 },
{ (939*16), 40 }, { (939*OVERSAMPLENR), 40 },
{ (954*16), 35 }, { (954*OVERSAMPLENR), 35 },
{ (966*16), 30 }, { (966*OVERSAMPLENR), 30 },
{ (977*16), 25 }, { (977*OVERSAMPLENR), 25 },
{ (985*16), 20 }, { (985*OVERSAMPLENR), 20 },
{ (993*16), 15 }, { (993*OVERSAMPLENR), 15 },
{ (999*16), 10 }, { (999*OVERSAMPLENR), 10 },
{ (1004*16), 5 }, { (1004*OVERSAMPLENR), 5 },
{ (1008*16), 0 } //safety { (1008*OVERSAMPLENR), 0 } //safety
}; };
#endif #endif
#if (THERMISTORHEATER == 2) || (THERMISTORBED == 2) //200k bed thermistor #if (THERMISTORHEATER == 2) || (THERMISTORBED == 2) //200k bed thermistor
#define NUMTEMPS_2 21 #define NUMTEMPS_2 21
const short temptable_2[NUMTEMPS_2][2] = { const short temptable_2[NUMTEMPS_2][2] = {
{(1*16), 848}, {(1*OVERSAMPLENR), 848},
{(54*16), 275}, {(54*OVERSAMPLENR), 275},
{(107*16), 228}, {(107*OVERSAMPLENR), 228},
{(160*16), 202}, {(160*OVERSAMPLENR), 202},
{(213*16), 185}, {(213*OVERSAMPLENR), 185},
{(266*16), 171}, {(266*OVERSAMPLENR), 171},
{(319*16), 160}, {(319*OVERSAMPLENR), 160},
{(372*16), 150}, {(372*OVERSAMPLENR), 150},
{(425*16), 141}, {(425*OVERSAMPLENR), 141},
{(478*16), 133}, {(478*OVERSAMPLENR), 133},
{(531*16), 125}, {(531*OVERSAMPLENR), 125},
{(584*16), 118}, {(584*OVERSAMPLENR), 118},
{(637*16), 110}, {(637*OVERSAMPLENR), 110},
{(690*16), 103}, {(690*OVERSAMPLENR), 103},
{(743*16), 95}, {(743*OVERSAMPLENR), 95},
{(796*16), 86}, {(796*OVERSAMPLENR), 86},
{(849*16), 77}, {(849*OVERSAMPLENR), 77},
{(902*16), 65}, {(902*OVERSAMPLENR), 65},
{(955*16), 49}, {(955*OVERSAMPLENR), 49},
{(1008*16), 17}, {(1008*OVERSAMPLENR), 17},
{(1020*16), 0} //safety {(1020*OVERSAMPLENR), 0} //safety
}; };
#endif #endif
#if (THERMISTORHEATER == 3) || (THERMISTORBED == 3) //mendel-parts #if (THERMISTORHEATER == 3) || (THERMISTORBED == 3) //mendel-parts
#define NUMTEMPS_3 28 #define NUMTEMPS_3 28
const short temptable_3[NUMTEMPS_3][2] = { const short temptable_3[NUMTEMPS_3][2] = {
{(1*16),864}, {(1*OVERSAMPLENR),864},
{(21*16),300}, {(21*OVERSAMPLENR),300},
{(25*16),290}, {(25*OVERSAMPLENR),290},
{(29*16),280}, {(29*OVERSAMPLENR),280},
{(33*16),270}, {(33*OVERSAMPLENR),270},
{(39*16),260}, {(39*OVERSAMPLENR),260},
{(46*16),250}, {(46*OVERSAMPLENR),250},
{(54*16),240}, {(54*OVERSAMPLENR),240},
{(64*16),230}, {(64*OVERSAMPLENR),230},
{(75*16),220}, {(75*OVERSAMPLENR),220},
{(90*16),210}, {(90*OVERSAMPLENR),210},
{(107*16),200}, {(107*OVERSAMPLENR),200},
{(128*16),190}, {(128*OVERSAMPLENR),190},
{(154*16),180}, {(154*OVERSAMPLENR),180},
{(184*16),170}, {(184*OVERSAMPLENR),170},
{(221*16),160}, {(221*OVERSAMPLENR),160},
{(265*16),150}, {(265*OVERSAMPLENR),150},
{(316*16),140}, {(316*OVERSAMPLENR),140},
{(375*16),130}, {(375*OVERSAMPLENR),130},
{(441*16),120}, {(441*OVERSAMPLENR),120},
{(513*16),110}, {(513*OVERSAMPLENR),110},
{(588*16),100}, {(588*OVERSAMPLENR),100},
{(734*16),80}, {(734*OVERSAMPLENR),80},
{(856*16),60}, {(856*OVERSAMPLENR),60},
{(938*16),40}, {(938*OVERSAMPLENR),40},
{(986*16),20}, {(986*OVERSAMPLENR),20},
{(1008*16),0}, {(1008*OVERSAMPLENR),0},
{(1018*16),-20} {(1018*OVERSAMPLENR),-20}
}; };
#endif #endif

156
Marlin/ultralcd.h Normal file
View file

@ -0,0 +1,156 @@
#ifndef __ULTRALCDH
#define __ULTRALCDH
#include "Configuration.h"
#ifdef ULTRA_LCD
void lcd_status();
void lcd_init();
void lcd_status(const char* message);
void beep();
void buttons_check();
#define LCDSTATUSRIGHT
#define LCD_UPDATE_INTERVAL 100
#define STATUSTIMEOUT 15000
#include "Configuration.h"
#include <LiquidCrystal.h>
extern LiquidCrystal lcd;
//lcd display size
#ifdef NEWPANEL
//arduino pin witch triggers an piezzo beeper
#define BEEPER 18
#define LCD_PINS_RS 20
#define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 16
#define LCD_PINS_D5 21
#define LCD_PINS_D6 5
#define LCD_PINS_D7 6
//buttons are directly attached
#define BTN_EN1 40
#define BTN_EN2 42
#define BTN_ENC 19 //the click
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#define SDCARDDETECT 38
#define EN_C (1<<BLEN_C)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#define CLICKED (buttons&EN_C)
#define BLOCK {blocking=millis()+blocktime;}
#define CARDINSERTED (READ(SDCARDDETECT)==0)
#else
//arduino pin witch triggers an piezzo beeper
#define BEEPER 18
//buttons are attached to a shift register
#define SHIFT_CLK 38
#define SHIFT_LD 42
#define SHIFT_OUT 40
#define SHIFT_EN 17
#define LCD_PINS_RS 16
#define LCD_PINS_ENABLE 5
#define LCD_PINS_D4 6
#define LCD_PINS_D5 21
#define LCD_PINS_D6 20
#define LCD_PINS_D7 19
//bits in the shift register that carry the buttons for:
// left up center down right red
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
#define BLEN_B 1
#define BLEN_A 0
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
//atomatic, do not change
#define B_LE (1<<BL_LE)
#define B_UP (1<<BL_UP)
#define B_MI (1<<BL_MI)
