This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/src/feature/bedlevel/ubl/ubl.cpp
2019-09-17 18:16:28 -05:00

253 lines
8.1 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../bedlevel.h"
unified_bed_leveling ubl;
#include "../../../module/configuration_store.h"
#include "../../../module/planner.h"
#include "../../../module/motion.h"
#include "../../../module/probe.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extensible_ui/ui_api.h"
#endif
#include "math.h"
void unified_bed_leveling::echo_name() {
SERIAL_ECHOPGM("Unified Bed Leveling");
}
void unified_bed_leveling::report_current_mesh() {
if (!leveling_is_valid()) return;
SERIAL_ECHO_MSG(" G29 I99");
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y])) {
SERIAL_ECHO_START();
SERIAL_ECHOPAIR(" M421 I", x, " J", y);
SERIAL_ECHOPAIR_F(" Z", z_values[x][y], 4);
SERIAL_EOL();
serial_delay(75); // Prevent Printrun from exploding
}
}
void unified_bed_leveling::report_state() {
echo_name();
SERIAL_ECHO_TERNARY(planner.leveling_active, " System v" UBL_VERSION " ", "", "in", "active\n");
serial_delay(50);
}
int8_t unified_bed_leveling::storage_slot;
float unified_bed_leveling::z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
#define _GRIDPOS(A,N) (MESH_MIN_##A + N * (MESH_##A##_DIST))
const float
unified_bed_leveling::_mesh_index_to_xpos[GRID_MAX_POINTS_X] PROGMEM = ARRAY_N(GRID_MAX_POINTS_X,
_GRIDPOS(X, 0), _GRIDPOS(X, 1), _GRIDPOS(X, 2), _GRIDPOS(X, 3),
_GRIDPOS(X, 4), _GRIDPOS(X, 5), _GRIDPOS(X, 6), _GRIDPOS(X, 7),
_GRIDPOS(X, 8), _GRIDPOS(X, 9), _GRIDPOS(X, 10), _GRIDPOS(X, 11),
_GRIDPOS(X, 12), _GRIDPOS(X, 13), _GRIDPOS(X, 14), _GRIDPOS(X, 15)
),
unified_bed_leveling::_mesh_index_to_ypos[GRID_MAX_POINTS_Y] PROGMEM = ARRAY_N(GRID_MAX_POINTS_Y,
_GRIDPOS(Y, 0), _GRIDPOS(Y, 1), _GRIDPOS(Y, 2), _GRIDPOS(Y, 3),
_GRIDPOS(Y, 4), _GRIDPOS(Y, 5), _GRIDPOS(Y, 6), _GRIDPOS(Y, 7),
_GRIDPOS(Y, 8), _GRIDPOS(Y, 9), _GRIDPOS(Y, 10), _GRIDPOS(Y, 11),
_GRIDPOS(Y, 12), _GRIDPOS(Y, 13), _GRIDPOS(Y, 14), _GRIDPOS(Y, 15)
);
#if HAS_LCD_MENU
bool unified_bed_leveling::lcd_map_control = false;
#endif
volatile int unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() {
reset();
}
void unified_bed_leveling::reset() {
const bool was_enabled = planner.leveling_active;
set_bed_leveling_enabled(false);
storage_slot = -1;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
planner.set_z_fade_height(10.0);
#endif
ZERO(z_values);
#if ENABLED(EXTENSIBLE_UI)
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
ExtUI::onMeshUpdate(x, y, 0);
#endif
if (was_enabled) report_current_position();
}
void unified_bed_leveling::invalidate() {
set_bed_leveling_enabled(false);
set_all_mesh_points_to_value(NAN);
}
void unified_bed_leveling::set_all_mesh_points_to_value(const float value) {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
z_values[x][y] = value;
#if ENABLED(EXTENSIBLE_UI)
ExtUI::onMeshUpdate(x, y, value);
#endif
}
}
}
static void serial_echo_xy(const uint8_t sp, const int16_t x, const int16_t y) {
SERIAL_ECHO_SP(sp);
SERIAL_CHAR('(');
if (x < 100) { SERIAL_CHAR(' '); if (x < 10) SERIAL_CHAR(' '); }
SERIAL_ECHO(x);
SERIAL_CHAR(',');