#define B_DW (1<<BL_DW)
#define B_RI (1<<BL_RI)
#define B_ST (1<<BL_ST)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
#define CLICKED ((buttons&B_MI)||(buttons&B_ST))
#define BLOCK {blocking[BL_MI]=millis()+blocktime;blocking[BL_ST]=millis()+blocktime;}
#endif
// blocking time for recognizing a new keypress of one key, ms
#define blocktime 500
#define lcdslow 5
enum MainStatus{Main_Status, Main_Menu, Main_Prepare, Main_Control, Main_SD};
class MainMenu{
public:
MainMenu();
void update();
void getfilename(const uint8_t nr);
uint8_t activeline;
MainStatus status;
uint8_t displayStartingRow;
void showStatus();
void showMainMenu();
void showPrepare();
void showControl();
void showSD();
bool force_lcd_update;
int lastencoderpos;
int8_t lineoffset;
int8_t lastlineoffset;
char filename[11];
bool linechanging;
};
char *fillto(int8_t n,char *c);
char *ftostr51(const float &x);
char *ftostr31(const float &x);
char *ftostr3(const float &x);
#define LCD_MESSAGE(x) lcd_status(x);
#define LCD_STATUS lcd_status()
#else //no lcd
#define LCD_STATUS
#define LCD_MESSAGE(x)
#endif
#ifndef ULTIPANEL
#define CLICKED false
#define BLOCK ;
#endif
#endif //ULTRALCD

1593
Marlin/ultralcd.pde Normal file
View file

@ -0,0 +1,1593 @@
#include "ultralcd.h"
#ifdef ULTRA_LCD
extern volatile int feedmultiply;
extern long position[4];
char messagetext[LCD_WIDTH]="";
#include <LiquidCrystal.h>
LiquidCrystal lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5,LCD_PINS_D6,LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7
unsigned long previous_millis_lcd=0;
volatile char buttons=0; //the last checked buttons in a bit array.
int encoderpos=0;
short lastenc=0;
#ifdef NEWPANEL
long blocking=0;
#else
long blocking[8]={0,0,0,0,0,0,0,0};
#endif
MainMenu menu;
void lcd_status(const char* message)
{
strncpy(messagetext,message,LCD_WIDTH);
}
void clear()
{
//lcd.setCursor(0,0);
lcd.clear();
//delay(1);
// lcd.begin(LCD_WIDTH,LCD_HEIGHT);
//lcd_init();
}
long previous_millis_buttons=0;
void lcd_init()
{
//beep();
byte Degree[8] =
{
B01100,
B10010,
B10010,
B01100,
B00000,
B00000,
B00000,
B00000
};
byte Thermometer[8] =
{
B00100,
B01010,
B01010,
B01010,
B01010,
B10001,
B10001,
B01110
};
byte uplevel[8]={0x04, 0x0e, 0x1f, 0x04, 0x1c, 0x00, 0x00, 0x00};//thanks joris
byte refresh[8]={0x00, 0x06, 0x19, 0x18, 0x03, 0x13, 0x0c, 0x00}; //thanks joris
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
lcd.createChar(1,Degree);
lcd.createChar(2,Thermometer);
lcd.createChar(3,uplevel);
lcd.createChar(4,refresh);
LCD_MESSAGE(fillto(LCD_WIDTH,"UltiMarlin ready."));
}
void beep()
{
//return;
#ifdef ULTIPANEL
pinMode(BEEPER,OUTPUT);
for(int i=0;i<20;i++){
WRITE(BEEPER,HIGH);
delay(5);
WRITE(BEEPER,LOW);
delay(5);
}
#endif
}
void beepshort()
{
//return;
#ifdef ULTIPANEL
pinMode(BEEPER,OUTPUT);
for(int i=0;i<10;i++){
WRITE(BEEPER,HIGH);
delay(3);
WRITE(BEEPER,LOW);
delay(3);
}
#endif
}
void lcd_status()
{
#ifdef ULTIPANEL
static uint8_t oldbuttons=0;
static long previous_millis_buttons=0;
static long previous_lcdinit=0;
// buttons_check(); // Done in temperature interrupt
//previous_millis_buttons=millis();
if((buttons==oldbuttons) && ((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )
return;
oldbuttons=buttons;
#else
if(((millis() - previous_millis_lcd) < LCD_UPDATE_INTERVAL) )
return;
#endif
previous_millis_lcd=millis();
menu.update();
}
#ifdef ULTIPANEL
void buttons_init()
{
#ifdef NEWPANEL
pinMode(BTN_EN1,INPUT);
pinMode(BTN_EN2,INPUT);
pinMode(BTN_ENC,INPUT);
pinMode(SDCARDDETECT,INPUT);
WRITE(BTN_EN1,HIGH);
WRITE(BTN_EN2,HIGH);
WRITE(BTN_ENC,HIGH);
WRITE(SDCARDDETECT,HIGH);
#else
pinMode(SHIFT_CLK,OUTPUT);
pinMode(SHIFT_LD,OUTPUT);
pinMode(SHIFT_EN,OUTPUT);
pinMode(SHIFT_OUT,INPUT);
WRITE(SHIFT_OUT,HIGH);
WRITE(SHIFT_LD,HIGH);
WRITE(SHIFT_EN,LOW);
#endif
}
void buttons_check()
{
// volatile static bool busy=false;
// if(busy)
// return;
// busy=true;
#ifdef NEWPANEL
uint8_t newbutton=0;
if(READ(BTN_EN1)==0) newbutton|=EN_A;
if(READ(BTN_EN2)==0) newbutton|=EN_B;
if((blocking<millis()) &&(READ(BTN_ENC)==0))
newbutton|=EN_C;
buttons=newbutton;
#else
//read it from the shift register
uint8_t newbutton=0;
WRITE(SHIFT_LD,LOW);
WRITE(SHIFT_LD,HIGH);
unsigned char tmp_buttons=0;
for(unsigned char i=0;i<8;i++)
{
newbutton = newbutton>>1;
if(READ(SHIFT_OUT))
newbutton|=(1<<7);
WRITE(SHIFT_CLK,HIGH);
WRITE(SHIFT_CLK,LOW);
}
buttons=~newbutton; //invert it, because a pressed switch produces a logical 0
#endif
char enc=0;
if(buttons&EN_A)
enc|=(1<<0);
if(buttons&EN_B)
enc|=(1<<1);
if(enc!=lastenc)
{
switch(enc)
{
case encrot0:
if(lastenc==encrot3)
encoderpos++;
else if(lastenc==encrot1)
encoderpos--;
break;
case encrot1:
if(lastenc==encrot0)
encoderpos++;
else if(lastenc==encrot2)
encoderpos--;
break;
case encrot2:
if(lastenc==encrot1)
encoderpos++;
else if(lastenc==encrot3)
encoderpos--;
break;
case encrot3:
if(lastenc==encrot2)
encoderpos++;
else if(lastenc==encrot0)
encoderpos--;
break;
default:
;
}
}
lastenc=enc;
// busy=false;
}
#endif
MainMenu::MainMenu()
{
status=Main_Status;
displayStartingRow=0;
activeline=0;
force_lcd_update=true;
#ifdef ULTIPANEL
buttons_init();
#endif
lcd_init();
linechanging=false;
}
extern volatile bool feedmultiplychanged;
void MainMenu::showStatus()
{
#if LCD_HEIGHT==4
static int oldcurrentraw=-1;
static int oldtargetraw=-1;
//force_lcd_update=true;
if(force_lcd_update||feedmultiplychanged) //initial display of content
{
feedmultiplychanged=false;
encoderpos=feedmultiply;
clear();
lcd.setCursor(0,0);lcd.print("\002123/567\001 ");
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
lcd.setCursor(10,0);lcd.print("B123/567\001 ");
#endif
}
if((abs(current_raw[0]-oldcurrentraw)>3)||force_lcd_update)
{
lcd.setCursor(1,0);
lcd.print(ftostr3(analog2temp(current_raw[0])));
oldcurrentraw=current_raw[0];
}
if((target_raw[0]!=oldtargetraw)||force_lcd_update)
{
lcd.setCursor(5,0);
lcd.print(ftostr3(analog2temp(target_raw[0])));
oldtargetraw=target_raw[0];
}
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
static int oldcurrentbedraw=-1;
static int oldtargetbedraw=-1;
if((current_bed_raw!=oldcurrentbedraw)||force_lcd_update)
{
lcd.setCursor(1,0);
lcd.print(ftostr3(analog2temp(current_bed_raw)));
oldcurrentraw=current_raw[1];
}
if((target_bed_raw!=oldtargebedtraw)||force_lcd_update)
{
lcd.setCursor(5,0);
lcd.print(ftostr3(analog2temp(target_bed_raw)));
oldtargetraw=target_bed_raw;
}
#endif
//starttime=2;
static uint16_t oldtime=0;
if(starttime!=0)
{
lcd.setCursor(0,1);
uint16_t time=millis()/60000-starttime/60000;
if(starttime!=oldtime)
{
lcd.print(itostr2(time/60));lcd.print("h ");lcd.print(itostr2(time%60));lcd.print("m");
oldtime=time;
}
}
static int oldzpos=0;
int currentz=current_position[2]*10;
if((currentz!=oldzpos)||force_lcd_update)
{
lcd.setCursor(10,1);
lcd.print("Z:");lcd.print(itostr31(currentz));
oldzpos=currentz;
}
static int oldfeedmultiply=0;
int curfeedmultiply=feedmultiply;
if(encoderpos!=curfeedmultiply||force_lcd_update)
{
curfeedmultiply=encoderpos;
if(curfeedmultiply<10)
curfeedmultiply=10;
if(curfeedmultiply>999)
curfeedmultiply=999;
feedmultiply=curfeedmultiply;
encoderpos=curfeedmultiply;
}
if((curfeedmultiply!=oldfeedmultiply)||force_lcd_update)
{
oldfeedmultiply=curfeedmultiply;
lcd.setCursor(0,2);
lcd.print(itostr3(curfeedmultiply));lcd.print("% ");
}
if(messagetext[0]!='\0')
{
lcd.setCursor(0,LCD_HEIGHT-1);
lcd.print(fillto(LCD_WIDTH,messagetext));
messagetext[0]='\0';
}
#else //smaller LCDS----------------------------------
static int oldcurrentraw=-1;
static int oldtargetraw=-1;
if(force_lcd_update) //initial display of content
{
encoderpos=feedmultiply;
lcd.setCursor(0,0);lcd.print("\002123/567\001 ");
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
lcd.setCursor(10,0);lcd.print("B123/567\001 ");
#endif
}
if((abs(current_raw[0]-oldcurrentraw)>3)||force_lcd_update)
{
lcd.setCursor(1,0);
lcd.print(ftostr3(analog2temp(current_raw[0])));
oldcurrentraw=current_raw[0];
}
if((target_raw[0]!=oldtargetraw)||force_lcd_update)
{
lcd.setCursor(5,0);
lcd.print(ftostr3(analog2temp(target_raw[0])));
oldtargetraw=target_raw[0];
}
if(messagetext[0]!='\0')
{
lcd.setCursor(0,LCD_HEIGHT-1);
lcd.print(fillto(LCD_WIDTH,messagetext));
messagetext[0]='\0';
}
#endif
}
enum {ItemP_exit, ItemP_home, ItemP_origin, ItemP_preheat, ItemP_extrude, ItemP_disstep};
void MainMenu::showPrepare()
{
uint8_t line=0;
if(lastlineoffset!=lineoffset)
{
force_lcd_update=true;
clear();
}
for(uint8_t i=lineoffset;i<lineoffset+LCD_HEIGHT;i++)
{
//Serial.println((int)(line-lineoffset));
switch(i)
{
case ItemP_exit:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Prepare");
}
if((activeline==line) && CLICKED)
{
BLOCK
status=Main_Menu;
beepshort();
}
}break;
case ItemP_home:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Auto Home");
}
if((activeline==line) && CLICKED)
{
BLOCK
enquecommand("G28 X-105 Y-105 Z0");
beepshort();
}
}break;
case ItemP_origin:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Set Origin");
}
if((activeline==line) && CLICKED)
{
BLOCK
enquecommand("G92 X0 Y0 Z0");
beepshort();
}
}break;
case ItemP_preheat:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Preheat");
}
if((activeline==line) && CLICKED)
{
BLOCK
target_raw[0] = temp2analog(170);
beepshort();
}
}break;
case ItemP_extrude:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Extrude");
}
if((activeline==line) && CLICKED)
{
BLOCK
enquecommand("G92 E0");
enquecommand("G1 F700 E50");
beepshort();
}
}break;
case ItemP_disstep:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Disable Steppers");
}
if((activeline==line) && CLICKED)
{
BLOCK