if (y < 100) { SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); }
SERIAL_ECHO(y);
SERIAL_CHAR(')');
serial_delay(5);
}
static void serial_echo_column_labels(const uint8_t sp) {
SERIAL_ECHO_SP(7);
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
if (i < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(i);
SERIAL_ECHO_SP(sp);
}
serial_delay(10);
}
/**
* Produce one of these mesh maps:
* 0: Human-readable
* 1: CSV format for spreadsheet import
* 2: TODO: Display on Graphical LCD
* 4: Compact Human-Readable
*/
void unified_bed_leveling::display_map(const int map_type) {
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
suspend_auto_report = true;
#endif
constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567]
twixt = eachsp * (GRID_MAX_POINTS_X) - 9 * 2; // Leading 4sp, Coordinates 9sp each
const bool human = !(map_type & 0x3), csv = map_type == 1, lcd = map_type == 2, comp = map_type & 0x4;
SERIAL_ECHOPGM("\nBed Topography Report");
if (human) {
SERIAL_ECHOLNPGM(":\n");
serial_echo_xy(4, MESH_MIN_X, MESH_MAX_Y);
serial_echo_xy(twixt, MESH_MAX_X, MESH_MAX_Y);
SERIAL_EOL();
serial_echo_column_labels(eachsp - 2);
}
else {
SERIAL_ECHOPGM(" for ");
serialprintPGM(csv ? PSTR("CSV:\n") : PSTR("LCD:\n"));
}
// Add XY_PROBE_OFFSET_FROM_EXTRUDER because probe_pt() subtracts these when
// moving to the xy position to be measured. This ensures better agreement between
// the current Z position after G28 and the mesh values.
const float current_xi = find_closest_x_index(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
current_yi = find_closest_y_index(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
if (!lcd) SERIAL_EOL();
for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
// Row Label (J index)
if (human) {
if (j < 10) SERIAL_CHAR(' ');
SERIAL_ECHO(j);
SERIAL_ECHOPGM(" |");
}
// Row Values (I indexes)
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
// Opening Brace or Space
const bool is_current = i == current_xi && j == current_yi;
if (human) SERIAL_CHAR(is_current ? '[' : ' ');
// Z Value at current I, J
const float f = z_values[i][j];
if (lcd) {
// TODO: Display on Graphical LCD
}
else if (isnan(f))
serialprintPGM(human ? PSTR(" . ") : PSTR("NAN"));
else if (human || csv) {
if (human && f >= 0.0) SERIAL_CHAR(f > 0 ? '+' : ' '); // Space for positive ('-' for negative)
SERIAL_ECHO_F(f, 3); // Positive: 5 digits, Negative: 6 digits
}
if (csv && i < GRID_MAX_POINTS_X - 1) SERIAL_CHAR('\t');
// Closing Brace or Space
if (human) SERIAL_CHAR(is_current ? ']' : ' ');
SERIAL_FLUSHTX();
idle();
}
if (!lcd) SERIAL_EOL();
// A blank line between rows (unless compact)
if (j && human && !comp) SERIAL_ECHOLNPGM(" |");
}
if (human) {
serial_echo_column_labels(eachsp - 2);
SERIAL_EOL();
serial_echo_xy(4, MESH_MIN_X, MESH_MIN_Y);
serial_echo_xy(twixt, MESH_MAX_X, MESH_MIN_Y);
SERIAL_EOL();
SERIAL_EOL();
}
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
suspend_auto_report = false;
#endif
}
bool unified_bed_leveling::sanity_check() {
uint8_t error_flag = 0;
if (settings.calc_num_meshes() < 1) {
SERIAL_ECHOLNPGM("?Mesh too big for EEPROM.");
error_flag++;
}
return !!error_flag;
}
#endif // AUTO_BED_LEVELING_UBL