enquecommand("M84");
beepshort();
}
}break;
default:
break;
}
line++;
}
lastlineoffset=lineoffset;
if((encoderpos/lcdslow!=lastencoderpos/lcdslow)||force_lcd_update)
{
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?' ':' ');
if(encoderpos<0)
{
lineoffset--;
if(lineoffset<0)
lineoffset=0;
encoderpos=0;
force_lcd_update=true;
}
if(encoderpos/lcdslow>3)
{
lineoffset++;
encoderpos=3*lcdslow;
if(lineoffset>(ItemP_disstep+1-LCD_HEIGHT))
lineoffset=ItemP_disstep+1-LCD_HEIGHT;
force_lcd_update=true;
}
//encoderpos=encoderpos%LCD_HEIGHT;
lastencoderpos=encoderpos;
activeline=encoderpos/lcdslow;
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?'>':'\003');
}
}
enum {
ItemC_exit, ItemC_nozzle,
ItemC_PID_P,ItemC_PID_I,ItemC_PID_D,ItemC_PID_C,
ItemC_fan,
ItemC_acc, ItemC_xyjerk,
ItemC_vmaxx, ItemC_vmaxy, ItemC_vmaxz, ItemC_vmaxe,
ItemC_vtravmin,ItemC_vmin,
ItemC_amaxx, ItemC_amaxy, ItemC_amaxz, ItemC_amaxe,
ItemC_aret,ItemC_esteps, ItemC_store, ItemC_load,ItemC_failsafe
};
void MainMenu::showControl()
{
uint8_t line=0;
if((lastlineoffset!=lineoffset)||force_lcd_update)
{
force_lcd_update=true;
clear();
}
for(uint8_t i=lineoffset;i<lineoffset+LCD_HEIGHT;i++)
{
switch(i)
{
case ItemC_exit:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Control");
}
if((activeline==line) && CLICKED)
{
BLOCK
status=Main_Menu;
beepshort();
}
}break;
case ItemC_nozzle:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" \002Nozzle:");
lcd.setCursor(13,line);lcd.print(ftostr3(analog2temp(target_raw[0])));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)analog2temp(target_raw[0]);
}
else
{
target_raw[0] = temp2analog(encoderpos);
encoderpos=activeline*lcdslow;
beepshort();
}
BLOCK;
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>260) encoderpos=260;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
}
}
}break;
case ItemC_fan:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Fan speed:");
lcd.setCursor(13,line);lcd.print(ftostr3(fanpwm));
}
if((activeline==line) )
{
if(CLICKED) //nalogWrite(FAN_PIN, fanpwm);
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=fanpwm;
}
else
{
fanpwm = constrain(encoderpos,0,255);
encoderpos=fanpwm;
analogWrite(FAN_PIN, fanpwm);
beepshort();
}
BLOCK;
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>255) encoderpos=255;
fanpwm=encoderpos;
analogWrite(FAN_PIN, fanpwm);
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
}
}
}break;
case ItemC_acc:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Acc:");
lcd.setCursor(13,line);lcd.print(itostr3(acceleration/100));lcd.print("00");
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)acceleration/100;
}
else
{
acceleration= encoderpos*100;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<5) encoderpos=5;
if(encoderpos>990) encoderpos=990;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));lcd.print("00");
}
}
}break;
case ItemC_xyjerk: //max_xy_jerk
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Vxy-jerk: ");
lcd.setCursor(13,line);lcd.print(itostr3(max_xy_jerk/60));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)max_xy_jerk/60;
}
else
{
max_xy_jerk= encoderpos*60;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<1) encoderpos=1;
if(encoderpos>990) encoderpos=990;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
}
}
}break;
case ItemC_PID_P:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" PID-P: ");
lcd.setCursor(13,line);lcd.print(itostr4(Kp));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)Kp/5;
}
else
{
Kp= encoderpos*5;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<1) encoderpos=1;
if(encoderpos>9990/5) encoderpos=9990/5;
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos*5));
}
}
}break;
case ItemC_PID_I:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" PID-I: ");
lcd.setCursor(13,line);lcd.print(ftostr51(Ki));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)(Ki*10);
}
else
{
Ki= encoderpos/10.;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>9990) encoderpos=9990;
lcd.setCursor(13,line);lcd.print(ftostr51(encoderpos/10.));
}
}
}break;
case ItemC_PID_D:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" PID-D: ");
lcd.setCursor(13,line);lcd.print(itostr4(Kd));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)Kd/5;
}
else
{
Kd= encoderpos*5;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>9990/5) encoderpos=9990/5;
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos*5));
}
}
}break;
case ItemC_PID_C:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" PID-C: ");
lcd.setCursor(13,line);lcd.print(itostr3(Kc));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)Kc;
}
else
{
Kc= encoderpos;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>990) encoderpos=990;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
}
}
}break;
case ItemC_vmaxx:
case ItemC_vmaxy:
case ItemC_vmaxz:
case ItemC_vmaxe:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Vmax ");
if(i==ItemC_vmaxx)lcd.print("x:");
if(i==ItemC_vmaxy)lcd.print("y:");
if(i==ItemC_vmaxz)lcd.print("z:");
if(i==ItemC_vmaxe)lcd.print("e:");
lcd.setCursor(13,line);lcd.print(itostr3(max_feedrate[i-ItemC_vmaxx]/60));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)max_feedrate[i-ItemC_vmaxx]/60;
}
else
{
max_feedrate[i-ItemC_vmaxx]= encoderpos*60;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<1) encoderpos=1;
if(encoderpos>990) encoderpos=990;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
}
}
}break;
case ItemC_vmin:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Vmin:");
lcd.setCursor(13,line);lcd.print(itostr3(minimumfeedrate/60));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)(minimumfeedrate/60.);
}
else
{
minimumfeedrate= encoderpos*60;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>990) encoderpos=990;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
}
}
}break;
case ItemC_vtravmin:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" VTrav min:");
lcd.setCursor(13,line);lcd.print(itostr3(mintravelfeedrate/60));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)mintravelfeedrate/60;
}
else
{
mintravelfeedrate= encoderpos*60;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>990) encoderpos=990;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
}
}
}break;
case ItemC_amaxx:
case ItemC_amaxy:
case ItemC_amaxz:
case ItemC_amaxe:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Amax ");
if(i==ItemC_amaxx)lcd.print("x:");
if(i==ItemC_amaxy)lcd.print("y:");
if(i==ItemC_amaxz)lcd.print("z:");
if(i==ItemC_amaxe)lcd.print("e:");
lcd.setCursor(13,line);lcd.print(itostr3(max_acceleration_units_per_sq_second[i-ItemC_amaxx]/100));lcd.print("00");
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)max_acceleration_units_per_sq_second[i-ItemC_amaxx]/100;
}
else
{
max_acceleration_units_per_sq_second[i-ItemC_amaxx]= encoderpos*100;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<1) encoderpos=1;
if(encoderpos>990) encoderpos=990;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));lcd.print("00");
}
}
}break;
case ItemC_aret://float retract_acceleration = 7000;
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" A-retract:");
lcd.setCursor(13,line);lcd.print(ftostr3(retract_acceleration/100));lcd.print("00");
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)retract_acceleration/100;
}
else
{
retract_acceleration= encoderpos*100;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<10) encoderpos=10;
if(encoderpos>990) encoderpos=990;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));lcd.print("00");
}
}
}break;
case ItemC_esteps://axis_steps_per_unit[i] = code_value();
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Esteps/mm:");
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[3]));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)axis_steps_per_unit[3];
}
else
{
float factor=float(encoderpos)/float(axis_steps_per_unit[3]);
position[E_AXIS]=lround(position[E_AXIS]*factor);
//current_position[3]*=factor;
axis_steps_per_unit[E_AXIS]= encoderpos;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<5) encoderpos=5;
if(encoderpos>9999) encoderpos=9999;
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
}
}
}break;
case ItemC_store:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Store EPROM");
}
if((activeline==line) && CLICKED)
{
//enquecommand("M84");
beepshort();
BLOCK;
StoreSettings();
}
}break;
case ItemC_load:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Load EPROM");
}
if((activeline==line) && CLICKED)
{
//enquecommand("M84");
beepshort();
BLOCK;
RetrieveSettings();
}
}break;
case ItemC_failsafe:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" Restore Failsafe");
}
if((activeline==line) && CLICKED)
{
//enquecommand("M84");
beepshort();
BLOCK;
RetrieveSettings(true);
}
}break;
default:
break;
}
line++;
}
lastlineoffset=lineoffset;
if(!linechanging && ((encoderpos/lcdslow!=lastencoderpos/lcdslow)||force_lcd_update))
{
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?' ':' ');
if(encoderpos<0)
{
lineoffset--;
if(lineoffset<0)
lineoffset=0;
encoderpos=0;
force_lcd_update=true;
}
if(encoderpos/lcdslow>3)
{
lineoffset++;
encoderpos=3*lcdslow;
if(lineoffset>(ItemC_failsafe+1-LCD_HEIGHT))
lineoffset=ItemC_failsafe+1-LCD_HEIGHT;
force_lcd_update=true;
}
//encoderpos=encoderpos%LCD_HEIGHT;
lastencoderpos=encoderpos;
activeline=encoderpos/lcdslow;
if(activeline>3) activeline=3;
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?'>':'\003');
}
}
#include "SdFat.h"
void MainMenu::getfilename(const uint8_t nr)
{
#ifdef SDSUPPORT
dir_t p;
root.rewind();
uint8_t cnt=0;
filename[0]='\0';
while (root.readDir(p) > 0)
{
if (p.name[0] == DIR_NAME_FREE) break;
if (p.name[0] == DIR_NAME_DELETED || p.name[0] == '.'|| p.name[0] == '_') continue;
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
if(p.name[8]!='G') continue;
if(p.name[9]=='~') continue;
if(cnt++!=nr) continue;
//Serial.println((char*)p.name);
uint8_t writepos=0;
for (uint8_t i = 0; i < 11; i++)
{
if (p.name[i] == ' ') continue;
if (i == 8) {
filename[writepos++]='.';
}
filename[writepos++]=p.name[i];
}
filename[writepos++]=0;
}
#endif
}
uint8_t getnrfilenames()
{
#ifdef SDSUPPORT
dir_t p;
root.rewind();
uint8_t cnt=0;
while (root.readDir(p) > 0)
{
if (p.name[0] == DIR_NAME_FREE) break;
if (p.name[0] == DIR_NAME_DELETED || p.name[0] == '.'|| p.name[0] == '_') continue;
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
if(p.name[8]!='G') continue;
if(p.name[9]=='~') continue;
cnt++;
}
return cnt;
#endif
}
void MainMenu::showSD()
{
#ifdef SDSUPPORT
uint8_t line=0;
if(lastlineoffset!=lineoffset)
{
force_lcd_update=true;
}
static uint8_t nrfiles=0;
if(force_lcd_update)
{
clear();
if(sdactive)
{
nrfiles=getnrfilenames();
}
else
{
nrfiles=0;
lineoffset=0;
}
//Serial.print("Nr files:"); Serial.println((int)nrfiles);
}
for(int8_t i=lineoffset;i<lineoffset+LCD_HEIGHT;i++)
{
switch(i)
{
case 0:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcd.print(" File");
}
if((activeline==line) && CLICKED)
{
BLOCK
status=Main_Menu;
beepshort();
}
}break;
case 1:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);
#ifdef CARDINSERTED
if(CARDINSERTED)
#else
if(true)
#endif
{
lcd.print(" \004Refresh");
}
else
{
lcd.print(" \004Insert Card");
}
}
if((activeline==line) && CLICKED)
{
BLOCK;
beepshort();
initsd();
force_lcd_update=true;
nrfiles=getnrfilenames();
}
}break;
default:
{
if(i-2<nrfiles)
{
if(force_lcd_update)
{
getfilename(i-2);
//Serial.print("Filenr:");Serial.println(i-2);
lcd.setCursor(0,line);lcd.print(" ");lcd.print(filename);
}
if((activeline==line) && CLICKED)
{
BLOCK
getfilename(i-2);
char cmd[30];
for(int i=0;i<strlen(filename);i++)
filename[i]=tolower(filename[i]);
sprintf(cmd,"M23 %s",filename);
//sprintf(cmd,"M115");
enquecommand(cmd);
enquecommand("M24");
beep();
status=Main_Status;
lcd_status(filename);
}
}
}
break;
}
line++;
}
lastlineoffset=lineoffset;
if((encoderpos!=lastencoderpos)||force_lcd_update)
{
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?' ':' ');
if(encoderpos<0)
{
lineoffset--;
if(lineoffset<0)
lineoffset=0;
encoderpos=0;
force_lcd_update=true;
}
if(encoderpos/lcdslow>3)
{
lineoffset++;
encoderpos=3*lcdslow;
if(lineoffset>(1+nrfiles+1-LCD_HEIGHT))
lineoffset=1+nrfiles+1-LCD_HEIGHT;
force_lcd_update=true;
}
lastencoderpos=encoderpos;
activeline=encoderpos;
if(activeline>3)
{
activeline=3;
}
if(activeline<0)
{
activeline=0;
}
if(activeline>1+nrfiles) activeline=1+nrfiles;
if(lineoffset>1+nrfiles) lineoffset=1+nrfiles;
lcd.setCursor(0,activeline);lcd.print((activeline+lineoffset)?'>':'\003');
}
#endif
}
enum {ItemM_watch, ItemM_prepare, ItemM_control, ItemM_file };
void MainMenu::showMainMenu()
{
//if(int(encoderpos/lcdslow)!=int(lastencoderpos/lcdslow))
// force_lcd_update=true;
#ifndef ULTIPANEL
force_lcd_update=false;
#endif
//Serial.println((int)activeline);
if(force_lcd_update)
clear();
for(short line=0;line<LCD_HEIGHT;line++)
{
switch(line)
{
case ItemM_watch:
{
if(force_lcd_update) {lcd.setCursor(0,line);lcd.print(" Watch \x7E");}
if((activeline==line)&&CLICKED)
{
BLOCK;
beepshort();
status=Main_Status;
}
} break;
case ItemM_prepare:
{
if(force_lcd_update) {lcd.setCursor(0,line);lcd.print(" Prepare \x7E");}
if((activeline==line)&&CLICKED)
{
BLOCK;
status=Main_Prepare;
beepshort();
}
} break;
case ItemM_control:
{
if(force_lcd_update) {lcd.setCursor(0,line);lcd.print(" Control \x7E");}
if((activeline==line)&&CLICKED)
{
BLOCK;
status=Main_Control;
beepshort();
}
}break;
#ifdef SDSUPPORT
case ItemM_file:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);
#ifdef CARDINSERTED
if(CARDINSERTED)
#else
if(true)
#endif
{
if(sdmode)
lcd.print(" Stop Print \x7E");
else
lcd.print(" Card Menu \x7E");
}
else
{
lcd.print(" No Card");
}
}
#ifdef CARDINSERTED
if(CARDINSERTED)
#endif
if((activeline==line)&&CLICKED)
{
sdmode = false;
BLOCK;
status=Main_SD;
beepshort();
}
}break;
#endif
default:
Serial.println('NEVER say never');
break;
}
}
if(activeline<0) activeline=0;
if(activeline>=LCD_HEIGHT) activeline=LCD_HEIGHT-1;
if((encoderpos!=lastencoderpos)||force_lcd_update)
{
lcd.setCursor(0,activeline);lcd.print(activeline?' ':' ');
if(encoderpos<0) encoderpos=0;
if(encoderpos>3*lcdslow) encoderpos=3*lcdslow;
activeline=abs(encoderpos/lcdslow)%LCD_HEIGHT;
if(activeline<0) activeline=0;
if(activeline>=LCD_HEIGHT) activeline=LCD_HEIGHT-1;
lastencoderpos=encoderpos;
lcd.setCursor(0,activeline);lcd.print(activeline?'>':'\003');
}
}
void MainMenu::update()
{
static MainStatus oldstatus=Main_Menu; //init automatically causes foce_lcd_update=true
static long timeoutToStatus=0;
static bool oldcardstatus=false;
#ifdef CARDINSERTED
if((CARDINSERTED != oldcardstatus))
{
force_lcd_update=true;
oldcardstatus=CARDINSERTED;
//Serial.println("SD CHANGE");
if(CARDINSERTED)
{
initsd();
lcd_status("Card inserted");
}
else
{
sdactive=false;
lcd_status("Card removed");
}
}
#endif
if(status!=oldstatus)
{
//Serial.println(status);
//clear();
force_lcd_update=true;
encoderpos=0;
lineoffset=0;
oldstatus=status;
}
if( (encoderpos!=lastencoderpos) || CLICKED)
timeoutToStatus=millis()+STATUSTIMEOUT;
switch(status)
{
case Main_Status:
{
showStatus();
if(CLICKED)
{
linechanging=false;
BLOCK
status=Main_Menu;
timeoutToStatus=millis()+STATUSTIMEOUT;
}
}break;
case Main_Menu:
{
showMainMenu();
linechanging=false;
}break;
case Main_Prepare:
{
showPrepare();
}break;
case Main_Control:
{
showControl();
}break;
case Main_SD:
{
showSD();
}break;
}
if(timeoutToStatus<millis())
status=Main_Status;
force_lcd_update=false;
lastencoderpos=encoderpos;
}
//return for string conversion routines
char conv[8];
/// convert float to string with +123.4 format
char *ftostr3(const float &x)
{
//sprintf(conv,"%5.1f",x);
int xx=x;
conv[0]=(xx/100)%10+'0';
conv[1]=(xx/10)%10+'0';
conv[2]=(xx)%10+'0';
conv[3]=0;
return conv;
}
char *itostr2(const uint8_t &x)
{
//sprintf(conv,"%5.1f",x);
int xx=x;
conv[0]=(xx/10)%10+'0';
conv[1]=(xx)%10+'0';
conv[2]=0;
return conv;
}
/// convert float to string with +123.4 format
char *ftostr31(const float &x)
{
//sprintf(conv,"%5.1f",x);
int xx=x*10;
conv[0]=(xx>=0)?'+':'-';
xx=abs(xx);
conv[1]=(xx/1000)%10+'0';
conv[2]=(xx/100)%10+'0';
conv[3]=(xx/10)%10+'0';
conv[4]='.';
conv[5]=(xx)%10+'0';
conv[6]=0;
return conv;
}
char *itostr31(const int &xx)
{
//sprintf(conv,"%5.1f",x);
conv[0]=(xx>=0)?'+':'-';
conv[1]=(xx/1000)%10+'0';
conv[2]=(xx/100)%10+'0';
conv[3]=(xx/10)%10+'0';
conv[4]='.';
conv[5]=(xx)%10+'0';
conv[6]=0;
return conv;
}
char *itostr3(const int &xx)
{
conv[0]=(xx/100)%10+'0';
conv[1]=(xx/10)%10+'0';
conv[2]=(xx)%10+'0';
conv[3]=0;
return conv;
}
char *itostr4(const int &xx)
{
conv[0]=(xx/1000)%10+'0';
conv[1]=(xx/100)%10+'0';
conv[2]=(xx/10)%10+'0';
conv[3]=(xx)%10+'0';
conv[4]=0;
return conv;
}
/// convert float to string with +1234.5 format
char *ftostr51(const float &x)
{
int xx=x*10;
conv[0]=(xx>=0)?'+':'-';
xx=abs(xx);
conv[1]=(xx/10000)%10+'0';
conv[2]=(xx/1000)%10+'0';
conv[3]=(xx/100)%10+'0';
conv[4]=(xx/10)%10+'0';
conv[5]='.';
conv[6]=(xx)%10+'0';
conv[7]=0;
return conv;
}
char *fillto(int8_t n,char *c)
{
static char ret[25];
bool endfound=false;
for(int8_t i=0;i<n;i++)
{
ret[i]=c[i];
if(c[i]==0)
{
endfound=true;
}
if(endfound)
{
ret[i]=' ';
}
}
ret[n]=0;
return ret;
}
#else
inline void lcd_status() {};
#endif

View file

@ -1,176 +0,0 @@
/*
wiring.c - Partial implementation of the Wiring API for the ATmega8.
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.c 388 2008-03-08 22:05:23Z mellis $
*/
#include "wiring_private.h"
volatile unsigned long timer0_millis = 0;
SIGNAL(TIMER0_OVF_vect)
{
// timer 0 prescale factor is 64 and the timer overflows at 256
timer0_millis++;
}
unsigned long millis()
{
unsigned long m;
uint8_t oldSREG = SREG;
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of the timer0_millis++)
cli();
m = timer0_millis;
SREG = oldSREG;
return m;
}
void delay(unsigned long ms)
{
unsigned long start = millis();
while (millis() - start <= ms)
;
}
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock.
* Disables interrupts, which will disrupt the millis() function if used
* too frequently. */
void delayMicroseconds(unsigned int us)
{
uint8_t oldSREG;
// calling avrlib's delay_us() function with low values (e.g. 1 or
// 2 microseconds) gives delays longer than desired.
//delay_us(us);
#if F_CPU >= 16000000L
// for the 16 MHz clock on most Arduino boards
// for a one-microsecond delay, simply return. the overhead
// of the function call yields a delay of approximately 1 1/8 us.
if (--us == 0)
return;
// the following loop takes a quarter of a microsecond (4 cycles)
// per iteration, so execute it four times for each microsecond of
// delay requested.
us <<= 2;
// account for the time taken in the preceeding commands.
us -= 2;
#else
// for the 8 MHz internal clock on the ATmega168
// for a one- or two-microsecond delay, simply return. the overhead of
// the function calls takes more than two microseconds. can't just
// subtract two, since us is unsigned; we'd overflow.
if (--us == 0)
return;
if (--us == 0)
return;
// the following loop takes half of a microsecond (4 cycles)
// per iteration, so execute it twice for each microsecond of
// delay requested.
us <<= 1;
// partially compensate for the time taken by the preceeding commands.
// we can't subtract any more than this or we'd overflow w/ small delays.
us--;
#endif
// disable interrupts, otherwise the timer 0 overflow interrupt that
// tracks milliseconds will make us delay longer than we want.
oldSREG = SREG;
cli();
// busy wait
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
// reenable interrupts.
SREG = oldSREG;
}
void init()
{
// this needs to be called before setup() or some functions won't
// work there
sei();
// on the ATmega168, timer 0 is also used for fast hardware pwm
// (using phase-correct PWM would mean that timer 0 overflowed half as often
// resulting in different millis() behavior on the ATmega8 and ATmega168)
sbi(TCCR0A, WGM01);
sbi(TCCR0A, WGM00);
// set timer 0 prescale factor to 64
sbi(TCCR0B, CS01);
sbi(TCCR0B, CS00);
// enable timer 0 overflow interrupt
sbi(TIMSK0, TOIE0);
// timers 1 and 2 are used for phase-correct hardware pwm
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
#if 0
// set timer 1 prescale factor to 64
sbi(TCCR1B, CS11);
sbi(TCCR1B, CS10);
// put timer 1 in 8-bit phase correct pwm mode
sbi(TCCR1A, WGM10);
// set timer 2 prescale factor to 64
sbi(TCCR2B, CS22);
// configure timer 2 for phase correct pwm (8-bit)
sbi(TCCR2A, WGM20);
// set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
// XXX: this will not work properly for other clock speeds, and
// this code should use F_CPU to determine the prescale factor.
sbi(ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
// enable a2d conversions
sbi(ADCSRA, ADEN);
// the bootloader connects pins 0 and 1 to the USART; disconnect them
// here so they can be used as normal digital i/o; they will be
// reconnected in Serial.begin()
UCSR0B = 0;
#if defined(__AVR_ATmega644P__)
//TODO: test to see if disabling this helps?
//UCSR1B = 0;
#endif
#endif
}

View file

@ -1,139 +0,0 @@
/*
wiring_serial.c - serial functions.
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
Modified 29 January 2009, Marius Kintel for Sanguino - http://www.sanguino.cc/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#include "wiring_private.h"
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which rx_buffer_head is the index of the
// location to which to write the next incoming character and rx_buffer_tail
// is the index of the location from which to read.
#define RX_BUFFER_SIZE 128
#define RX_BUFFER_MASK 0x7f
#if defined(__AVR_ATmega644P__)
unsigned char rx_buffer[2][RX_BUFFER_SIZE];
int rx_buffer_head[2] = {0, 0};
int rx_buffer_tail[2] = {0, 0};
#else
unsigned char rx_buffer[1][RX_BUFFER_SIZE];
int rx_buffer_head[1] = {0};
int rx_buffer_tail[1] = {0};
#endif
#define BEGIN_SERIAL(uart_, baud_) \
{ \
UBRR##uart_##H = ((F_CPU / 16 + baud / 2) / baud - 1) >> 8; \
UBRR##uart_##L = ((F_CPU / 16 + baud / 2) / baud - 1); \
\
/* reset config for UART */ \
UCSR##uart_##A = 0; \
UCSR##uart_##B = 0; \
UCSR##uart_##C = 0; \
\
/* enable rx and tx */ \
sbi(UCSR##uart_##B, RXEN##uart_);\
sbi(UCSR##uart_##B, TXEN##uart_);\
\
/* enable interrupt on complete reception of a byte */ \
sbi(UCSR##uart_##B, RXCIE##uart_); \
UCSR##uart_##C = _BV(UCSZ##uart_##1)|_BV(UCSZ##uart_##0); \
/* defaults to 8-bit, no parity, 1 stop bit */ \
}
void beginSerial(uint8_t uart, long baud)
{
if (uart == 0) BEGIN_SERIAL(0, baud)
#if defined(__AVR_ATmega644P__)
else BEGIN_SERIAL(1, baud)
#endif
}
#define SERIAL_WRITE(uart_, c_) \
while (!(UCSR##uart_##A & (1 << UDRE##uart_))) \
; \
UDR##uart_ = c
void serialWrite(uint8_t uart, unsigned char c)
{
if (uart == 0) {
SERIAL_WRITE(0, c);
}
#if defined(__AVR_ATmega644P__)
else {
SERIAL_WRITE(1, c);
}
#endif
}
int serialAvailable(uint8_t uart)
{
return (RX_BUFFER_SIZE + rx_buffer_head[uart] - rx_buffer_tail[uart]) & RX_BUFFER_MASK;
}
int serialRead(uint8_t uart)
{
// if the head isn't ahead of the tail, we don't have any characters
if (rx_buffer_head[uart] == rx_buffer_tail[uart]) {
return -1;
} else {
unsigned char c = rx_buffer[uart][rx_buffer_tail[uart]];
rx_buffer_tail[uart] = (rx_buffer_tail[uart] + 1) & RX_BUFFER_MASK;
return c;
}
}
void serialFlush(uint8_t uart)
{
// don't reverse this or there may be problems if the RX interrupt
// occurs after reading the value of rx_buffer_head but before writing
// the value to rx_buffer_tail; the previous value of rx_buffer_head
// may be written to rx_buffer_tail, making it appear as if the buffer
// were full, not empty.
rx_buffer_head[uart] = rx_buffer_tail[uart];
}
#define UART_ISR(uart_) \
ISR(USART##uart_##_RX_vect) \
{ \
unsigned char c = UDR##uart_; \
\
int i = (rx_buffer_head[uart_] + 1) & RX_BUFFER_MASK; \
\
/* if we should be storing the received character into the location \
just before the tail (meaning that the head would advance to the \
current location of the tail), we're about to overflow the buffer \
and so we don't write the character or advance the head. */ \
if (i != rx_buffer_tail[uart_]) { \
rx_buffer[uart_][rx_buffer_head[uart_]] = c; \
rx_buffer_head[uart_] = i; \
} \
}
UART_ISR(0)
#if defined(__AVR_ATmega644P__)
UART_ISR(1)
#endif